L))

Check for
updates

SoC Protocol Implementation Verification Using
Instruction-Level Abstraction Specifications

HUAIXI LU, YUE XING, AARTI GUPTA, and SHARAD MALIK, Princeton University, USA

In modern systems-on-chips, several hardware protocols are used for communication and interaction among
different modules. These protocols are complex and need to be implemented correctly for correct operation
of the system-on-chip. Therefore, protocol verification has received significant attention. However, this ver-
ification is often limited to checking high-level properties on a protocol specification or an implementation.
Verifying these properties directly on an implementation faces scalability challenges due to its size and design
complexity. Further, even after some high-level properties are verified, there is no guarantee that an imple-
mentation fully complies with a given specification, even if the same properties have also been checked on
the specification. We address these challenges and gaps by adding a layer of component specifications, one for
each component in the protocol implementation, and specifying and verifying the interactions at the inter-
faces between each pair of communicating components. We use the recently proposed formal model termed
Instruction-Level Abstraction (ILA) as a component specification, which includes an interface specification
for the interactions in composing different components. The use of ILA models as component specifications
allows us to decompose the complete verification task into two sub-tasks: checking that the composition of
ILAs is sequentially equivalent to a verified formal protocol specification, and checking that the protocol
implementation is a refinement of the ILA composition. This check requires that each component implemen-
tation is a refinement of its ILA specification and includes interface checks guaranteeing that components
interact with each other as specified. We have applied the proposed ILA-based methodology for protocol veri-
fication to several third-party design case studies. These include an AXI on-chip communication protocol, an
off-chip communication protocol, and a cache coherence protocol. For each system, we successfully detected
bugs in the implementation, and show that the full formal verification can be completed in reasonable time
and effort.

CCS Concepts: « Computer systems organization — Architectures; - Hardware — Design reuse and
communication-based design; Equivalence checking;

Additional Key Words and Phrases: System-on-chip, hardware protocol specification, instruction-level ab-
straction, formal verification, sequential equivalence checking, refinement checking

ACM Reference format:

Huaixi Lu, Yue Xing, Aarti Gupta, and Sharad Malik. 2023. SoC Protocol Implementation Verification Using
Instruction-Level Abstraction Specifications. ACM Trans. Des. Autom. Electron. Syst. 28, 6, Article 89 (Octo-
ber 2023), 24 pages.

https://doi.org/10.1145/3610292

This work was supported by the Applications Driving Architectures (ADA) Research Center, a JUMP Center co-sponsored
by SRC and DARPA. This research is also funded in part by NSF award number 1628926, XPS: FULL: Hardware Software
Abstractions: Addressing Specification and Verification Gaps in Accelerator-Oriented Parallelism, and the DARPA POSH
Program Project: Upscale: Scaling up formal tools for POSH Open Source Hardware.

Authors’ address: H. Lu, Y. Xing, A. Gupta, and S. Malik, Princeton University, 1 Nassau Hall, Princeton, NJ 08544; emails:
{huaixil, yuex}@princeton.edu, aarti@cs.princeton.edu; sharad@princeton.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
1084-4309/2023/10-ART89 $15.00
https://doi.org/10.1145/3610292

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

https://orcid.org/0000-0002-3875-1761
https://orcid.org/0000-0001-7422-3352
https://orcid.org/0000-0001-6676-9400
https://orcid.org/0000-0002-0837-5443
https://doi.org/10.1145/3610292
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3610292
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3610292&domain=pdf&date_stamp=2023-10-16

89:2 H. Lu et al.

1 INTRODUCTION

Modern Systems-on-Chips (SoCs) are complex with a large number of modules integrated on
a single chip. These modules communicate and interact with each other and with memory sub-
systems using standard or customized protocols. These protocols themselves are complex and need
to be implemented correctly to ensure correct operation of the SoC. Thus, protocol verification has
received significant attention.

1.1 Protocol Verification Overview

There are two main phases in protocol verification today (Figure 1). The first focuses on a proto-
col specification S, whereas the second focuses on a protocol implementation I, typically at the
Register-Transfer Level (RTL). Each phase focuses on a different level of protocol correctness,
and both are essential for correctness assurance of the SoC.

In the first phase, a high-level protocol specification S is usually modeled using Finite State
Machines (FSMs).! The specification S may be a set of interacting FSMs—one FSM for each com-
ponent (i.e. implementation module) in the protocol or a single FSM capturing the interactions of
all components. Thus, the first phase of the protocol verification aims to verify correctness of the
protocol specification S itself. Such formal specifications are crucial, since the implementation is
later verified against this specification. Our methodology assumes that such a specification model
is available or can be written. Accordingly, several high-level properties H, such as no deadlock or
mutual exclusion, are verified on S. We call this verification process High-Level Specification
Verification (HLSV), which is largely based on property verification. There is a rich body of
work in property verification of protocols: for cache-coherence protocols [15, 30, 43, 51, 56], for
network protocols [1, 4, 14, 16], and for communication protocols [9, 47, 50]. There are many
techniques and tools such as Murphi [13], SPIN [17], the LNT formal language [21], and TLA+
specifications [26] that are used in HLSV to perform verification and guarantee correctness of the
protocol specification. Thus, for the purpose of this work, we consider this problem to be well
studied and assume that all high-level protocol properties of interest have already been verified
on the specification S. Our focus, instead, will be on verifying that the protocol implementation I
is correct with respect to the specification S.

The second phase in protocol verification checks that the given RTL implementation I is correct.
Typically, the high-level properties H, which were checked in HLSV on the specification, are now
checked on the implementation. We refer to this process as High-Level Implementation Ver-
ification (HLIV). When protocol specifications are provided as informal documents, HLSV for
specifications is usually skipped in practice, and HLIV is performed to check high-level protocol
level properties directly on the protocol implementation. Note that RTL implementations are more
complex than high-level specifications since they include performance enhancement features such
as pipelining. This added design complexity, along with the complex interactions between multiple
modules involved in the protocol, poses a significant scalability challenge in HLIV.

Further, in the second phase using HLIV, even if the high-level properties H are verified on the
implementation I, this does not ensure complete verification with respect to the formal specifica-
tion S. Complete verification requires checking that each step in S is correctly implemented in
I—we refer to this as Formal Specification Based Implementation Verification (FSIV). Both
FSIV and HLIV focus on protocol implementation verification; however, FSIV goes beyond HLIV,
since verifying high-level properties H may not completely capture the full specification S. For ex-
ample, the cache coherence protocols—MESI and MSI—both satisfy the mutual exclusion property,

!We use FSM to denote a finite state transition model, with labeled inputs and (optional) outputs. For verification, this
corresponds to a labeled transition system in the standard way.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

SoC Protocol Implementation Verification Using ILA Specifications 89:3

H:
High-Level
Properties

(e.g., no deadlock or
mutual exclusion)

S:
Protocol Formal Specification Based Protocol
Formal Specs Implementation Verification (FSIV) Implementation
(FSMs) (our work focus) (RTL)
(S is described as FSMs) (Iis implemented in modules)

Fig. 1. Different phases of protocol verification.

but a MESI protocol implementation is not correct with respect to the MSI specification. Checking
only the high-level properties H on S and I (HLSV and HLIV) cannot guarantee that I fully imple-
ments S. In practice, it is often difficult to specify a complete set of properties for FSIV. We address
this gap in our article.

1.2 Challenges in FSIV

There are three key challenges in performing FSIV (assuming there is a verified protocol specifica-
tion on hand).

