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The calendar queue is an important implementation of a priority queue that is particularly
useful in discrete event simulators. We investigate the performance of the static calendar
queue that maintains N active events. The main contribution of this article is to prove that,
under reasonable assumptions and with the proper parameter settings, the calendar queue
data structure will have constant (independent of N) expected time per event processed. A
simple formula is derived to approximate the expected time per event. The formula can be
used to set the parameters of the calendar queue to achieve optimal or near optimal
performance. In addition, a technique is given to calibrate a specific calendar queue implemen-
tation so that the formula can be applied in a practical setting.
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1. INTRODUCTION
The calendar queue data structure, as described by Brown [1988], is an
important implementation of a priority queue that is useful as the event
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queue in a discrete event simulator. At any time in a discrete event
simulator there are N active events, where each event e has an associated
event time t~e! when it is intended to occur in simulated time. The set of
events is stored in the priority queue ordered by their associated event
times. A basic simulation step consists of finding an event e0 that has the
smallest t~e0!, removing the event from the priority queue, and processing
it. As a result of the processing, new events may be generated. The
parameter N can vary if zero or more than one new even is generated. Each
new event e has an event time t~e! . t~e0! and must be inserted in the
priority queue accordingly.

The events are stored in buckets in the calendar queue, with each bucket
containing events whose times are close to each other. All the events with
the smallest times are in the same bucket, so they can be accessed quickly
and simulated. Any newly generated event can be quickly put into its
bucket. When the events in one bucket are consumed, the next bucket is
considered. The details of the algorithm are given later. The calendar
queue has several user controllable parameters, the bucket width, and
number of buckets, that affect its performance. Brown [1988] provided
empirical evidence that the calendar queue, with its parameters properly
set, achieves expected constant time per event processed. The goal of this
article is to prove the constant time per event of the calendar queue
behavior in a reasonable model where, for each new event e, the quantity
t~e! 2 t~e0! is a nonnegative random variable sampled from some distribu-
tion.

Generally, the number of active events may vary over time. An important
case is the static case, which arises when N is a constant, such as the case
of simulating a parallel computer. In this case, each event corresponds to
either the execution of a segment of code or an idle period by one of the
processors. Thus, if there are N processors, then there are exactly N active
events in the priority queue. In this article we focus on the static calendar
queue.

Even before Brown’s [1988] article, the calendar queue was used in
discrete event simulators when the number of events was large. In many of
these situations the calendar queue significantly outperforms traditional
priority queue data structures [Brown 1978; Francon et al. 1978; Knuth
1973; Sleator and Tarjan 1985; 1986; Vuillemin 1978]. An interesting new
development is the employment of a calendar queue-like data structure as
part of the queueing mechanism of high-speed network switches and
routers [Rexford et al. 1997]. In this case the calendar queue-like data
structure is implemented in hardware.

1.1 Organization

In Section 2 we define the calendar queue data structure and the parame-
ters that govern its performance. Section 3 presents the Markov chain
model of calendar queue performance. Section 4 presents an expression
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that describes the performance of the calendar queue in the infinite bucket
case. The bucket width can be chosen to approximately minimize the
expected time per event at a constant. Section 5 describes how to choose the
number of buckets without significantly compromising the performance
over the infinite bucket calendar queue. Section 6 develops a technique for
calibrating a calendar queue implementation and demonstrates the effec-
tiveness of the technique. Section 7 presents our conclusions and the
Appendix contains the longer technical proofs.

2. THE CALENDAR QUEUE

A calendar queue has M buckets numbered 0 to M 2 1, a current bucket i0,
a bucket width d, and a current time t0. We have the relationship that i0

5 t0 / d mod M. For each event e in the calendar queue, t~e! $ t0, and
event e is located in bucket i if and only if i # t~e! / d mod M , ~i 1 1!.
The analogy with a calendar can be stated by the following: there are M
days in a year each of duration d, and today is i0, which started at absolute
time t0. Each event is found on the calendar on the day it is to occur,
regardless of the year.

As an example, choose N 5 8, M 5 10, d 5 10, i0 5 3, and t0 5 30 (see
Table I). The eight events have times 31, 54, 85, 98, 111, 128, 138, 251. In
this example, the next event to be processed has time 31, which is in the
current bucket numbered 3. Suppose it is deleted and the new event
generated has time 87. Then the new event is placed in bucket 8 next to the
event with time 85. Since 138 $ 40, it will not be processed until the
current bucket has cycled around all the buckets once. Thus, t0 is increased
by d, and the next bucket to be examined is bucket 4, which happens to be
empty. Thus, the processing of the buckets is done in cyclic order and only
the events e that are in the current cycle, t0 # t~e! , t0 1 d, are processed.

A calendar queue is implemented as an array of lists. The current bucket
is an index into the array, and the bucket width and current time are either
integers, fixed-point, or floating-point numbers. Each bucket can be imple-
mented in a number of ways, most typically as an unordered linked list or
as an ordered linked list. In the former case, insertion into a bucket takes
constant time and deletion of the minimum from a bucket takes time
proportional to the number of events in the bucket. In the latter case,
insertion may take time proportional to the number of events in the bucket,
but deletion of the minimum takes constant time. The choice of algorithm
for managing the individual buckets is called the bucket discipline. In this
article we focus on the unordered list bucket discipline.

Table I

s
0 1 2 3 4 5 6 7 8 9

- 111 128 31 - 54 - - 85 98
138 251
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2.1 Calendar Queue Performance

For the calendar queue, the performance measure we are most interested
in is the expected time per event, that is, the time to delete the event with
minimum time and insert the generated new event. There are two key (user
controllable) parameters in the implementation of a calendar queue that
affect its performance, namely, the bucket width d and the number of
buckets M. The choice of the best d and M depends on the number of events
N and the process by which t~e! is chosen for a newly generated event e.
Assuming M is very large (infinite), if d is chosen too large, then the
current bucket will tend to have many events, which is inefficient. On the
other hand if d is chosen too small, then there will be many empty buckets
to traverse before reaching a nonempty bucket, which again is inefficient.
Regardless of the choice of d, if M is chosen too small, then the current
bucket will again tend to have too many events in it which are not to be
processed until later visits to the same bucket.

In order to analyze the calendar queue, we make some simplifying
assumptions on the process by which t~e! is chosen for a new event e. The
main assumption we make is that the quantity t~e! 2 t~e0!, called the
jump, is a random variable sampled from some distribution that has a
mean m, where e0 is the event with minimum time t~e0!. We will fully
delineate the simplifying assumptions later. The choice of a good d cer-
tainly depends on both m and N. As m grows, so should d. As N grows, d

should decrease. Determining exactly how d should change as a function of
m and N to achieve optimal performance is a goal of this article.

Assume that we have infinitely many buckets. In addition to the two
parameters m and N, the choice of a good d also depends on three hidden
implementation parameters b, c, and d where b is the incremental time to
process an empty bucket, c is the incremental time to traverse a member of
a list in search of the minimum in the list, and d is the fixed time to process
an event. If m empty buckets are visited before reaching a bucket with n
events ~n $ 1!, then the time to process an event is defined to be

bm 1 cn 1 d.

Define KN~d! to be the stationary expected value of bm 1 cn 1 d. Then
KN~d! is the expected time per event in the infinite bucket calendar queue.

In a real implementation of a calendar queue, the number of buckets M is
finite. In this case, it may happen that some events in the bucket have
times that are not within d of the current time and are not processed until
much later. Define K N

M~d! to be the expected time per event in the M bucket
calendar queue. Generally, K N

M~d! $ KN~d! because extra time may be
spent traversing events in buckets that are not processed until later.
Another goal of this article is to determine how to choose M so that K N

M~d!
is the same or only slightly larger than KN~d!.
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Table II summarizes the various parameters that affect the performance
of the calendar queue.

Figure 1 illustrates the existence of an optimal d for minimizing the
expected time per event. Figure 2 illustrates the effect of selection of M on
the expected time per event. The graphs in both figures were generated by
simulating the calendar queue with an exponential jump with mean 1 and
b 5 c 5 d 5 1. Measurements were taken after a suitably long warm-up
period and over a long enough period so that average time per event was
very stable. The simulation of Figure 1 uses an infinite number of buckets
with 100 events. The simulation of Figure 2 uses the optimal bucket width
for N 5 1,000 for the infinite bucket calendar queue, then varying the
number of buckets. In choosing M 5 2,000 or 3,000 the performance
curve is almost flat approaching the performance with infinitely many
buckets.