1.2.1 Whole System Specification. The specification S of a protocol usually refers to a whole sys-
tem instead of a modular specification for each component in the implementation. A whole system
specification, such as a single FSM, specifies the full system state and transitions among them for
the protocol. It does not focus on the detailed interactions among different components but rather
on the protocol-level state and its transitions. However, this single FSM blurs the boundaries be-
tween individual components. For example, the states of two components may be combined into
a single state variable in this FSM. In contrast, the RTL implementation of the protocol may have
several distinct components, such as a separate component for each cache, and one component
for the directory in a cache-coherence protocol. One approach for FSIV is to combine these com-
ponents and verify their composition against the whole system specification. This relates to the
second challenge in FSIV.

1.2.2 Scalability. Formal verification is quite sensitive to the size of the system state space.
Whole system verification for FSIV consists of a large state space due to the cross product of the
state spaces of each component in the implementation. This is a challenge for even HLIV, as the
high-level properties H refer to the full system and need to be checked against the full system
implementation I. This challenge is further exacerbated in FSIV, since the protocol specification
contains more details than the checks for holding the high-level properties. (Both cache coher-
ence protocols MSI and MESI satisfy the same high-level coherence properties but have different
specifications, as their protocol details differ.) As a result, the verification obligations are larger
for completely verifying I against the formal specification S. Further, performance enhancement
features in the implementation (e.g., pipelines) add to component complexity, thereby increasing
the component state space and impacting scalability.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

89:4 H. Lu et al.

s cs R, I
. RC,"
Protocol csoI —0 . M, I
Formal Specs SEC .
FSMs cs; eowm

éQQ Cs:n-1 _RGr, M4

*RC;: The refinement checking on M; includes the additional interface checking (IC)

Fig. 2. Proposed ILA-based FSIV method for protocol verification.

1.2.3 Refinement Checking. Another consequence of performance-enhancing features such as
pipelining is that the implementation I may have multiple steps that implement a single step in
the specification S. Thus, the verification of I against S is not a cycle-by-cycle equivalence check
but rather a refinement check, which verifies that corresponding state variables between the two
models are equivalent at specific times, such as at the end of corresponding steps in the protocol.

Refinement Checking (RC) has been successfully used for processor verification [6, 33, 34]
to verify the correctness of pipelined microarchitectures against Instruction Set Architecture
(ISA) specifications.

The correspondence between the two is provided by a user via a refinement map, which specifies
(i) amap between the specification state variables and the corresponding implementation state vari-
ables, and (ii) the correspondence points where the equivalence between these variables should be
checked. Although commercial model checking tools (e.g., [7]) support Sequential Equivalence
Checking (SEC) and property verification directly, they do not provide direct support for RC of
hardware systems. Thus, the properties for RC have to be written manually.

1.3 Our Approach: Key Ideas

Motivated by these challenges, we propose a new compositional methodology for FSIV, shown in
Figure 2. We introduce the component specification in the middle to bridge the gap between the
high-level protocol specification and the low-level detailed RTL design.

For example, a token-based off-chip protocol (detailed in Section 4) is utilized for communica-
tion between upstream and downstream components on separate chips. However, the high-level
protocol primarily focuses on the token design for data reception (write) and transmission (read)
rather than specifying the upstream and downstream components individually. One write opera-
tion in the high-level specification, such as MEM[w_ptr] = data_in[31 : 0], can correspond to a
data processing operation (data = data_in[31 : 0]) in the upstream component and a store oper-
ation (MEM[w_ptr] = data) in the downstream component. These two abstracted operations are
implemented in a more complex manner in the actual RTL design, involving buffers or pipelines.
Consequently, these two operations, one each in the upstream and downstream components, can
serve as a bridge between the high-level specification and the low-level RTL design.

We provide a quick overview of the key ideas.

Component Specifications. The heart of this methodology is utilizing the existing design modu-
larity in the implementation, where we construct formal component specifications, denoted CS;, for
each individual component M; in the protocol implementation. In particular, the novelty is that we
use a formal model called an Instruction-Level Abstraction (ILA) to represent each CS;. The ILA

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

SoC Protocol Implementation Verification Using ILA Specifications 89:5

has been proposed recently as an architecture-level specification for hardware components such as
accelerators/processors [23] and other general hardware modules [58]. In this article, we utilize
the compositional specification and verification methodology proposed in earlier work [59] that
adds an interface specification (via valid/ready handshake signals) to the ILA model that enables
compositional reasoning to ensure that the interactions between the component implementations
is correct with respect to the interactions between the ILA models.

Compositional RC. For protocol verification, the ILA-based component specifications serve as a
bridge between S and I, and help to decompose the overall problem of FSIV. In particular, note that
I is often represented as a composition of component implementations I = M, || My || ... || Mp—1,
where || denotes the standard parallel composition between RTL components represented as FSMs,
where their inputs/outputs define the component interfaces. We view the system of interacting
component specifications CS also as a composition of component specifications CS = CSy || CS; ||
... || CSp—1. Each CS; is an ILA specification that includes input/output interfaces (using handshake
signals), and their composition is the parallel composition of interacting FSMs as the ILA model is
an FSM. The main difference is that in the FSM for CS;, each step (i.e., transition) denotes execut-
ing a full instruction/command at the interface, whereas in the FSM for M;, each step denotes a
state update at a clock cycle in RTL. A user-provided refinement map provides a correspondence
between the two FSMs (e.g., by specifying the number of cycles or condition for completion of each
instruction/command). In our methodology, we check that each M; and its interface is a correct
refinement of each CS; and its interface, based on this given refinement map.

FSIV Verification Using ILA-Based Methodology. Our methodology decomposes the overall FSIV
problem into two main verification tasks. In the first task, we check that the ILA composition
CS is equivalent to the whole system specification S. Note that CS is at a much higher level of
abstraction than I, so verifying CS against S is simpler than verifying I against S. Further, the
CS; are created such that transitions (i.e., steps) in CS correspond to transitions (steps) in S. Thus,
verifying CS against S is a sequential equivalence check (SEC in Figure 2) rather than the more
complex refinement check needed for verifying I against S.

In the second task, we check that the implementation I is a refinement of the ILA composition
CS. Here, each M, is verified against its specification CS; (indicated as RC in Figure 2). This includes
checking that each M; correctly implements its interface specification in the ILA model CS;. In-
cluding Interface Checking (IC) as part of RC provides a basis for compositional RC (i.e., if each
M,; refines CS;, then their composition I refines CS). Thus, we leverage design modularity in the
implementation to create modular specifications and enable modular verification—this improves
the scalability of verification.

Effectively, our component specifications CS; enable decomposing the full FSIV problem into
one SEC and multiple RC verification tasks (including IC). In practical use cases, this methodology
also supports the ability to replace or enhance a single implementation module M; and prove the
implementation correctness by only redoing the RC (including IC) between M; and CS;. In this
way, we can guarantee correctness of the implementation incrementally and avoid repeating the
full system verification.

Although compositional verification and RC have been successfully used in other prior efforts in
hardware verification [18, 25, 36], there are important differences in our work (discussed in detail
in Section 6).

1.4 Contributions

This article makes the following contributions:

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

89:6 H. Lu et al.

e We propose a new methodology for protocol implementation verification (outlined in
Figure 2) that uses modular component specifications CS as a bridge between S and I to de-
compose FSIV into a set of simpler verification tasks (SEC and RC). The methodology bridges
the gap between S and I, which significantly improves scalability of the FSIV problem.

e We show how ILA and related verification techniques [22, 58, 59] can be leveraged for
modeling component specifications and the resulting SEC and RC verification tasks. In
particular, to verify the interactions between components in the implementation, we use the
interface specification (via valid/ready handshake signals) in the ILA models (Section 2.1)
and perform additional interface checks as part of performing refinement checks (Section 3).
This provides the basis for compositional RC [59] (ie., if each M; refines CS;, then I
refines CS). Thus, together our SEC and RC verification tasks ensure the correctness of the
implementation with respect to the specification (Section 3.3).

e We implement our ILA-based protocol verification methodology and demonstrate its
effectiveness in three different case studies (Section 5). These protocols are part of real
designs: the AMBA AXI on-chip communication protocol [44], an off-chip communication
protocol used in BaseJump STL [52], and a cache coherence protocol used in OpenPiton [3].
For these case studies, our method not only found bugs in the protocol implementations that
were confirmed by designers but also performed the complete FSIV task in reasonable time
and effort.

This article is organized as follows. We start by providing some background on ILAs and
ILA composition (Section 2) and then describe the ILA-based protocol verification methodology
(Section 3) along with an illustrative example (Section 4). We describe three protocol case studies
(Section 5) and report experimental results. This is followed by a discussion of the related work
(Section 6) and our conclusion (Section 7).

2 BACKGROUND

We include the relevant background on ILA specifications and compositional verification using
ILAs because it is critical for understanding the proposed FSIV methodology.

2.1 ILA Specifications

ILA can be viewed as an extension of ISA, which serves as a formal specification for processors.
An ISA specifies the architectural state for a processor—that is, the state that persists between
instructions. In addition, an ISA specifies the decode conditions and state updates for each of
its instructions. There have been many successful efforts in processor verification that check an
implementation instruction-by-instruction against a formal ISA specification [6, 33, 34].

The ILA specification [23] was first introduced to extend the familiar notion of an ISA to acceler-
ators. It does so by treating the commands at the interface of the accelerator as “instructions” The
ILA specification and ILA-based methodology were further extended for specification and verifi-
cation of general hardware modules [58]. Recently, the ILA composition methodology for general
hardware modules was proposed in prior work [59], where the ILA model was augmented with
an interface specification.

In this work, we leverage this notion of treating commands at the interface of a general hardware
module as instructions to model component specifications for protocol implementations. Here, the
commands at the interfaces are the interactions between the components during the execution of
the protocol.

As introduced in prior work [59], an ILA model of a component is represented as a six-element
tuple, which is defined formally as follows:

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

SoC Protocol Implementation Verification Using ILA Specifications 89:7

A (S,W,0,Sy,D, N), where
is a vector of state variables (state space denoted as S) ,

is a vector of inputs variables (including valid/ready, input space denoted as W) ,

O =T w»w

is a vector of output variables (including valid/ready),

O (output space of O) C S,

So is a vector of initial values of the state variables,

D ={D;:(SxW) — B,je€ J}isaset of decode functions, B = {0,1},
N ={N;j: (SxW)—S,je€ J}is aset of next state update functions

Note that] is the set of instructions, associated with the sets D and N. Each element in D specifies
a condition for triggering an instruction (i.e., the interface command), and each element in N
describes the state update performed for each instruction j € J.

This ILA definition focuses not only on module specification but also considers the interface
specification for interacting and communicating with other modules. Outputs are defined to sup-
port the composition of ILA models. This allows connecting inputs and outputs of different ILA
models to enable their interaction. We note that most modules in protocol implementations use
simple handshake signals for correct communication. In general terms, an interface between two
ILA models is specified in terms of two handshake signals—valid and ready—in the outputs/inputs
of ILA models, as shown in Figure 3(i).

2.2 Interface Specification Using Handshake Signals

Protocol implementations often use simple handshake signals in their interface (e.g., a valid/ready
handshake among modules) so that different modules can interface with each other correctly. Con-
ceptually (although implementations vary), a valid signal is set to high when a module is prepared
to send the payload to another module, and a ready signal is set to high when a module is prepared
to receive the payload from another module. Only when valid and ready are both set to high in
the respective modules can the payload be transferred from one module to another.

An example ILA model including four handshake signals is shown in Figure 3(i), where valid_o
and ready_o are outputs of this model, say P, and valid_i and ready_i are inputs from another ILA
model, say Q. P and Q are interacting with each other based on these handshake signals.

In Figure 3(ii), we show an example interface specification for the handshake signals in the ILA
model P—that is, how valid_o and ready_o (the output variables labeled in each state) are updated
by P, depending on its own current state and its inputs valid_i and ready_i. The inputs change will
trigger different instructions in different states. We refer to these as instructions with handshake
operations in the ILA models.

There are two kinds of handshake operations, say “send” and “receive” For the instructions
with “receive” operation, the decode function includes the condition that valid_i A ready_o == 1,
and for the instructions with “send” operation, the decode function includes the condition that
valid_o A ready_i == 1. The decode function can also include other information, such as input
or state variables, to trigger different state update functions for other state variables. Whenever
some interaction occurs between two ILA models, there should always be an instruction with
“send” operation decoded in the sender ILA model and an instruction with “receive” operation
decoded in the receiver ILA model.

For example, Figure 3(iii) shows the ILA specification (including the interface) for a component
P (the same as for component Q). There are two instructions in the ILA model—the first has a
“receive” operation (corresponds to the transition from state “wait” to state “done”), and the other
has a “send” operation (corresponds to the transition from state “done” to state “wait”). With these

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

89:8 H. Lu et al.

valid_o ILAP
ready i W |Input valid_i, ready_i
Y_! (fromQ) P _| y_
I LA P - Output states |valid_o, ready_o
valid_i (from q) Internal states
ready_o So Initial values ready_o=1,valid_o=0

Instruction-0 (“receive”)
Decode Function (D)
Djo= (valid_i /\ ready_o);
Next State Function® (N;o)
If (Do) then N(valid_o) = 1; N (ready_o) = 0;

Instruction-1 (“send”)

(i) Interface handshake signals

’ State: (valid_o, ready_o) Input: (valid_i, ready_i)

Decode Function (D)

Dj;= (valid_o /\ ready_i);

Next State Function (N;;)

*X represents an arbitrary value If (D;;) then N(valid_o) = 0; N(ready_o) = 1;

(ii) Interface specification for

handshake signals (iii) ILA specification (including the interface)

Fig. 3. ILA interface specification: handshake signals and interface instructions.

two instructions, an ILA model P can correctly communicate with an ILA model Q when their
respective instructions with “send” and “receive” operations are synchronized—that is, if the second
instruction with “send” is decoded in the sender P’s ILA model, the first instruction with “receive”
is decoded in the receiver Q’s ILA model at the same time. This synchronicity condition guarantees
that the payload is correctly transferred from ILA model P to ILA model Q.

Importantly, by considering the handshake signals as inputs/outputs at the interface of a compo-
nent, the overall problem of specifying communication between protocol components in a system
is decomposed into a modular interface specification for each component. This modular specifi-
cation is critical in enabling modular per-component verification, thereby improving verification
scalability.

2.3 ILA Composition
In the setting of this work, an ILA model can be viewed as a Moore FSM, where O C S. Thus, a
composition of ILA models is a standard composition between interacting FSMs, where an output
of one FSM can be connected to an input of another FSM. More formally, consider two ILA models
Al = (§51,W1,01, 81y, D1, N1) and A2 = (52, W2, 02, S2y, D2, N2). The parallel composition C of
Al and A2 isan FSM C = Al || A2 = (S¢, We, Oc, Soc, O¢), defined as follows:
Sc =81x852
We =WI1UW2\ ((W1N02)U(W2nO01))
Oc =01U02\((W1NnO02)u(W2nO01))
Soc = S1g X 82
O¢c :(Sc X We) — Sc is the state transition function.
Sc((S1,W1), (S2,W2)) = (S1,52"),where
Sl, _ Nlj(S].,Wl) lf EI]Dlj(Sl,W].) =1
|81 otherwise

S0 = N2,(S2,W2) if Ak.D2;(S2,W2) =1
T s2 otherwise.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

SoC Protocol Implementation Verification Using ILA Specifications 89:9

Each state of the composition C is a pair comprising states of A1 and A2 in the usual way. The
state transition function §¢ updates each part of this pair if there exists an associated instruction
(j for A1, k for A2) whose decode condition is true. Thus, each transition in C corresponds to
execution of an instruction in one or both components.