3. MODELING THE CALENDAR QUEUE PERFORMANCE

To model the calendar queue performance, we begin by specifying the
properties of the random variable j 5 t~e! 2 t~e0!, where e0 is the event
with current minimal time, and e is the newly generated event. We assume
that j is a random variable with density f defined on @0, `#, the nonnega-
tive reals. We call f the jump density and its random variable simply the
jump. Successive jumps are assumed to be mutually independent and
identically distributed. Let m be the mean of the jump; that is

m 5 E
0

`

zf~z!dz 5 E
0

`

$1 2 F~z!%dz, (1)

where F is the distribution function of the j: F~x! 5 E
0
xf~z!dz. We call F

the jump distribution.
We define the support of the jump distribution to be

b 5 sup$x $ 0 : F~x! , 1%

The value b 5 ` is not excluded.

Table II. Parameters of the Calendar Queue

N Number of events Known parameter
m Mean of the jump Known or estimated parameter
b Time per empty bucket Hidden parameter determined by calibration
c Time per list entry Hidden parameter determined by calibration
d Fixed time per event Hidden parameter determined by calibration
d Bucket width User controlled parameter
M Number of buckets User controlled parameter
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Technical Assumptions About f and F

In order to facilitate the proofs, we make several technical assumptions
about f and F that are in force throughout, except as noted:

J1. The density f~x! . 0 for all x in the interval ~0, b!.

J2. The mean m is finite.

J3. There is an e0 . 0 and c0 such that F~x! # c0x for all x # e0.
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Fig. 1. Graph of bucket width d vs. expected time per event KN~d! in the simulated infinite
bucket calendar queue with 100 events, exponential jump with mean 1, and b 5 c 5 d 5 1.
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Fig. 2. Graph of number of buckets M vs. expected time per event K N
M~d! for d chosen

optimally in the M bucket simulated calendar queue with 1,000 events, exponential jump with
mean 1, and b 5 c 5 d 5 1.
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Assumption J2 is crucial; it guarantees the existence of a nontrivial “steady
state.” Note that J3 holds if the density f is bounded in a neighborhood of 0.

3.2 The Markov Chain

We model the infinite bucket calendar queue as a Markov chain X̂ with
state space in @0, `!N. For t 5 0, 1, 2, . . . , let ~ X 1~t!, X 2~t!, . . . ,
X N~t!! denote the state of the chain at time t. The state ~ X 1~t!, X 2~t!,
. . . , X N~t!! represents the positions, relative to the beginning of the
current bucket, of the N events (indexed 1 to N) in the calendar queue at
step t. A step of the calendar queue consists of examining the current
bucket, and either moving to the next bucket if the current bucket is empty,
or removing the event with smallest time from the current bucket and
inserting a new event (with the same index) according to the jump
distribution. Accordingly, the transitions of X̂ are as follows. Let m be the
index such that X m~t! 5 min$X 1~t!, X 2~t!, . . . , X N~t!%. If X m~t! $ d, then
X i~t 1 1! 5 X i~t! 2 d for all i. If X m~t! , d, then for i Þ m, X i~t 1 1!

5 X i~t!, and X m~t 1 1! 5 X m~t! 1 j t where j0, j1, . . . are independent
nonnegative random variables. It is assumed that these random variables,
j t, t $ 0, all have the same probability density f. The parameter d is a
fixed nonnegative real number.

We can think of X i~t! as the position of the ith particle in an N particle
system. If no particle is in the interval @0, d!, then all particles move d
closer to the origin. Otherwise, the particle closest to the origin in the
interval, @0, d!, jumps a random distance from its current position and the

other particles remain stationary. Thus, a particle in the Markov chain X̂
represents an event in the infinite bucket calendar queue where the
position of the particle corresponding to an event e is the quantity t~e! 2 t0.
The interval @0, d! corresponds to the currently active bucket in the
infinite bucket calendar queue.

It is important to note that a step of the Markov chain X̂ does not
correspond to the processing of an event in the calendar queue. The
processing of an event in the calendar queue corresponds to a number of
steps of the Markov chain where the interval @0, d! is empty, followed by
one step where the interval @0, d! is nonempty.

Define qi to be the limiting probability, as t goes to infinity, that the
interval @0, d! has exactly i particles in it. Technically, qi 5 qi~N, d! is a
function of N and d, but we drop the N and d to simplify the notation. The
quantity q0 is the probability that the interval @0, d! is empty. It is not
obvious that qi exists for 0 # i # N, so we prove the following lemma in
Appendix A.
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LEMMA 3.1 If the jump density has properties J1, J2, and J3, then the
limiting probabilities qi for 0 # i # N exist and are independent of the

initial state of X̂.

Let us also define EN~d! to be the limiting expected number of particles
in the interval @0, d!; that is,

EN~d! 5 O
j51

N

jqj. (2)

4. EXPECTED TIME PER EVENT IN INFINITE BUCKET CASE

The expected time to process an event in the infinite bucket calendar queue
is closely related to the function EN~d!, as we can see from the following
lemma.

LEMMA 4.1 The expected time per event in the infinite bucket calendar
queue is

KN~d! 5
q0b 1 ~1 2 q0!d 1 EN~d!c

1 2 q0

. (3)

PROOF. The Markov chain X̂ models the calendar queue. Thus q0 is the
portion of buckets visited that are empty and for j . 0, qj is the portion of
buckets visited that have j events. Each empty bucket visited, which
happens with probability q0, has cost b, but does not result in finding an
event to process. Each bucket visited with j . 0 events, which happens
with probability qj, has cost cj 1 d, and results in finding an event to
process. Thus, the expected cost per event in the calendar queue is

KN~d! 5
q0b 1 O

j51

N qj~cj 1 d!

1 2 q0

,

which yields Equation (3) using Equation (2). e

Let us define the following important quantity:

p 5 p~d! 5
1

m
E

0

d

@1 2 F~x!#dx. (4)

The second part of Equation (1) implies that 0 # p # 1. Note also that
d@1 2 F~d!# / m # p # d / m.

In order to derive a good approximating formula for KN~d!, we first need
to find good bounds for the quantities qi for 0 # i # N. The following
technical lemma, proved in the Appendix, Section B, provides those bounds.
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LEMMA 4.2 For N $ 2 and all d . 0, we have

q0 5
m

m 1 Nd
, (5)

and for j 5 1, 2, . . . , N, we have

q0 B~ j ! # qj #
q0 B~ j !

1 2 F~d!
(6)

where B~ j ! is the tail of the binomial distribution for N trials with “success”
parameter p:

B~ j ! 5 O
k5j

N SN
k Dpk~1 2 p!N2k. (7)

The simple exact formula for q0 is interesting. It is possible to write down
some very complicated integrals that give exact expressions for the other
qj, but these formulas are highly unwieldy and their proofs are not
informative (cf., [Erickson 1999]).

It is also interesting to note that our assumption J1, requiring the
probability density f to be positive on its support can be removed, but the
proofs of the theorems become even longer. Without J1, if the density f has
the property that there is a constant c . 0 such that f~x! 5 0 for x # c,
then if d # c , we have F~d! 5 0, and (6) yields exact expressions for qj for
all j $ 1.

Lemma 4.2 yields the following upper and lower bounds on KN~d!.

LEMMA 4.3 For N $ 2 and all d . 0,

mb

Nd
1

mc

2d
@~N 2 1!p212p# # KN~d! 2 d #

mb

Nd
1

mc

2d

@~N 2 1!p212p#

1 2 F~d!
. (8)

PROOF. From (5) and (6), we have

EN~d! 5 O
j

jqj $ q0O
j

jB~ j ! 5
m

m 1 Nd
O
j

jB~ j !.

Define b~i! 5 SN
i Dpi~1 2 p!n2i to be the standard binomial distribution

with N trials and success parameter p. Since b~i! 5 B~i! 2 B~i 1 1! and
b~i! has mean Np and second moment ~Np!2 1 Np~1 2 p!, we sum by
parts to derive
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O
j51

N

jB~ j ! 5 O
i51

N

b~i!~O
j51

i

j! 5 O
i51

N 1

2
~i2 1 i!b~i!

5
1

2
@~N 2 2 N !p212Np#,

which, upon substituting into Equation (3) and doing a little rearranging,
yields the left side of (8). The right side of (8) is derived similarly. e

When d 5 O~1 / N!, d gives good calendar queue performance. In this
case the bounds of (8) give us a wonderfully simple, and accurate, approxi-
mating formula for KN~d!.

THEOREM 4.1 If d 5 O~1 / N!, then the expected time per event in the
infinite bucket calendar queue with bucket width d is

KN~d! 5 d 1 c 1
cN

2m
z d 1

bm

N
z
1

d
1 O~N21!. (9)

In fact, there are numbers t1, t2 such that for any fixed g . 0 the O~N 21!
term is bounded by ~t2g 2 1 t1g! / N uniformly for 0 , d # g / N.

The proof of this theorem is an almost immediate consequence of Equa-
tions (3), (5), and (8); but is also postponed to the Appendix, Section C.
Interestingly, the expected time depends on the mean of the jump, and not
on the shape of its probability density.

Note that one immediate consequence of Theorem 4.1 is that if the bucket
width is chosen to be um / N for u in a fixed interval, then the infinite
bucket calendar queue has constant expected time per event performance.
Indeed, a formula for the optimal performance of the calendar queue can be
derived, as seen in the following theorem.