This definition also generalizes in a straightforward manner to a composition of n ILA models.
We use ILA composition to construct an FSM for CS = CS, || CS; || ... || CS,-1 in Figure 2.

2.4 ILA-Based Refinement Verification

As discussed in Section 1.3, the key requirements for the component specifications CS; are (i) mod-
eling of interface signals and specifying the interactions between components, and (ii) enabling RC
for each component implementation M;. Both these requirements are well met by the ILA model
and supported through the verification tools in the open source ILAng platform [22]. In particular,
we will use ILA-based verification to prove that each module M; is a refinement of the specification
CS;, denoted as M; <« CS;.

For performing a refinement check, the ILA tools automatically generate a set of verification
properties—one per instruction—by using a given refinement map. Essentially, the refinement map
specifies what to check and where to check equivalence, since the two models are at different
levels of abstraction and one step at the ILA level may correspond to multiple steps at the RTL.
Intuitively, each property (called a commutating diagram correctness property) checks that when
the ILA specification and the RTL implementation start in equivalent corresponding states (as
specified in a refinement map) at the start of an instruction, then after the instruction finishes
execution (as specified in a refinement map), the resulting corresponding states are also equivalent.
Refinement maps can also handle checking correctness of a pipelined hardware implementation
against a sequential ISA/ILA [6, 33, 34]. The per-instruction properties that are generated by ILA-
based refinement verification can be checked using standard open source [35] or commercial model
checking tools [7].

Since the specification also includes the handshake signals (valid/ready), this RC also checks the
handshake signals at instruction completion time. In addition, Pre-Completion Checks (PCCs)
are generated to ensure that the interface signals have correct values even before the instruction
completion points. The following result from prior work [59] states that if implementation I1 is a
refinement of specification S1 and implementation I2 is a refinement of specification S2, then the
composition of I1 and 12 is a refinement of the composition of S1 and S2.

LEmMA (CompoSITION LEMMA [59]). If all refinement checks on M; and CS; pass, then the compo-
sition M = My || My || Mz ... || M,—1 is a refinement of the composition CS = CSy || CS; || CSz.. . . ||
CSp-1.

It is worth emphasizing that other existing methodologies or tools do not provide automated
generation of a complete set of properties for RC for hardware modules other than processors.
Thus, the ILA component specifications are quite valuable for this purpose and enable leveraging
standard model checkers.

3 ILA-BASED METHODOLOGY FOR FSIV

The two major verification tasks in the ILA-based FSIV methodology as outlined in Figure 2 are as
follows:

e SEC between the composition of ILA models CS =||; CS; and the formal specification S.
e RC between each ILA model CS; and its corresponding implementation module M;, where
IC is included in this task to ensure correctness of component interactions.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

89:10 H. Lu et al.

The first task is a standard verification problem, and the second task is based on using the ILA
models and the interface specifications described in the previous section (Section 2). We describe
these tasks in detail in this section.

3.1 SEC Task

The SEC task guarantees that the outputs of two models being checked are equivalent at each step
under the same inputs. There are many techniques for doing SEC [37]. Conventional algorithms
for solving the sequential equivalence problem first build the so-called product machine, which is
the parallel composition of the two models being verified. Then a model checker can check that
the corresponding outputs of the two models are identical in every state of the product machine
reachable from the initial states. Many new approaches have been proposed to tackling the inher-
ent state explosion problem, such as induction [27] and structural approaches [53].

As mentioned earlier, the ILA composition CS has abstracted away many of the performance-
enhancing implementation details, which helps reduce the complexity of the SEC between CS and
S. Note that the CS; are created such that transitions (i.e., steps) in CS correspond to transitions
(steps) in S, and this structural similarity can be utilized by the model checker to further improve
the SEC solution.

In our implementation, we use the ILAng platform [22] to translate the CS; ILA models and
generate the ILA composition for use with a commercial model checking tool (JasperGold) [7] to
perform SEC.

3.2 RC Tasks

The second main task in our proposed methodology is to perform refinement checks to guarantee
that the protocol implementation M is a refinement of the ILA composition CS. Following the
ILA compositional verification methodology, there are two sub-tasks needed for this. The first
is to verify that each implementation component M; refines its ILA specification CS;, denoted
as M; < CS;, and the other is to do the additional PCCs on the interface against the interface
specification.

3.2.1 Modular RC. Recall that when M; <CS;, the RTL component M; and its ILA specification
CS; are shown to have equivalent outputs at corresponding points specified in a given refinement
map (Section 2), which is provided by the user. In our application, we use a refinement map that
provides the following information:

e Mapping between outputs of interest in CS; and M;: The set of outputs includes all system-
level outputs, outputs from one component that are connected as inputs to another, and the
handshake signals that are used in interface specifications.

e Correspondence points that indicate the end of each instruction: This is because that the number
of steps to complete an instruction can be different in an ILA model CS; (which is not cycle-
accurate) and the RTL model M; (which is cycle-accurate).

Note that the ILA models include interface instructions that specify the updates to the handshake
signals according to the interface specifications. We then use the standard ILA-based refinement
verification methodology [58] to perform the component refinement checks. This involves us-
ing the given refinement map to automatically generate correctness properties, which are then
checked by a standard model checker.

Thus, if a refinement check M; < CS; passes, then the RTL component M; and its ILA specifica-
tion CS; are shown to have equivalent outputs (including handshake signals) at the end of each
instruction as specified in the refinement map.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

SoC Protocol Implementation Verification Using ILA Specifications 89:11

I

[

Protocol ILA
Spec Composition 4-| ILA Models

RTL
Modules
(in Verilog)

Refinement
Maps
(in JSON)

- T

S) (cs) (Css)

—

ILAng
Verif. Tools
(JasperGold) Generate the sequential — Verif. Tools
equivalence checking (SEC) Genera.te the verlﬁc?tlon (JasperGold,
task for corresponding output properties (automatl(_:ally) CoSA, etc.)
variables in S and CS for refinement checking

(RC) tasks

Fig. 4. Verification flow of FSIV using ILA. The ILA models and refinement maps in the gray shaded box
need to be written manually.

3.2.2 Additional Interface Checks. Note that checking M; <CS; focuses on checking equivalence
of specified outputs at the end of each instruction (as specified in the refinement map). However,
checking equivalence only at instruction completion points is not enough for the interface signals.
Unlike processors and accelerators, where the architectural state is visible only at the end of an
instruction, the handshake signals at the interface are visible at all timesteps (i.e., even before in-
struction completion). Therefore, we perform additional checks to ensure that the interface signals
have correct values even before the instruction completion points.

These are included in the following two additional PCCs:

e PCC1: For each M;, the valid output is not set to high before the completion of the instruction
that asserts the valid signal. This ensures that the payload is not transferred before it is
available.

e PCC2:For each M;, the ready output is not set to high before the completion of the instruction
that asserts the ready signal. This ensures that the module is actually ready to receive the
payload.

These two checks ensure that the payload is correctly transferred as per the ILA interface specifi-
cation. As we can see, these two checks are performed per instruction, and we include them in RC
itself. Note that all properties for individual RC between CS; and M; and pre-completion checking
for each module are automatically generated, providing a systematic verification methodology.

3.3 Summary: FSIV Tasks and Correctness

The key idea in our ILA-based methodology is to leverage the modularity in the protocol imple-
mentation I to provide a high-level intermediate specification CS; for each component M; in I.
These intermediate specifications CS; play the role of a bridge between the high-level formal spec-
ification S and the low-level implementation I.

The complete verification flow is shown in Figure 4. After creating CS; in the form of ILA models,
we automatically generate properties for the RC tasks, based on user-provided refinement maps.
These properties are verified by a standard model checker. For the SEC task, we construct the ILA
composition (using utilities available in the ILAng platform [22] and formulate the SEC problem,
which is checked by a standard model checker. Note that our use of CS; in the two FSIV tasks
provides the following benefits, in comparison to a monolithic refinement check I < S:

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

89:12 H. Lu et al.

Chip 0 Interface

Upstream

Chip 1
Downstream

i- DATA_IN i: DATA_SEND i: DATA_IN i- DATA_SEND|

data_in [63:0]] |data_o_0[7:0] data_in_0 [7:0] ready|f«—
valid_in data_o_1[7:0] data_in_1[7:0]| [data_out[63:0]|}—>
ready_o valid_o »| valid_in valid_out |—>

t |

token_out

i TOKEN_IN| token_in i: TOKEN_SEND

Fig.5. Instructions and interface signals for the off-chip communication protocol. i: DATA_IN, i: DATA_SEND,
i TOKEN_IN, and i: TOKEN_SEND are the instructions. Data_in (64), valid_in (1) and so forth are the interface
signals with the bit width inside the parentheses.

e Task 1: The high-level CS; make it easier to check the sequential equivalence of CS and S.
o Task 2: Each refinement check M; < CS; is simpler than checking the monolithic refinement
check I «S.

Section 5 provides empirical evidence of these benefits for practical case studies. The composition
lemma shown in Section 2.4 provides a connection between the two tasks.

FSIV Correctness. If the sequential equivalence check passes and all refinement checks pass, then
the implementation I is correct with respect to the specification S. To see this, note that when all
refinement checks pass, then each M; refines CS;, and the composition I of all implementation
components M; is a refinement of CS (according to the composition lemma (Section 2.4)). When
the sequential equivalence check passes, then CS is equivalent to S. Thus, I is correct with respect
to S.

4 ILLUSTRATIVE EXAMPLE: OFF-CHIP PROTOCOL

The off-chip communication protocol in BaseJump STL [52] has two components: an upstream
module (named Upstream) and a downstream module (named Downstream) as shown in Figure 5.
It uses tokens to ensure correct data communication between the two modules. The target of
our verification is checking that the implementation is correct with respect to this token-based
communication protocol. Figure 5 also shows how we model the instructions for each module
based on the interface signals. The 64-bit data is transferred from Upstream to Downstream, so
we have the DATA_IN and DATA_SEND instruction for each module to indicate when the data
comes in and goes out, respectively. Further, TOKEN can be sent from Downstream back to the
Upstream so that Upstream can determine whether to receive more data from the environment. As
a result, we have the instruction TOKEN_SEND in Downstream and the instruction TOKEN_IN in
Upstream to model this token feature. According to the protocol specification document, the data
transfer between two different chips (Upstream and Downstream) is limited to 8 bits per channel.
Accordingly, the 64-bit data_in Upstream is transferred in four steps to Downstream via the 8-bit
channels of data_o_0 and data_o_1and then sent out as 64-bit data_out by Downstream. The main
job of the protocol in this design is to guarantee that all data received in Upstream should be
eventually sent out by Downstream, which is the data integrity property of the communication.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

SoC Protocol Implementation Verification Using ILA Specifications 89:13

Write FSM valid_in==1 Read/TOKEN
data_in==x* FSM
CMT
valid_in==0 data_c=X;
cnt==3 valid_in==1
cnt==3
up_cnt < max data_in==X
rptri+;
i#lent ==1) data_out = if (rptr is odd)
MEM[wptr] = x[31:0]; _out=
Out & Store if (cnt[‘::;)] A0l ready = 1 {MEM[rptr], MEM[rptr--]};

MEM[wptr] = x[63:32];
if (cnt == 0 or 2) up_cnt++;
else wptr ++;

*X represents an arbitrary value

cnt ++;

Fig. 6. Specification, S, of the off-chip protocol.

In this section, we illustrate the steps in our methodology, with examples of ILA models and
ILA-based verification using refinement maps.

High-Level Specification S. To verify this token-based protocol, we first wrote a high-level formal
specification S. Figure 6 shows a simplified version of this specification comprising two FSMs: one
for writing data, and the other for reading data and token control. In Figure 6, the blue labels on
edges are guards, and output assignments are shown in bold in each state or along an edge. The
Write FSM ensures that the data received in the CMT state will be stored in two pieces in a buffer
after four steps (cnt is used to record each step), and the Read/TOKEN FSM makes sure that the
token signal is generated correctly after a certain number of data are loaded based on the read
logic. Write FSM increments the up_cnt, whereas Read FSM decrements up_cnt. Composing these
two FSMs ensures that up_cnt is calculated correctly, and no more data can be stored when up_cnt
reaches the maximum value, indicating that the buffer is full. One possible failure scenario is that if
up_cnt is not maximum when the buffer is full, some data will be confirmed to be received but not
stored in the buffer, leading to data lost during the communication. A set of high-level properties
H is verified for S. For example, a liveness property expressed in temporal logic (hy € H) is used
to check that there is no data loss during the data transfer between chips:

AG((state == CMT) = AF(data_out == data_c)).

When Write FSM is in state CMT, it means that the data is confirmed to be received and it should
eventually be transferred to data_out. If not, then the data is lost under the protocol.

Implementation I. The RTL design is large (7,478 LoC in Verilog), comprising the upstream and
downstream modules described previously, with many additional performance-enhancing features
such as integrating buffers in both upstream and downstream modules. Thus, a single operation in
the component specifications for both modules will take many cycles in the RTL to complete. For
comparison with traditional methods, our experiments (described later in Section 5) also report
the results for verifying some high-level properties on S and on I. However, as discussed earlier,
even when high-level properties H are verified on the implementation I, that may not be enough
to provide assurance that the implementation correctly implements the token-based specification.
For example, a regular handshake communication protocol without the token feature (e.g., the
example design in Figure 3) can guarantee the same high-level property (e.g., no data loss liveness

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

89:14

H. Lu et al.

BSG_Link Upstream ILA

Instruction-1 sub-instructions

W |Input data_in (64)*, valid_in (1), token_in (1)

Output states |valid_o (1), data_o_0 (8), data_o_1 (8), ready_o (1)

Internal states |sent_cnt (4), finish_cnt (4), step (2), child (1)

S, [Initial states [AllO

Decode Function (D)

Dj1.supo = (child == 1 & step == 0);

Djy.5up1 = (valid_o == 1 & ready & step == 1);
Dj1.5up2= (valid_o == 1 & ready & step == 2);
Djy.sup3= (valid_o == 1 & ready & step == 3);

Dj;.sups = (valid_o == 1 & ready & step == 0);

Signal Definition

ready = (sent_cnt — finish_cnt) < 8;
ready_o = ~child;

Next State Function (N;,)

if (Diz-suo) {
N(data_o_0) = data_in[7:0];
N(data_o_1) = data_in[23:16];
N(valid_o) = 1;

Instruction-0 “TOKEN_IN"

Decode Function (D) }
D;o= (token_in == 1); else if (Dy.supd) {

Next State Function® (N;o) N(data_o_0) = data_in[15:8];
If (Dyo) then N(finish_cnt) = finish_cnt + 1; N(data_o_1) = data_in[31:24];

- N(sent_cnt) = sent_cnt + 1;
Instruction-1 “DATA_IN”

}
else if (Djg.sup2) { --- } €lse if (Dig.sup3) { - }
else if (Di1.supa) {

N(child) = 0; N (valid_o) = 0;

Decode Function (D)

D;; = (valid_in == 1 & ready_o == 1);
Next State Function (N;;)

if (D;3) then N(child) = 1;

}

*(n) : n-bit input/state
t: We elide updates where the state does not change

Fig. 7. ILA model for Upstream (partial).

property), but the implementation does not follow the token-based protocol specification. This gap
is addressed in FSIV, which guarantees completeness of the implementation verification against a
given specification.