THEOREM 4.2 The expected time per event KN~d! achieves a global
minimum in the interval ~0, `! at dopt where

dopt 5 Î2b

c

m

N
1 O~N23/ 2!, (10)

KN~dopt! 5 d 1 c 1 Î2bc 1 O~N21!. (11)

The proof of this theorem is in the Appendix, Section D. Theorem 4.2
shows that the optimal choice of d depends only on the ratio of b to c, the
mean m of the jump, and N.

5. CHOOSING THE NUMBER OF BUCKETS

Now that we have found how to select d so as to approximately minimize
the expected time per event in the infinite bucket calendar queue, our next
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goal is to select M, the number of buckets, so that the M bucket calendar
queue has the same or similar performance as the infinite bucket calendar
queue.

For the case in which the jump distribution has finite support (b , `),
there is a natural choice for M, which guarantees that the calendar queue
with M buckets has exactly the same performance as the infinite bucket
calendar queue. If M $ b / d11, then it is guaranteed that in the long run
all the events e in the current bucket will have t0 # t~e! , t0 1 d. In this
case, each event in the current bucket will eventually be processed during
the current visit to the bucket, and not postponed until future visits to the
bucket. For the case in which the support b of the jump distribution is
either infinite or is finite but b / d is too large to be practical, it will be
necessary to choose a number M that gives performance less than that of
the infinite bucket calendar queue.

5.1 Expected Time per Event In the Finite Bucket Case

The same Markov chain X̂ can be used to analyze this case. Let LN
M~d! be

the (steady state) expected number of particles in the set

G 5 ø
j51

`

@ jMd, jMd 1 d!.

In terms of the M bucket calendar queue, if an event e has t~e! 2 t0 [ G,
then the event is in the current bucket but is not processed. The occurrence
of such an event will cause the M bucket calendar queue to run less
efficiently than the infinite bucket calendar queue. The following lemma
quantifies the difference between the performance of the finite and infinite
bucket calendar queues.

LEMMA 5.1 The expected time per event in the M bucket calendar queue
with bucket width d is

K N
M~d! 5 KN~d! 1

c~m 1 Nd!

Nd
LN

M~d!.

PROOF. In the Markov chain X̂, let qij be the limiting probability that
there are i particles in the interval @0, d! and j particles in G. The
probabilities qij can be shown to exist in the same way as the probabilities
qi in Lemma 1 by using Corollary 1 in the Appendix, Section A. In the M
bucket calendar queue the cost of visiting a bucket with i events whose
times are in the interval @t0, t0 1 d! and j events whose times are in the
set $t0 1 x : x [ G% is c~i 1 j! 1 d if i . 0 and cj 1 b if i 5 0. Thus, the
expected cost per event K N

M~d! equals
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O
i51

N O
j50

N qij~c~i 1 j! 1 d! 1 O
j50

N q0j~cj 1 b!

1 2 O
j50

N q0j

.

But O j50
N qoj 5 q0 5 m / m 1 Nd (Equation (5) of Lemma 4.2) and

O j50
N jO i50

N qij 5 LN
M~d!. By using Equation (3) in the proof of Lemma 4.1 we

derive the equation for K N
M~d!. e

In the Appendix, Section E, we indicate how to derive the following
rather horrible looking bounds for LN

M~d!.

LEMMA 5.2 The function LN
M~d! is bounded above by

mN~Np 1 1!P1 1 mNp~Np 1 2 2 p!P2

~m 1 Nd!@1 2 F~d!#2

and bounded below by

mN~Np 1 1 2 p!P1

m 1 Nd
,

where p and F have the same meaning as before (see Equation (4)) and

P1 5
1

m
O

j51

` E
jMd

jMd1d

@1 2 F~x!#dx,

P2 5 max
0#y#d

O
j51

`

@F~ jMd 1 d 2 y! 2 F~ jMd 2 y!#.

Note that under the hypothesis m , ` (J2), the above series converge
and can be given bounds in terms of m, d, and M. However, using the
bounds as stated in the lemma, we can derive a more useful asymptotic
expression for LN

M~d!. The lemma is proven in the Appendix, Section F.

LEMMA 5.3 If d 5 xm / N and r 5 M / N, where r and x are constants,
then1

LN
M~d! . xO

j51

`

@1 2 F~ jmxr!#.

1We define g~N ! . h~N ! if limN3`
g~N ! / h~N ! 5 1.
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5.2 Degradation in Performance Due to Finitely Many Buckets

Define eM to be the performance degradation in choosing M buckets instead
of infinitely many buckets; that is,

eM 5
K N

M~d! 2 KN~d!

KN~d!
.

If we choose d optimally, then Lemma 5.3 and Theorem 4.2 yield the
following asymptotic expression for eM.

THEOREM 5.1 If M / N is constant and

d 5 Î2b

c
z

m

N

then

eM .
c 1 Î2bc

d 1 c 1 Î2bc
O
j51

`

@1 2 F~ jMd!# (12)

The following asymptotic bound is implied by Theorem 5.1.

THEOREM 5.2 If M / N is constant and

d 5 Î2b

c
z

m

N

then 2

eM 2a
c 1 Î2bc

d 1 c 1 Î2bc
z Î c

2b
z

N

M
(13)

PROOF. By Theorem 5.1, it suffices to show that O j51
` @1 2 F~ jD!# #

m / D for D . 0. To see this, let k $ 2, then

m

D
5

1

DE
0

`

xf~x!dx $ O
j50

k 1

DE
jD

jD1D

xf~x!dx

$ O
j50

k

j@F~~ j 1 1!D! 2 F~ jD!#

5 O
j51

k

@1 2 F~ jD!# 2 k@1 2 F~~k 1 1!D!#.

2We define g~N ! 2a h~N ! if lim supN3`
g~N ! / h~N ! # 1.
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The finiteness of m implies that x@1 2 F~x!# 3 0 as x 3 `. Therefore, if
we let k 3 `, we get m / D $ O j51

` @1 2 F~ jD!#. e

Equation (13) shows that for a fixed e . 0 (such as .01) M can be chosen
to be O~N !, so that eM # e. In other words, one can always choose the
number of buckets M to be a multiple of N and still obtain a performance
almost as good as that of the infinite bucket case.

For the interesting case of the exponential jump density

f~x! 5
1

m
e2x/m, x $ 0,

we can calculate the series in Equation (12) exactly:

eM .
c 1 Î2bc

d 1 c 1 Î2bc
z

1

eÎ2b
c

M
N21

. (14)

Let us suppose b 5 c 5 d 5 1. Choosing d optimally equal to Î2m / N
allows us to solve Equation (16) for M / N when given an acceptable eM. For
example, if we choose eM 5 .05, then M / N should be approximately 1.92,
and if eM 5 .01 then M / N should be approximately 3.02. Figure 3 illus-
trates that asymptotic Equation (14) provides an excellent choice of M over
a wide range of N. Using our simulation of the calendar queue, we plot for
a wide range of N the value of eM for each of M / N 5 1.92 and M / N 5
3.02. Again, measurements were taken after a suitably long warm-up
period and over a long enough period, so that average time per event was
very stable. Both plots are relatively flat near the asymptotic values .05
and .01, respectively. Thus, Equation (14) seems quite accurate. The bound
of Theorem 5.2 is not necessarily tight because we are crudely approximat-
ing an integral. For example, if we choose eM 5 .01, then formula (13)
requires M / N to be at least 50.

6. CALIBRATING A CALENDAR QUEUE IMPLEMENTATION

In an actual calendar queue implementation, we would like to find the best
bucket width d and number of buckets M. The preceding theory tells us
how to do so if we know the hidden implementation parameters b, c, and d.
In this section we give a relatively simple method for estimating these
parameters by simply timing executions of the simulation for various
values of d proportional to m / N. The key to the method is Equation (10) for
the expected time per event. We can write KN~d! as a linear function of the
unknowns b, c, and d. The general calibration method is as follows: First,
estimate M large enough so that the degradation in using M buckets over
infinitely many is small. Second, find K N

M~d! for a number of different d ’s by
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timing executions of the implementation. Third, use a linear least squares
approximation to find the b, c, and d that best fit the function

m

Nd
z b 1 S1 1

Nd

2m
D z c 1 d. (15)

We illustrate this method with an example. We developed a calendar queue
implementation in C11 and ran it on a DEC Alphastation 250. We chose
N 5 1,000 and an exponential jump with mean 10,000. Just by examin-
ing the code we felt that b, the time to process an empty bucket, was
considerably larger than c, the cost of traversing a list entry. We made an
educated guess that the optimal d was certainly greater than .5m / N 5 5.
We chose M 5 10 z N 5 10,000. Hence, for d 5 5 or larger, there is only
a small chance that an event in the current bucket is not processed because
its time is too large. We timed the calendar queue for 20 values of d ranging
over several orders of magnitude, namely, d 5 5, 15, 25, . . . , 195. Using
these data, we used linear least squares approximation to compute b 5

837.619, c 5 44.3039, and d 5 1439.69 using Equation (15). Figure 4
shows the curve of Equation (15) using these parameters. The figure also
shows the time per event for d 5 10, 20, 30, . . . , 200. Thus, this method
accurately predicts datapoints that were not used in the linear least
squares approximation. It is interesting to note that using these values of
b, c, and d in Equations (10) and (11), we obtain dopt ' 61.5 and K~dopt!