Component Specifications CS. We create the component specifications for an upstream module
and a downstream module in the implementation. One can see from Figure 6 that it is not easy
to derive these component specifications from S, since the specification FSMs are for writing and
reading, respectively, and not for these individual components. Note also that the interface infor-
mation between modules is not easy to obtain from the specification S.

We created ILA models for the upstream and downstream components, based on commands at
the interface of the modules as shown in Figure 5. Although our methodology adds this step of cre-
ating ILA component specifications, in our view the resulting benefits to FSIV justify this extra step.
The (partial) ILA model for the upstream component is shown in Figure 7 (defined in Section 2.1).
The Upstream ILA model has two instructions and five sub-instructions.? Each (sub-)instruction
is defined by its own decode and state update function. We can see that the two instructions re-
ceive information from other modules, and the sub-instructions generate the outputs and send
information to other modules.

The interface specification of Upstream is also included in Figure 7. For the receiving part, the
instructions are based on the wvalid_in and ready_o signals and update function for ready_o is
shown in the specification. For the sending part, however, we only have valid_o specified in the
interface specification, whereas the ready signals are implicitly specified as being always high
(leading to a simplified handshake). Similarly, the Downstream ILA model is built to specify the
downstream module and its interface.

FSIV Task for SEC. We consider a given RTL design with one upstream and two downstream
modules. We construct CS using the composition of an ILA Upstream model and two ILA

2Sub-instruction: a step in an instruction execution that results in a visible state update [23].

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

SoC Protocol Implementation Verification Using ILA Specifications 89:15
ILA Composition RTL Composition
Off-Chip Prot | Cho Downstream Cho Downstream
-Chip Protoco ILA (CS | M
P SEC Upstream (Cs,) RC Upstream (M,)
Formal Specs <«——» ILA — (Mg)
(S) (CSo) chl Downstream o chi Downstream
ILA (CS,) (M,)
Fig. 8. FSIV tasks for the off-chip protocol.
Upstream ILA Upstream RTL
State Map Auto-generated property
valid_o io_valid_out for “TOKEN_IN" instruction
data_o_0 io_data_r_o[7:0] (#state mapping#)
data_o_1 io_data_r_o[15:8] (ila.valid_o == &rtl.io_valid_out) &&
ready_o piso_ready_o (ila.data_o_0 == rtl.io_data_r_o[7:0]) && (..)&&
sent_cnt pos_r_cnt_r+neg_r_cnt_r (ila.ready == rtl.piso_ready_o) &&
finish_cnt w_cnt_b_chO+w_cnt_b_ch1l (#interface mapping#)
step #enti (ila.data_in == rtl.core_data_in) &&
child fifo_valid_o (ila.valid_in == rtl.core_valid_in) &&
(ila.token_in == rtl.core_token) &&
‘ Interface Map (#decodet)
data_in core_data_in (ila.token_in == 1) &&
valid_in core_valid_in (ila’ = ila.next_state()) —
token_in core_token (#commit condition & checki#)
‘ Instruction Map X[(ila" finish_cnt == rtlLw_cnt_b_ch0+
rtbw_cnt_b_chl) &&/(..)]
start condition commit condition
TOKEN_IN decode 1 cycle

Fig. 9. Refinement map for Upstream (partial) and an auto-generated property.

Downstream models, each of which also includes the interface specifications. Then, we perform
SEC between S and CS, as shown on the left in Figure 8. The SEC verifies that given the same
inputs, the outputs of CS are equivalent to the outputs of the formal specification S in every tran-
sition. This guarantees completeness and correctness of CS. We perform SEC using a commercial

model checking tool (JasperGold).

FSIV Tasks for RC. We next check that each component M; in the implementation is a correct re-
finement of its ILA component specification CS;, as shown on the right in Figure 8. This guarantees
that the composition of the implementation modules is a correct refinement of the composition of
the ILA models. The properties to be checked for each modular refinement check are generated
automatically by the existing ILA tools using a refinement map [22]. The (partial) refinement map
for this example is shown in Figure 9. It it composed of three main parts: a state map, an inter-
face map, and an instruction map. The state map provides the correspondence between the ILA
architectural state variables and the RTL registers. The interface map relates the inputs so that
when a command is presented to the ILA, the corresponding inputs will also be presented to the
RTL. The instruction map specifies the start and finish condition of each instruction in the RTL.
For example, for the TOKEN_IN instruction, the start condition is its decode function, and the finish
condition (when to check) is one clock cycle after the instruction starts.

The right side in Figure 9 shows an example property that is generated automatically for the
TOKEN_IN instruction, by using the refinement map shown on the left side of the figure. It checks the

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

89:16 H. Lu et al.

Table 1. Results for SEC Verification Experiments

Protocol Speciﬁca:tion ILA Con}pf)sition ‘SEC ‘
Design . Statistics . . Statistics . . Verification

Size (LoC) No. of State Bits | Size (LoC) No. of State Bits | Time (s) Memory (MB)
AXI Protocol 484 343 1,628 360 0.9 7.35
Off-Chip Link 183 91 589 171 106 4.36
Cache Coherence 871 646 1,529 634 490.2 6.12

following: if the ILA model and the RTL implementation execute the instruction with equivalent
corresponding starting states, and the ILA applies the next state function and the RTL finishes
the instruction based on the commit condition, then the ILA’s architectural states (denoted as ila’)
should be equivalent to the corresponding RTL states. (The symbol — denotes logic implication
and the temporal logic operator X denotes the next cycle in the RTL.) To make it clearer, the
property is shown divided into several parts corresponding to different parts in the refinement
map (with comments for the different parts shown in shaded background). Similar properties are
automatically generated for each instruction and are formally verified using a model checker.

We include the handshake signals and interface specifications in the ILA models and the cor-
responding refinement maps, and perform two PCCs (as described in Section 3.2.2). For example,
one pre-completion checking property that is generated for the valid signal is as follows:

assert {valid == 0 | => nexttime $stable (valid) until “commit condition of DATA_IN"}.

In effect, the refinement checks (including interface checks) guarantee that the composition of
RTL modules for the off-chip protocol is a refinement of the composition of the corresponding ILA
models. Together with SEC, this completes all FSIV tasks.

5 CASE STUDIES

In this section, we demonstrate the applicability and effectiveness of our proposed ILA method-
ology for FSIV through three case studies: the on-chip AXI communication protocol [44], an
off-chip communication protocol used in BaseJump STL [52] (discussed in Section 4), and a
cache-coherence protocol used in OpenPiton [3].> We successfully verified all three protocol
implementations and detected some bugs that were confirmed by the designers. The open source
ILAng platform [23] was used for ILA tools, and JasperGold [7] was used as the model checker.
All experiments were performed on a Dell Server with a 2.3-GHz 28-core Intel Haswell processor
and 224 GB of RAM, running RedHat Linux 5 OS.

The experimental results for SEC are shown in Table 1, and for RC (which includes IC) in Table 2.
These tables summarize the statistics of the protocol specifications, implementations (size ranging
from 800 to 11,000 LoC), ILA models (implemented in C++, where the size is a rough measure for
the human effort involved), and refinement maps (written in JSON format, where again the size
reflects human effort). We report the runtime and memory required for verification.

5.1 AXI Protocol

The widely used on-chip AXI communication protocol is a burst-based data transfer protocol,
where the communication channels use a valid/ready handshake mechanism. It consists of five
channels: two for reading and three for writing. The reading and writing channels are separated.
Data can be transferred from a leader module to a follower module only when ready and valid

3Source code for all models and verification properties is available at https://github.com/anonymized-hierarchical-
verification.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

https://github.com/anonymized-hierarchical-verification.