' 1756.38. By contrast, the best d among the 40 executions is d 5 50
with execution time 1754.92.
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Fig. 3. Graph of N vs. degradation eM from simulations for M / N 5 1.92 and M / N 5
3.02.
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Care must be taken in applying this calibration method because the
hidden parameters b, c, and d are measured indirectly by measuring the
expected time per event. For fixed M, N, and d, the expected time per event
can vary over different runs because of interruptions by other processes,
page faults, or other effects. However, in our experimental setting we
carefully controlled the environment so that our running times varied little
for a fixed parameter setting. In a real computing environment which
cannot be controlled this calibration method might not yield such good
results.

Ideally, using a fixed N, M (large enough), and m we can estimate the
hidden parameters b, c, and d, which could then be used for any other N, M
(large enough), m, and d. However, due to the cache behavior of modern
processors, the values of b, c, and d are not actually constant independent
of M, N, and properties of the jump distribution other than its mean. For
example, a smaller M might achieve fewer cache misses reducing the
running time, and thereby effectively lowering the values of these con-
stants. It may be that in applying the calibration method, d is chosen so
large that the original M chosen is far larger than necessary. In this case, it
might be wise to choose a smaller M, then recalibrate the calendar queue
starting with a larger d.

In a real application of the calendar queue, it is unlikely that the jumps
are mutually independent, identically distributed random variables, as
described in our model. Nonetheless, the mean of the jump can be empiri-
cally estimated, the calibration done, and Equation (10) for the optimal d

applied to find a potentially good d.
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Fig. 4. Measured and predicted expected time per event for a calibrated implementation of a
calendar queue.
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7. CONCLUSION

We have shown that there is an expression for the expected time to process
an event in the infinite bucket calendar queue and that the bucket width
can be chosen optimally. With the bucket width near the optimal bucket
width, the calendar queue has expected constant time per event. The
optimal bucket width depends on a few parameters only, the incremental
time to process an empty bucket (b), the incremental time to traverse a list
item (c), the mean of the jump (m), and the number of events (N). We have
shown that the number of buckets M can be chosen to be O~N !, so as to
achieve minimal or almost minimal expected time per event. Finally, we
have shown that the implementation parameters can be determined by
using approximation based on the linear least squares method.

Although the calendar queue runs very fast for certain applications, it
has the disadvantage that its performance depends on the choice of
parameters d and M. An interesting problem would be to design a priority
queue based on the calendar queue that automatically determines good
choices for d and M. We believe that the calibration method described in
this article might give insight into the design of a dynamic calendar queue
where N and/or m can vary over time.

APPENDIX

Section A sets up the notation and concepts that are used throughout the
Appendix.

A. INVARIANT DISTRIBUTION, POSITIVITY, AND LIMITS

Consider the Markov chain X̂ described in Section 3. The symbol P v

denotes the probability measure induced on the trajectory space of the

chain X̂ when the initial distribution is n, and P x̂ denotes trajectory space

probabilities when the chain starts at the point X̂. (Note: P n 5 EP x̂dn~x̂!,
the integration being carried out over the entire state space.) Integration
(better known as expectation) with respect to P n and P x̂ is denoted En and
E x̂, respectively.

Let Bi stand for the set of points x̂ 5 ~x1, x2, . . . , xN! in @0, `!N such
that

xi , xj, for all j Þ i and xi , d,

and let A0 5 @d, `!N. For an x̂ in the state space and a (measurable) subset
A, the one-step transition probability (T. P.) that the chain will move from
x̂ to a point in A is given by

P~x̂, A! 5 O
i51

N

1Bi~x̂!E
0

`

1A~x̂ 1 zêi!f~z!dz 1 1A0~x̂!1A~x̂ 2 d1̂!, (16)
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where 1̂ 5 ~1, 1, . . . , 1!, êi 5 the standard i th unit coordinate vector,
and 1A~ x̂! is the function that is 1 for x̂ in A and 0 otherwise.3

Let L be the set @0, d 1 b!N. It follows from (16) that

P~x̂, A! 5 0 forall x̂ in L and A , LC.

In other words, L is an absorbing set for the chain. Moreover, the
dynamical description of the chain implies that a particle that starts
outside L will reach L in a finite (but possibly random) number of steps.
(One can show, using the method in the proof in B.3, that the number of
steps required to eventually enter L has a finite expectation.) Thus LC is
transient for the chain. (Of course, LC 5 À if b 5 `.)

A measure m is an invariant measure for the chain if m is s-finite and
for every measurable subset A of the state space

m$A% 5 EP~x̂, A!m$dx̂%. (17)

A Markov chain is called a Harris recurrent chain, or simply a Harris
chain, if there exists a unique, up to positive multiples, invariant measure

m such that if A is any Borel subset with m~A! . 0, then P x̂~X̂t [ A i.o.!
5 1 for all x̂ in the state space. (The initials i.o. stand for “infinitely
often.”) A Harris chain with an invariant probability measure, necessarily
unique, is called positive.

The state space D of a Harris chain can be written as a disjoint union:
C1 ø . . . ø Cd ø D, where m~D! 5 0, and for j 5 1, . . . , d, P~x̂, Cj11!
5 1 for all x̂ [ Cj, P~x̂, C1! 5 1, for all x̂ [ Cd (see Revuz [1984, Chap. 6]).
The sets C1, . . . , Cd are known as the recurrent cyclic classes. The integer
d is finite and if d 5 1, the chain is called aperiodic.

THEOREM A.1. If the jump density satisfies J1, J2, and J3, then the

Markov chain X̂ with T.P. (18) is a positive, aperiodic, recurrent Harris
chain. Its invariant probability is concentrated on L 5 @0, b 1 d!N.

Corollary A.1. If w is any bounded measurable function, then for any
initial distribution n, we have

3Actually, (16) does not define a proper transition probability at all points! Indeed, if x̂ is any
point with two or more coordinates that are equal and strictly less than d, then x̂ does not lie
in A0 or in Bi for any i. Hence, P~x̂, A! 5 0 for all subsets A. However, the jump distribution
F has a density, so it has no atoms (discrete points of positive probability). This and the
dynamical description of the chain in Section 3 imply that two points that start at the same
position eventually become and remain separated w. p.1. Indeed, this occurs as soon as one of
them jumps to the right. Thus, it does no harm if we initially banish such points from the state
space. With this understanding, P is indeed a transition probability on its state space.
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lim
t3`

O
s51

t w~X̂s!

t
5 lim

t3`

O
s51

t En$w~X̂s!%

t

5 lim
t3`

Enw~X̂t!

5 Ew~x̂!dm~x̂!, P n 2 a.s. (18)

Note: The leftmost term is a limit of averages of random quantities and
the assertion is that the limit exists with P n-probability 1 and equals the
(nonrandom) quantities on the right. If w is unbounded but integrable with
respect to m and if the chain is Harris and positive, then the above limit
relations remain valid at least in the case that n is point mass at some x̂ or
that n 5 m.

PROOF (COROLLARY A.1). The deterministic limit statements of Corollary
A.1 are immediate consequences of Proposition 2.5 in Chap. 6, §2 of Revuz
[1984]. The a.s. limit-of-averages assertion is a consequence of the ergodic
theorem for Harris chains; see Theorem 4.3, and its companion remark, in
Revuz [1984, Chap. 4 §4]. e

Remark. The main significance of aperiodicity is that it justifies the

existence of the limit of E x̂$f~Xt̂!% in (18). The existence of limits of
averages does not require aperiodicity.

PROOF (LEMMA 3.1). Let

Aj 5 $x̂ : exactly j components of x̂ lie in @0, d!%.

Then, Z~t! 5 Ok kIAk~X̂t! 5 the number of particles in interval @0, d! at
time t, and from (18) it follows immediately that qj 5 lim

t
P v$Z~t! 5 j% 5

m$Aj%. e

The proof of Theorem A.1 is postponed to the very last appendix. It is
lengthy and somewhat tedious, but there are some interesting features.