SoC Protocol Implementation Verification Using ILA Specifications 89:17

Table 2. RC Verification Experiments

Protocol Design Statistics ILA Model Statistics Verification

Protocol RTL Size No. of No. of II.JA No. of Ref-'Map Bug-'Found Plroof Memory

Modules (LoC) Stf:\te Instr. Size Stgte Size Time Time Usage

Bits (LoC) Bits (LoC) (s) (s) (MB)

AXI Follower 828 372 9 167 159 77 0.01 0.11 7.8
Protocol Leader 871 403 11 184 289 109 0.01 0.23 9.7
Off-Chip Upstream 2,982 713 7 144 146 284 0.3 756.6 253.5
Link Downstream 5,453 2,474 4 101 98* 196 - 38.2 89.1
CCP L2 Cache 10,924 2,844* 8 596 340* 272 0.7 1214 2,270

*Not including memory block.

signals are both asserted in one channel, as required by the handshake mechanism. (We are fol-
lowing the inclusive language guidelines being recommended by standards bodies like IETF [28]
in replacing “master-slave” in technical references with “leader-follower.”)

In past work, simulation-based testing [19] was explored for similar protocols. For formal veri-
fication, HLIV for this protocol has been done using model checking [32], where some properties
were verified by the CoSA model checker [35]. However, the properties were written manually
based on the specification, and as with HLIV in general, there is no guarantee of their complete-
ness for checking the implementation against the protocol specification.

For our ILA methodology, we built four ILA models: one each for reading and writing channels
in each of the leader and follower modules. All ILA models include the interface specification on
the ready/valid handshake signals in the protocol. We then composed the ILA models and checked
the sequential equivalence (SEC) against the AXI specification—this finished in 0.9 seconds.

Next, we used the ILA tool to perform RC between each ILA component model and its corre-
sponding RTL module. We found two bugs in the follower and one bug in the leader components
through RC. The AXI protocol requires that the interface data be asserted until the receiver is
ready, but the design fails to implement this feature in both the leader and the follower. Another
bug in the follower reading channel is that the data address should be updated based on an inter-
nal state variable instead of an input variable. These bugs were found very quickly, in about 0.01
second. We confirmed the bug with the designer and fixed the bugs, by keeping the interface data
unchanged until the receiver is ready and correcting the address computation logic. After fixing
the bugs, the follower and leader modules were verified in 0.1 and 1 second, respectively.

5.2 BaseJump Off-Chip Protocol

The off-chip communication protocol used in BaseJump [52] is not a simple valid/ready handshake
protocol. Due to the constraints of the I/O interface, data has to be fragmented and there is no ready
signal for the data transfer (which is modeled in the interface specification as ready being true all
the time). Instead, a token-based feature is used in the protocol to evaluate the ready condition and
ensure there is no data loss during the communication. The protocol design includes an upstream
and a downstream module as described in detail earlier (Section 4).

SEC and RC Verification Results. The correctness of the composed ILA models was checked
using SEC, which finished in less than 2 minutes. During RC, one interface bug was identified in
the upstream module. The implementation incorrectly transferred the invalid data, which is not
allowed in the specification. The bug was found within 0.3 second. Following a discussion with
the designer, this bug was fixed by adding appropriate environment constraints that were being
assumed by the designer. After the bug fix, RC for all modules was completed successfully in
15 minutes.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

89:18 H. Lu et al.

Table 3. Results for HLSV and HLIV on the Off-Chip Protocol

Verification Task | Design Size | No. of Properties Proof Time Proof Memory
183 LoC/ 2,5935s 6.36 MB
HLSV on Spec 5 91 state bits 2 42525 18.43 MB
7,478 LoC/ Bounded proof for
HLIV on Impl T 3,187 state bits 2 399 stepsin 24 h 682 MB

*We apply data abstraction in HLSV to speed up the verification, and the number of state bits in this case will be less
than 91.

Comparison with HLSV and HLIV. We used this case study to perform a direct comparison with
the traditional verification methods for HLSV and HLIV. We checked two high-level properties on
the specification S and on the implementation I, respectively. The properties are expressed as
System Verilog Assertions (SVA) and verified by a commercial model checker (JasperGold). To
express these properties, we added monitor signals req and acq. The signal req is set to high when
there is some data x coming to Upstream, whereas the signal ack is set to high when the same data
x is coming out from Downstream (x is modeled as a symbolic value to capture all possible values
in the verification). The first property is a safety property: the number of req is at least the number
of acks: assert{#req >= #ack}. The other property is a liveness property that every req leads to
an ack: assert{req | => ##[0 : $] ack}. These two properties are checked on S and on I, and the
results are shown in Table 3.

Note that HLSV is useful to get some confidence in the protocol specification model S. HLSV
completed within about 40 minutes. We also experimented with abstracting the data from 64 bit
to 8 bit (using standard data abstraction), which speeds up the verification to less than 8 minutes.
However, checking the same properties directly on the implementation I does not scale well, due
to the large size and complexity of the full RTL design. In our experiment, we could only finish a
bounded proof for 399 steps in 24 hours. Further, these two properties checked on the implemen-
tation are not a complete set of properties based on the specification S. In contrast, our ILA-based
methodology for FSIV proves the correctness of I with respect to S in less than 20 minutes (the
total for SEC and RC tasks described earlier).

5.3 OpenPiton Cache Coherence Protocol

The cache coherence protocol used in OpenPiton [3], an open source many-core processor, is a
directory-based MESI coherence protocol comprising three components: a private cache (L1), a
directory (L2), and memory (MEM).

We first performed HLSV on a formal model S of the protocol. Two high-level properties (mutual
exclusion and a data property) were verified for S. For n number of cores in S, with n = (2,4, 16),
S was verified in 11.7 seconds, 50.6 seconds, and 2 hours, respectively. Although parameterized
model checking for HLSV for cache coherence protocols is well studied (Section 6), we did not use
it in our experiments due to the commercial model checker not directly supporting it.

Then, we created an ILA model for each component in the protocol, and performed SEC between
the composition of ILA models and the formal model S—this took 9 minutes. Next, we performed
RC between the ILA models and the corresponding implementation modules. Both ILA models
and RTL modules communicate through a valid/ready handshake interface, where the command
at the interface can be executed when valid and ready are both set to high in the modules sending
and receiving, respectively. In Table 2, we show the results for RC of only the L2 cache, since it is
the most complicated component and had a bug. All other implementation modules were verified
to be correct.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

SoC Protocol Implementation Verification Using ILA Specifications 89:19

The L2 cache implementation has dual parallel pipelines modeled as two independent ILA ports:
PIPE1-port and PIPE2-port. We found one bug while verifying PIPE1-port. There was a typo in
the informal document saying that pipeline register msg_flag_2 is used, whereas msg_flag_3 is
needed. In our verification, a counterexample trace exposing this bug was found in 0.7 second.
After confirming the bug with the design group member and fixing it by correcting the variable
name, the L2 cache implementation was verified in 20 minutes.

6 RELATED WORK

Our work is related to many past efforts that have addressed different aspects of protocol verifica-
tion and to various techniques that have been applied in general hardware verification.

6.1 HLSYV for Protocol Verification

Property-Based Verification. As mentioned in Section 1.1, there is a rich body of work in property
verification of protocols: for cache-coherence protocols [15, 30, 43, 51, 56], for network protocols [1,
4,14, 16], and for communication protocols [9, 47, 50]. Tools such as Murphi [13] and SPIN [17], and
specification languages such as TLA+ [26] and LNT [21], have been successfully used to specify
and check correctness of protocol specifications. However, these approaches are largely based on
monolithic verification, without much use of compositional techniques.