B. PROOF OF LEMMA 4.2

B.1 Computing q0 5 m{A0}

In this section we prove (5) of Lemma 4.2.
The sets Bi, defined in the last section, are disjoint and their union is the

complement (in L) of A0. Since m assigns 0 mass to @0, `!N ù Lc, we have

m$A0% 5 1 2 O
1

N

m$Bi% 5 1 2 Nm$B1%. (19)
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Let c be any bounded or positive function on the state space. Equation (19)
has an analogue for functions, which reads: E c~x̂!m$dx̂% 5
Em$dx̂%E c~ŷ!P~x̂;dŷ!. Noting that EA0

m$dx̂%E c~ŷ!P~x̂, dŷ! 5 EA0
c~x̂

2 d1̂!m$dx̂%, by (16), and doing a little rearranging, we get

E
A0

@c~x̂ 2 d1̂! 2 c~x̂!#m$dx̂% 5 O
j51

N E
Bj

m$dx̂% @c~x̂! 2 Ec~ŷ!P~x̂;dŷ!#. (20)

Fix i and let c~x̂! 5 exp~2 axi!, where a is any complex number with
nonnegative real part. Then, for x̂ in Bi,

Ec~ŷ!P~x̂, dŷ! 5 E
0

`

exp$2 a~xi 1 z!% f~z! dz 5 exp~2axi!f~a!,

where f~a! 5 E
0
`e2azf~z!dz is the Laplace transform of F. Also, for x̂ in Bj

with j Þ i,

Ec~ŷ!P~x̂;dŷ! 5 E
0

`

exp~2 axi!f~z!dz 5 exp~2axi! 5 c~x̂!.

All but the ith term on the right side of (20) vanishes, and it becomes

@1 2 f~a!#E
Bi

exp~2axi!m$dx̂%.

Simplification of the left-hand side of (20) leads to

@ead21#E
A0

exp~2 axi!m$dx̂% 5 @~1 2 f~a!!#E
Bi

exp~2axi!m$dx̂%. (21)

Divide (21) by a and make a 3 0. The result is dm$A0% 5 2f9~0!m$Bi%
5 mm$Bi% for i 5 1, 2, . . . , N. Equation (5) follows immediately from
this and (19). e

B.2 The Case N 5 1

If we observe the successive positions of a single one of our N particles at
only those times at which it actually moves, we get a 1-dimensional version
of the N-dimensional chain. Let ui~0! 5 0 and for r 5 1, 2, . . . , let

ui~r! 5 min$t : t . ui~r 2 1! and X i~t! Þ X i~ui~r 2 1!!%.
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From the description of the chain in terms of the independent random
variables j, we conclude that

(i) each sequence $X i~ui~r!! : r 5 0, 1, 2, . . . % is itself a Markov chain
on the line;

(ii) The N Markov chains are mutually independent.

If we can find an increasing sequence of times $Sk% such that each Sk is a
common value of every one of the ui (i.e., for each k there are numbers
ri~k!, not necessarily the same, such that Sk 5 ui~ri~k!! for every i), then,

given X̂~0! 5 x̂, X̂~Sk! has mutually independent components. Here is such
a sequence: let S0 5 0, and, for k . 0, let

Sk 5 1 1 min$t : t $ Sk21, X̂~t! [ A0%.

The times Tk 5 Sk 2 1, k $ 1 are the successive (random) times at which

the interval @0, d! is empty of particles ~Z~Tk! 5 0!. Since X̂~Tk! is

obtained from X̂~Sk! by adding the deterministic constant d to each of the

components of X̂~Sk!, it follows that the components of X̂~Tk! are also
mutually independent. It is easy to show that the chain induced on A0 (or

trace chain), the sequence $X̂~Tk!, k $ 0% is also a Markov chain (see
Revuz [1984, Exercise 3.13, p. 27]).

An important point to note is that the special structure of X̂ implies that
for each i the chain $X i~Tk!, k $ 0% coincides in law with the trace chain

on @d, `# of an N 5 1 version of X̂. It is at least intuitively clear that the

trace chain $X̂~Tk!% is also positive recurrent and has an invariant proba-
bility distribution m0, say, obtained by renormalizing the distribution m
restricted to A0 (see Revuz [1984, Example 3.13, p. 27, and Proposition 2.9,
p. 93] for a formal proof). Thus, for subsets B,

m0~B! 5
m$B ù A0%

m$A0%
5 S1 1

Nd

m
Dm$B ù A0%. (22)

But because this trace chain also has independent components, it follows
that m0 is a “product measure” built up from the invariant distributions of
each of its component chains. These component chains have identical T.P.s,
so the factors in m0 are the same. Let us call this common factor distribu-
tion m10. Once computed, m10 (concentrated on @d, `!) may be used to
compute the limit, as k 3 `, of the probability of finding exactly j particles
in the interval @0, d! at times Sk 5 Tk 1 1. By now it should be clear that
the limiting distribution of Z~Sk! is a binomial distribution corresponding
to N Bernoulli trials with parameter p 5 m10$@d, 2d!%. (However, the limit
distribution of Z~t! for t tending to infinity without restriction is not a
binomial.)
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The invariant distribution, let us call it m1 rather than m, in the case
where N 5 1 of our basic chain can be calculated explicitly and then m10

obtained from the special case of (22). The measure m1 turns out to be
uniform on @0, d! and coincides with the (d-translate) of the stationary
distribution for the renewal process with interarrival distribution F. This
stationary distribution has a density equal to the normalized tail-sum 1 2 F
(see Feller [1971, XI.4]). One can give queueing theory arguments for the
above description of m1, but since Equation (21) leads to this result almost
immediately, we use that equation to give a quick proof. In the case N 5 1,
A0 5 @d, `!, and B1 5 @0, d!, Equation (21) simplifies to

@ead21#E
d

`

e2ax dm1~x! 5 @1 2 f~a!#E
0

d

e2ax dm1~x!,

valid for any complex number a, Re~a! $ 0. If we set a 5 22npi / d,
where n is an arbitrary integer, we find that the left-hand side vanishes.
The density assumption implies that f~a! Þ 1 for any a Þ 0. Hence,
E

0
dexp~2npix / d!dm1~x! 5 0 for every n Þ 0. Standard uniqueness results

in Fourier series theory imply that we must have dm1~x! 5 Cdx, 0 # x
# d for some constant C. From (5) in case N 5 1 , we find Cd 5 1 2
m1$@d, `!% 5 d / ~m 1 d!, so C 5 1 / ~m 1 d!. For the Laplace transform of
m1 on @d, `!, we get

E
d

`

e2ax dm1~x! 5
1 2 f~a!

ead21 E
0

d

e2ax Cdx 5 e2ad
1 2 f~a!

a~m 1 d!
.

Inverting the Laplace transforms in this equation reveals that the density
g1 of m1 for x $ d is given by g1~x! 5 @1 2 F~x 2 d!# / ~m 1 d!. From (22)
it is then clear that m10 has the density g10~x! 5 ~1 1 d / m!g1~x! for
x $ d. e

The upshot of the preceding is that we can now conclude that the limit
distribution of Z~Sk! is

lim
k

P v$Z~Sk! 5 i% 5 lim
n

#$k # n : Z~Sk! 5 i%

n
5 SN

i Dpi~1 2 p!N2i (23)

(w.p. 1) for i 5 0, 1, . . . , N, where

p 5 m10$@d, 2d!% 5
1

m
E

0

d

@1 2 F~x!#dx 5
1

m
E

0

dE
x

`

f~z!dzdx.

Remark. It follows from the work of the last two sections that the
measure m, when restricted to A0, is a product measure because its
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restriction to A0 coincides with q0m0. However, the m-measures of subsets
of A0 have no particular interest; it is only the m-measures of the other Aj

(defined in the proof of Lemma 3.1) that are required, and these sets are
contained in the complement of A0. But m restricted to the complement of
A0 is not a product measure.

B.3 Estimates for qj

Apart from the explicit representation of m on A0 discussed in the last
section, a simple expression for m on all of @0, `!N for N . 1 is not
available. This means that, with one exception (the case F~d! 5 0), we do
not have simple explicit formulae for the values of qj 5 m$Aj% and must
resort to approximations. It turns out, however, that the approximate
formulas are quite amenable to analysis, particularly in the region of
interest: d 5 O~1 / N!.

In this section we finish the proof of the two inequalities of (6), which we
henceforth designate (LH-6) for the left side and (RH-6) for the right.

To simplify the notation a little, the starting distribution n is omitted, if
not forgotten, when it is not essential. For this proof we introduce the
following objects:

n+~t! 5 max$k : Sk # t,%

#~t, j! 5 #$s : s # t and Z~s! 5 j% 5 O
s50

t

IAj~X̂!,

#*~n, j 1! 5 $k : k # n and Z~Sk! $ j% 5 O
k51

n

IAj*~X̂~Sk!!,

where Aj
* 5 ø i5j

N Ai. The variable #~t, 0! differs from n +~t! by at most 1
because the Tks are the zeros of Z. Therefore, by the ergodic limit theory for

X̂~t!,

lim
t3`

n + ~t!

t
5 q0. (24)

Hence,

lim
n

Sn

n
5 lim

n

Sn

n+~Sn!
5 lim

t

t

n+~t!
5

1

q0

,

and then,

lim
n

#~Sn, j!

n
5 Flim

n

#~Sn, j!

Sn
GFlim

n

Sn

n G 5
qj

q0

. (25)
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Fix j . 0 and define a sequence of random variables $Vk% (k $ 1) by Vk 5 0
if Z~Sk21! , j, and otherwise Vk shall be the total number of times t in the
interval @Sk21, Sk! that the counting variable Z~t! has the value j:

Vk 5 O
Sk21#t,Sk

IAj~X̂!.

Clearly,

#~Sn, j! 5 O
k51

n

Vk, n $ 1. (26)

The occurrence of the event Vk . r implies that Z~Sk21! $ j and that there
are at least r jumps, counting from the first time in @Sk21, Sk! that Z~t! 5 j,
that had magnitudes smaller than d. Hence,

P$Vk . r% 5 P$Vk . rZ~Sk21! $ j%P$Z~Sk21! $ j%

# F~d!r P$Z~Sk21! $ j%, r 5 0, 1, 2, . . . ,

and therefore, assuming F~d! , 1,

E$Vk% 5 O
r50

`

P$Vk . r% #
P$Z~Sk21! $ j%

1 2 F~d!
, `.

(Indeed, all moments E$~Vk!
b%, b 5 1, 2, . . . , are finite.) This inequality,

(23), and the ergodic limit theory now yield

qj

q0

5 lim
n

#~Sn, j!

n
5 EFlim

n3`

O
k51

n Vk

n
G 5 lim

k3`

E$Vk%

# lim
k3`

P$Z~Sk21! $ j%

1 2 F~d!
5

O
i5j

N SN
i Dpi~1 2 p!N2i

1 2 F~d!
5

B~ j !

1 2 F~d!
(27)

which is (RH-6).
As to (LH-6), note first that

#~Sn, j! 5 O
k51

n

Vk $ #*~n, j 1!.

Hence, (see (25), and (23)),
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qj

q0

$ lim
n

#*~n, j 1!

n
5 lim

n

#$k # n : Z~Sk! $ j%

n
5 B~ j !

which is (LH-6). e

C. PROOF OF THEOREM 4.1

For the purposes of this proof let us write x 5 Nd / m,

DN~d! 5
1

2
$~N 2 2 N !p212Np%,

D~x! 5
1

2
~x212x!.

The conclusion of Theorem 4.1 is equivalent to the assertion that

KN~d! 2 d 2
b

x
2

c

x
D~x! 5 O~1 /N !, (28)

uniformly on bounded x-intervals. We base the proof on (8), which states

c

x
DN~d! # KN~d! 2 d 2

b

x
#

c

x
DN~d!$1 2 F~d!%21 (29)

in the new notation. Fix a number g . 0 and confine x to the interval
~0, g / m!, so that 0 , d # g / N. Let e0 and c0 be the numbers introduced in
Assumption J3 in Section 3. Keeping N . max$2c0g, g / e0%, which makes
F~d! # min$1 / 2, c0d%, we get

$1 2 F~d!%21 # 1 1 2F~d! # 1 1 2c0d.

Also, DN~d! # 1 / 2~N 2p212Np! # 1 / 2~g 2 / m2 1 2g / m! because p # d / m

# g / Nm. Hence,

0 # KN~d! 2 d 2
b

x
2

c

x
DN~d!

#
2c0cd

x
DN~d! 5

2c0cm

N
DN~d!

#
C1

N
,

where C1 5 c0c~g 2 / m12g!. From this and a little algebra, it is easily seen
that to finish the proof of (33) it suffices to find a number C2, depending on
g, such that
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1

x
DN~d! 2 D~x! #

C2

N
, for 0 , d #

g

N
. (30)

But because Np # Nd / m 5 x, we have

1

x
D~x! 2 DN~d! #

1

xE
Np

x

~u 1 1!du 1
Np2

2x
#

x 1 1

x
x 2 Np 1

d

2m

5
N~x 1 1!

mx E
0

d

F~z!dz 1
d

2m
#

c0N~x 1 1!d2

2mx
1

d

2m

#
C2

N
, C2 5

g$c0~m 1 g!11%

2m
. e

The numbers C1 (multiplied by c) and C2 yield estimates for t1 and t2

mentioned in Theorem 4.1: t2 5 3 / 2cc0 / m and t1 5 1 / 2c~5c0m11! / m.

D. PROOF OF THEOREM 4.2

Throughout this section we write a 5 b / c,

g0 5 mÎ2b/c 5 mÎ2a, do, N 5 g0 /N

Ko 5 c 1 Î2bc.

Moreover, there is no harm in also supposing that d 5 0.
Step 1. As a function of d, KN~d! is continuous on ~0, `!. The reader is

asked to turn to formula (3). To begin with, the variable q0 is m / ~m 1
Nd!, which is obviously continuous. The only possible discontinuous term
in the formula for KN is EN~d!. However, the continuity of this function is
an immediate consequence of the following exact formula, which is dis-
cussed after the proof of the theorem is complete.

LEMMA D.1.

EN~d! 5
N~N 2 1!

m~m 1 Nd!E
0

d

~d 2 t!@1 2 F~t!#dt 1
Nd

m 1 Nd
.

Step 2. The function d 3 EN~d! is nondecreasing. One can prove this by
differentiating the expression for E~d! of Lemma 8 and checking that the
result is nonnegative.

Here is an outline of an alternative, but more intuitive, proof: Consider

two chains X̂1 and X̂2 with the same N and jump density, but with different
bucket sizes d1 , d2. If we follow the trajectory of an individual particle in
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each chain, we find that in the chain with the larger bucket size, d2, the
particle, on average, gets back to the interval @0, d2! quicker than it would
to the interval @0, d1! in the chain with the smaller bucket size d1. Since a

typical particle of the chain X̂2 is more often in the interval @0, d2! than in

@0, d1! of the chain X̂1, the average number of particles in @0, d2# of X̂2 is at

least as large as the average number of particles in @0, d1! of X̂1. That is,
EN~d1! # EN~d2!.

Step 3. Next, we establish

lim
N3`

KN~d! 5 ` uniformly on @d1, `!

for each fixed d1 . 0. The explicit formula for q0~d! 5 m / ~m 1 Nd! yields
that 1 2 q0~d! is also a nondecreasing function of d. By Equation (3) and
Step 2, we find that the function ~1 2 q0~d!!KN~d! 2 q0~d!b is also nonde-
creasing in d. Hence, for d1 # d2,

KN~d1! #
1 2 q0~d2!

1 2 q0~d1!
KN~d2! 1

q0~d1! 2 q0~d2!

1 2 q0~d1!
b.

For N $ m / d1 and d1 # d2 we have 1 / 2 # 1 2 q0~d1! # 1 2 q0~d2! # 1.
From the above inequality, for d1 # d2 and N $ m / d1, we have

KN~d1! # 2KN~d2!12b.

From this inequality, it follows that KN~d! goes to infinity uniformly in the
interval @d1, `!, provided that limKN~d1! 5 ` for each fixed d1 . 0. This
follows from Equation (8).

Step 4. For g . g0 5 m Î2a, we have min
0,d,g/N

KN~d! 5 Ko 1 O~N 21!.

Moreover, if d1 is the minimizing d on this interval, then

d1 5 do, N 1 O~N23/ 2!,

where do, N is defined as above. To prove all this, let

HN~d! 5 d 1 c 1
cN

2m
d 1

bm

N

1

d

By straightforward calculus, for each N, HN~d! has a global minimum on
~0, `! at point do, N. Let dopt be a value of d, which gives the minimum
value of KN~d! on the given interval ~0, g / N!. By Theorem 4.1, on this
interval we can find a constant C, depending on g, such that for all N
sufficiently large,
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HN~d! 2 C /N , KN~d! , HN~d! 1 C /N

uniformly for 0 , d , g / N. Since g . g0, d1 is in the interval ~0, g / N!.
On this interval, KN~d! is sandwiched between the two convex functions,
HN~d! 6C / N, both of which have a global minimum at the same point do, N

interior to the interval. For a fixed N, dopt must lie between the two
solutions to the equation (in d) HN~d! 2 C / N 5 HN~do, N! 1 C / N. By a
simple calculation, we find that the difference between the two solutions is
O~N 23/ 2!, and this yields dopt 5 do, N 1 O~N 23/ 2!. For any d between the
two solutions, we find that KN~d! 5 HN~d! 1 O~N 21!.

Step 5. The next step is to show that for any g . g0 there is d1 . 0 and
N1 such that for all N $ N1,

inf0,d,d1 KN~d! 5 inf0,d,g/N KN~d!. (31)

Thus, the minimum exhibited in Step 4 extends to the fixed interval ~0, d1#.
This fact and Step 3 imply that for all N sufficiently large,

min
0,d,`

KN~d! 5 Ko 1 O~1 / N !

completing the proof of the theorem.
For the moment, we fix d1 such that 0 , F~d1! , 1. We choose d1 later.

By inequality (8) and the fact that p~d! $ d@1 2 F~d!# / m, we have that for
all d , d1,

KN~d! $ c QSa /z 1 1 1
1

2
~1 2 1 /N ! zD,

where Q 5 1 2 F~d1! and z 5 QNd / m. Define

LN~z! 5 c QSa /z 1 1 1
1

2
~1 2 1 /N ! zD.

For each N, the horizontal line at height Ko~1 1 C0 / N! cuts the graph of
the convex function LN at two points, the larger of which we call zN

* . Thus,
zN

* is the larger root of the equation

Q~N 2 1!z222F~N 1 C0!~1 1 Î2a! 2 NQG z 1 2NQa 5 0.

As a sequence of N, the values zN
* converge to a bounded positive limit.

Define dN
* 5 mzN

* / QN. Hence, the sequence NdN
* also converges to a limit

g *. Note that g * tends to Î2am as Q approaches 1. We choose d1 (and hence
Q), so that g * , g. Now choose N1 such that dN

* , g / N , d1 for all N $

N1. Since the minimum of KN~d! is bounded above by Ko~1 1 c0 / N! and
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bounded below by the function LN~QN / ~md!, the minimum of KN~d! in the
interval ~0, d1# must already lie in the interval ~0, dN

* #, and hence in the
interval ~0, g / N#. e

D.1 A Discussion of the Exact Formula for EN~d!

The proof of this result is quite long and is based on some exact, although
very complicated, integral formulas for the qjs (see Erickson [1999] for
details). The exact formula for EN~d! leads to an exact formula for KN~d!,
but our work has led us to the conclusion that the excellent asymptotic
formulas of Theorems 4.1 and 4.2 (and the simple inequalities of Lemma
4.2 that lead to them) are of much greater practical use, and are certainly
easier to prove. For this reason we do not include the long proof of the exact
formula.

Our main use of Lemma D.1 was to slightly shorten the proof of the
global minimization of KN. Note that D.1 immediately yields the continuity
of KN as a function of d. We require continuity in order to speak sensibly of
the existence of a minimizing d. Even without the continuity, however, the
basic result of Theorem 4.2 is essentially correct; only the language used to
express it needs to be changed. (We must use the term “greatest lower
bound” in place of “minimum,” and we can only assert that there are points
d at which the greatest lower bound is approximately attained.)

E. PROOF OF LEMMA 5.2

We write LN
M for LN

M~d!, and Z A~t! for the number of particles in set A at
time t. The set G (see 5.1) is a subset of @d, `!, so

ZG1d~Tj21! 5 ZG~Sj21! # ZG~s! # ZG~Tj!

for Sj21 5 Tj21 1 1 # s # Tj. (Recall that Tk, k $ 1 are the successive
times at which the interval @0, d! is empty of particles.) Hence,

LN
M 5 lim

t
~1 / t!O

s#t
ZG~s! 5 lim

k
~k /Tk!lim

k
~1 /k!O

j51

k F O
s5Sj21

Tj

ZG~s!G
5 q0 lim

k
E F O

s5Sk21

Tk

ZG~s!G # q0 lim sup
k

E@ZG~Tk!Dk#, (32)

w.p.1, where Dk 5 Tk 2 Tk21. Suppose that at time Tk21 there are r 5
Z @d, 2d!~Tk21! particles at positions x1 1 d, . . . , xr 1 d in @d, 2d!. Then, at
Sk21 there will be r particles in @0, d! at positions x1, . . . , xr. So

ZG~Tk! 5 ZG1d~Tk21! 1 u1 1 · · · 1 ur,
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where ui 5 1 or 0, according to which of the ith of these particles lands in
G or not, when it is finally removed from the interval @0, d!. (This removal
must occur during @Sk21, Tk#.) Writing u 5 ui, x 5 xi, then the strong
Markov property gives

P$u 5 1FTk21% 5 O
j51

`

@Hd2x~ jMd! 2 Hd2x~ jMd 2 d!#,

where FTk21 is the s-field of the random variables Tk21, X~s!, s 5 0,
1, . . . , Tk21 and where Ht~b! is the probability that a particle starting at
the origin lands in the interval @t, t 1 b# when it first jumps over t. H
satisfies

Ht~b! 5 E
02

t

@F~t 1 b 2 y! 2 F~t 2 y!#U$dy%,

where U is the renewal measure (see Feller [1971, p. 369]).4

In general, U~z! [ U$@0, z#% # @1 2 F~z!#21 for distributions on @0, `!,
so that

P$u 5 1FTk21%

# sup
x[@0, d!

E
02

d2xO
j51

`

@F~ jMd 1 d 2 x 2 z!

2 F~ jMd 2 x 2 z!]U$dz%

# P2 / @1 2 F~d!#.

(Recall the definition of P2 in Theorem 5.2.) Calling the right-hand side p*

and noting that, conditional on the s-field FTk21, the variables ui are
independent of Dk, we have

E$Z k
GDkFTk21% # @Z k21

G1d 1 rp*#E$DkFTk21%

# @Z k21
G1d 1 rp*#S r

1 2 F~d!
11D

# @1 2 F~d!#21~Z k21
G1d 1 rp*!~r 1 1!,

4Feller defines H in terms of the open interval ~d, `!, whereas we use the closed interval.
Because F has no atoms, this difference in definition has no consequence.
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where r 5 Z k21
@d, 2d!, and Z j

$ z% means Z $ z%~Tj!, j 5 k 2 1, k. Now, at times
$Tj%, the particles are independent, so the limiting joint distribution of Z k21

G1d

and Z k21
@d, 2d! is a trinomial. (Separately, they have binomial limit distributions.)

Letting k 3 ` ,we get E$Z k21
@d, 2d!% 3 Np, E$Z k21

G1d% 3 NP1, Var~Z k21
@d, 2d!! 3

Np~1 2 p! and

E$Z k21
@d, 2d! z Z k21

G1d% 3 N~N 2 1!pP1,

where p is defined in (4) and P1 5 G0~G 1 d!. Going back to (32) with
these calculations, we obtain

LN
M # q0@1 2 F~d!#21lim

k
E$~Z k21

G1d 1 p*Z k21
@d, 2d!!~Z k21

@d, 2d!11!%

5
Nq0$~Np 1 1!P1 1 pp*@Np 1 2 2 p#%

1 2 F~d!
.

(Recall the basic property of conditional expectations E$E@ zFTk21#% 5
E$ z%.) Replacing p* with P2 / @1 2 F~d!# and q0 with m / ~m 1 Nd!, combin-
ing fractions and dropping the factor 1 2 F~d!, which will occur in the
numerator, we finally obtain the upper bound on LN

M.
For the lower bound, we have

LN
M $ q0 lim inf

k
E@Z k21

G1d Dk# $ q0 lim
k

E$Z k21
G1d~Z k21

@d, 2d!!11%,

5 q0$N~N 2 1!pP1 1 NP1%,

which evaluates to the lower bound on LN
M. e

F. PROOF OF LEMMA 5.3

In the following we let lim, lim sup, and lim inf stand for the limits of
various quantities as N 3 `, with the other variables constrained to vary
as stated in the hypothesis.

First note that lim F~d! 5 0, lim Np 5 lim Nd / m 5 x, and lim Md 5
rxm, lim Nd 5 xm.

Let tj 5 jMd 5 jrxm. Note that tj does not vary with N. For all suffi-
ciently large N, d will be so small that the intervals ~tj 2 d, tj 1 d# will
not overlap. Put JN 5 ø j ~tj 2 d, tj 1 d#, then, for all N, we have JN11

, JN. Moreover, ùN JN is at most a countable discrete set. Hence,

P2 # O
j51

`

$F~ jMd 1 d! 2 F~ jMd 2 d!% 5 F$JN% 3 0, as N 3 `
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by continuity of F (no atoms). (The letter F stands for both the distribution
function and the induced probability measure, as is customary.) From this
(and the limits Np 3 x), we get lim Np~Np 1 2 2 p!P2 5 0.

Next,

d

m
O
j51

`

@1 2 F~ jmrx 1 d!# # P1 #
d

m
O
j51

`

@1 2 F~ jmrx!#.

As d 3 0, the first sum on the left goes to O j@1 2 F~ jrxm!#. Because
Nd / m 3 x, it follows that

lim NP1 5 xO
j51

`

@1 2 F~ jrxm!#.

Using these limits in the upper bound for LN
M~d!, we get

lim sup LN
M~d! # lim

m$N~Np 1 1!P1 1 Np~Np 1 2 2 p!P2%

~m 1 Nd!@1 2 F~d!#2

5 lim
Nm~Np 1 1!P1

m 1 Nd
5

m~x 1 1!

m 1 xm
lim NP1 5 xO

j51

`

@1 2 F~ jrxm!#.

Similarly, from the lower bound for LN
M~d!:

lim inf LN
M~d! $ lim

Nm~Np 1 1 2 p!P1

m 1 Nd
5

m~x 1 1!

m 1 xm
lim NP1

5 xO
j51

`

@1 2 F~ jrxm!#.

Thus the lim sup LN
M~d! 5 lim inf LN

M~d! 5 xO@1 2 F~ jrxm!#, so the limit
of LN

M~d! exists and its value is as stated.

G. PROOF OF THEOREM A.1

We have seen that for each k $ 1 and, given the initial positions, the N

components of X̂~Sk! are mutually independent random variables. It is also
not hard to see that the conditional distribution of X i~Sk!, given X i~Sk21!
5 x, equals the distribution of the residual waiting time at epoch d of a
delayed renewal process, starting at epoch x with interarrival distribution
F; see Feller [1971, p. 369] and Erickson [1999]. (We have already seen this
distribution in the proof of Lemma 5.2, Section E, although it was described
in slightly different language.)
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Letting Hs$I% denote the probability that the residual waiting time at
epoch s lies in I for a pure renewal process starting at 0 (Hs$@0, b!% 5

Hs~b! in Section E), it follows that for any fixed x . 0, every integer
k .. x / d, and any Borel I , @0, b#,

P$X i~Sk! [ I ? X i~0! 5 x% 5 Hkd2x$I %. (33)

Using the Markov property, it then follows that for fixed x̂ 5 ~x1, . . . , xN!

[ L and Borel sets Ii , @0, b!,

P$X̂~Sk! [ I1 3 I2 3 · · · 3 I N ? X̂~S0! 5 x̂% 5 P
i51

N

Hkd2xi$I i%. (34)

If U denotes the renewal measure, then assumption (a) implies that U has
an absolutely continuous part that possesses a strictly positive density on
~0, `!; but see Feller [1971, p. 369],

Hs$I % 5 E
02

s

F$I 1 s 2 z%U$dz%. (35)

Consequently, the measure I 3 Hkd2x$I % also has an absolutely continuous
part that is strictly positive on @0, b!. The conclusion we may draw from

the preceding is that $X̂~Sk!% is irreducible with respect to the measure ,N,
the Lebesgue measure in RN (restricted to ~0, b!N); see Revuz [1984, Chap.

3 §2]. This implies that the trace chain $X̂~Tk!% is also ,N irreducible on its
state space A0. Together, these two assertions imply that the full chain

X̂ 5 X̂~t!;t $ 0 is also ,N-irreducible. But we can also draw additional
useful conclusions from (34) and (35).

From Stone’s decomposition theorem Revuz [1984, chap. 5, §5], we can
write U 5 U1 1 U2 where U2 is a finite measure and U1 is absolutely
continuous with a bounded continuous density u such that lim

x3`
u~x! 5

1 / m. For any Borel I , @0, `! and s . z, F$I 1 s 2 z% # 1 2 F~s 2 z!

3 0 as s 3 `. Hence, by dominated convergence,

lim
k3`

Hkd2x$I % 5 lim
k3`

E
02

kd2x

F$I 1 kd 2 x 2 z%U2$dz% 1

1 lim
k3`

E
0

kd2x

F$I 1 y% u~kd 2 x 2 y! dy
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5
1

m
E

0

`

F$I 1 y% dy 5
1

m
E
I

@1 2 F~x!#dx.

This and the product formula (34) yield that, for any Borel set A , @0, `!N,

lim
k3`

P x̂$X̂~Sk! [ A% 5 m0
*~A!, (36)

where m0
* is the product measure F0 3 F0 3 · · · 3 F0 and F0 is the

probability distribution on @0, b! with density $1 2 F~x!% / m. Not only does
(36) give us one of the limit theorems we used earlier, but it implies that

the subchains X̂~Sk! and X̂~Tk! are both Harris recurrent (with invariant
probabilities m0* and m0 (translate by d1̂ of m0

*), respectively. If m0
*~A! . 0,

then (34) implies that, with probability 1, X̂~Sk! enters A infinitely many

times k, whatever the initial position. But X̂~Tk! is obtained from X̂~Sk! by
adding d to each component, so the previous assertion is also correct for

X̂~Tk! with respect to its invariant probability (see Revuz [1984, Chap. 2, §3]).

Now consider the full chain X̂ 5 $X̂~t!, t 5 1, 2, . . . %. If ,N~A! . 0,

A , L, then the preceding makes it clear that X̂ will hit A with positive

probability. This implies that X̂ is ,N-irreducible. According to Revuz [1984,

Chap. 2, Theorems 2.3, 2.5, and Definition 2.6], either X̂ is a Harris chain
with a (unique up to constant multiples) invariant measure m, or else the
potential kernel is proper. The potential kernel K is defined by K~x̂, A! 5

O t$0P x̂$X̂t [ A%. If K is proper, then L can be written as an increasing
sequence of subsets Dn, each of which has bounded potential. But eventu-
ally any such sets must have positive Lebesgue measure, and in that case

(34) implies P x̂$X̂~t! [ Dn for infinitely many t% 5 1 for all initial posi-
tions x̂. But K~x̂, Dn! , ` implies that the expected total number of hits in
Dn is finite, which implies that the number of hits must be finite with
probability 1. We thus cannot have a proper potential kernel, and therefore

X̂ must be a Harris chain.
Consider next the aperiodicity issue. Seeking a contradiction, let us

suppose that X̂ is periodic. Let $Ci% i51
d be recurrent cyclic classes in the

decomposition of the state space. These subsets have a positive Lebesgue
measure. Without loss of generality, we may suppose that m$C1 ù AN% . 0,

AN 5 @0, d!N. Define s to be the smallest Sk such that X̂~Sk! [ AN ù C1.
This stopping time is finite on account of (36).

Let j s
j be a doubly-indexed sequence of independent random variables

each with distribution F. The earliest possible epoch after s at which X̂ can
arrive in A0 5 ~d, `!N exceeds N 1 s21 because no more than one
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particle can move at any particular step. For any integer r $ 1 and any
Borel rectangle A 5 I 1 3 I 2· · · 3 I N , A0, we have

P$X̂~s 1 N 1 r! [ AX̂~s! 5 ~x1, . . . , xN!%

$ SE
0

d2x1

P$d 2 x1 2 z # j r11
1 [ I 1 2 x1%F r*$dz%D 3

3 SP
j52

N

P$d 2 xj # j 1
j [ I j 2 xj%D (37)

Due to hypotheses J1, the distribution F and each of its convolutions F r*

puts positive mass on every subinterval in ~0, b!. Hence the right-hand
side of (37) is strictly positive whenever the cylinder set A has a positive
Lebesgue measure. Standard measure theory implies that this is also
correct for any Borel set A , @d, b 1 d! with a positive measure.

With probability 1 at time s, X̂~s! belongs to C1 ù AN , C1. So if the
chain is periodic, then w.p.1 at all future epochs of the form t 5 s 1 nd
the chain will always be found in C1. Also, for each k 5 1, 2, . . . , d 2 1,
at times t 2 s [ k~d! 5 k mod d, the chain must belong to the set C11k~d!,
which is disjoint from the other classes including C1. But in (37), for any
N 1 r $ N, the right-hand side is strictly positive. By choosing A in (37) to
be any set in Ck ù @d, b 1 d!N with a positive measure and letting r take
on different (mod d) values, we get a contradiction to the previous assertion
about belonging to disjoint sets. There is no contradiction if d 5 1, that is,

if X̂ is aperiodic.
It remains to show that the invariant measures m (unique up to constant

multiples) of the full chain X̂ are finite: m~L! , `.

The trace chain $X̂~Tk!% is positive recurrent with invariant probability
m0. But m0 is also a multiple of m restricted to A0. Hence, m~A0! , `. It
follows from the Renewal theorem that the mean return time to A0 is also
finite. Let f $ 0 be a bounded measurable function on A0. Then f is
m0-(and hence m-) summable, and

lim
n3`

O
k51

n

f~X̂~Tk!!

n
5 m0~f! [ E

A0

f~x̂!dm0~x̂! . 0.

Let n +~t! denote the number of visits to A0 by the full chain during 0 # s
# t. Then, n +~t! 3 ` and
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lim
t

O
s51

t

f~X̂s!

t
5 Flim

t

n+~t!

t
GFlim

n

O
k51

n f$X̂~Tk!%

n
G

5 $Em0~T1!%
21m0~f! . 0. (38)

But if the chain X̂ is null, that is, if m has infinite mass, then for any
bounded m-summable function f [Revuz 1984, Theorem 2.6, p. 198],

lim
t

Ex̂HS1

tDOs51

t

f~X̂!J 5 0.

By Fatou’s lemma, one can readily see that this contradicts (38). e
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