Parameterized and Compositional Techniques. Some protocols deal with a large number of
components, which lead to scalability concerns in verification. For instance, a cache coherence
protocol can have a parametric number of n elements as part of the protocol (n can be very large).
The CMP (Chou-Mannava-Park) method [51] applies parameterized model checking [11, 38] to
address this. In this method, verification of the cache coherence protocol for a parametric number
of components (cores) is done using abstraction with a fixed and small number of components. An-
other method to improve the scalability is to use flow-based specifications [43, 51]. The flow-based
description can generate quite intuitive and powerful invariants of the protocol, speeding up the
proof process. However, these works focus on the correctness of a high-level protocol specification
only; the refinement relation between the specification and an RTL implementation is difficult to
determine and is not verified. Our work fills this gap using the proposed ILA-based methodology.

High-Level Models for Hardware Modules. In addition to modeling protocols, there is prior work
on high-level hardware specifications. For instance, SystemC, transaction-level modeling (TLM),
and Bluespec [42, 45, 49] are used to specify the requirements of the RTL design. These high-level
models help raise the level of abstraction and hence improve the scalability in system integration
or software/hardware co-design. However, the verification in these works is generally simulation
based, with formal verification used mostly at the component level but not at the system level.
There is also some work in high-level formal modeling of interface signals [12], where the RTL
module interface signals are characterized into four sorts: to-sync, to-port, from-sync, and from-port.
This enables the interfaces among multiple modules to be formally analyzed to avoid bugs such as
combinational loops. However, this work focuses mainly on the well connectedness of a system
but not on the functional correctness of each design module. In contrast, our work leverages the
ILA as a modular component specification that provides for a complete formal verification for the
component implementation. Following this verification, the composition of our ILA models serve
as a sound abstraction of the implementation and is then checked against the protocol specification
using SEC.

6.2 HLIV for Protocol Verification

Property-Based Verification and Assertion Generation. In RTL design verification, property-
based verification using SVA [8] or Property Specification Language (PSL) [24] is commonly used.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

89:20 H. Lu et al.

However, it is still challenging to automatically generate these properties from high-level models.
Some prior work automates the generation of assertions based on simulation traces [48, 54] or from
high-level properties for the high-level models [5, 20, 46]. However, as we highlight, it is difficult
to write a complete set of properties or to evaluate the completeness of a set of properties for RC of
RTL designs. In our work, this challenge is addressed via the ILA methodology that provides a full
functional specification with automated generation of a complete set of properties for RC based on
this specification. Furthermore, the properties are generated as standard SVA, which are supported
by commercial model checking tools (e.g., JasperGold) to verify the RTL implementations.

Property Specifications with Intermediate Representations. Intermediate specifications in the
form of a low-level main FSM have been used in previous work [39-41]. This low-level main FSM
is handwritten based on the implementation to capture the main control states. Manually written
interval properties based on this FSM are then checked on the implementation. It is difficult to
determine the completeness of this set of properties, especially since this low-level main FSM
is derived from the low-level implementation without verifying this FSM against the high-level
specification.

6.3 FSIV in Hardware Verification

Compositional Verification. Compositional reasoning has also been applied to hardware imple-
mentation verification [18, 25, 36]. However, there are two important differences with our work
that we would like to emphasize. First, the earlier efforts were not applied for protocol verification
but were used to check the correctness of processor microarchitectural features (e.g., out-of-order
execution, speculative branching) by checking a series of successive refinements of the given spec-
ification model. In our methodology, we explicitly perform SEC between the specification model
S and the composition CS of the component specifications. This check was not performed in prior
efforts. Second, these earlier efforts required more complicated refinement relations that specify
temporal properties that relate components to the reference model. In comparison, our refinement
mapping is much simpler—it specifies the corresponding state variables in the two models and
when they should be checked for equivalence.

RC for Protocols. Refinement proofs between high-level protocol specifications and low-level im-
plementations have been explored using the TLA+ [29] specification language. Extensive research
on modular refinement proofs for hardware systems has been conducted, such as the study of Liu
et al. [31] that focuses on verifying processor arrays using Mocha [2] model checking tools. To
verify a hardware design using such tools, it is necessary to manually write both the specification
and the implementation semantics as a state transition system and then express verification goals
in terms of this system. As a result, these studies did not bridge the gap between the high-level
specification and the low-level RTL design, still requiring reliance on manual translation from RTL
to the model.

6.4 Theorem Prover in Protocol Verification

Theorem provers have also been used to verify hardware designs (e.g., HOL to verify an academic
microprocessor [57]). For protocol verification, such as cache-coherence proofs, mechanized theo-
rem provers have been utilized as well. In the work of Vijayaraghavan et al. [55], a directory-based
MSI protocol from a real design is verified using the Coq proof assistant. These approaches, includ-
ing the ones verified using model checking earlier, focus on verifying a model of the actual system
rather than directly verifying the RTL implementation. Another effort [10] uses a Bluespec-like
language to describe the protocol, which is further synthesized into an RTL design. This technique

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

SoC Protocol Implementation Verification Using ILA Specifications 89:21

does not apply directly to an existing RTL design. It is worth noting that a considerable number of
hardware designs are manually written at RTL, involving many performance-enhancing features;
as a result, model checking continues to dominate hardware verification. Our work aims to fill the
gap between the high-level protocol model and the low-level RTL design.

7 CONCLUSION

In this article, we proposed a new protocol implementation verification methodology based on
using ILAs as modular component specifications. The ILA models play the role of a bridge between
the verified formal specification S and the RTL implementation I. Existing ILA tools can check the
sequential equivalence between a composition of the ILA models and S, and also support RC for
each component in [against its modular ILA specification. The compositionality of this RC adds
to verification scalability.

We demonstrated the ILA-based methodology on three hardware protocol case studies by per-
forming complete FSIV. We found bugs in all three protocol implementations that were confirmed
by designers. We also showed that successful protocol implementation verification could be com-
pleted in reasonable time despite the large RTL design state space. Overall, although the pro-
posed methodology requires formal protocol and component specifications, the two-step problem
decomposition (SEC and RC) and compositional RC enable significant improvement in protocol
implementation verification.

REFERENCES

[1] Gul Agha, C. Gunter, Michael Greenwald, Sanjeev Khanna, Jose Meseguer, Koushik Sen, and Prasannaa Thati. 2005.
Formal modeling and analysis of DoS using probabilistic rewrite theories. In Proceedings of the International Workshop
on Foundations of Computer Security (FCS’05).

[2] Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sriram K. Rajamani, and Serdar Tasiran. 1998.
MOCHA: Modularity in model checking. In Computer Aided Verification. Lecture Notes in Computer Science, Vol.
1427. Springer, 521-525.

[3] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, Alexey Lavrov, Mohammad Shahrad,
Adi Fuchs, Samuel Payne, Xiaohua Liang, Matthew Matl, and David Wentzlaff. 2016. OpenPiton: An open source
manycore research framework. ACM SIGPLAN Notices 51, 4 (2016), 217-232. https://doi.org/10.1145/2872362.2872414

[4] Bruno Blanchet. 2012. Security protocol verification: Symbolic and computational models. In Proceedings of the Inter-
national Conference on Principles of Security and Trust. 3-29.

[5] Marc Boulé and Zeljko Zilic. 2008. Automata-based assertion-checker synthesis of PSL properties. ACM Transactions
on Design Automation of Electronic Systems 13, 1 (2008), Article 4, 21 pages. https://doi.org/10.1145/1297666.1297670

[6] Jerry R. Burch and David L. Dill. 1994. Automatic verification of pipelined microprocessor control. In Proceedings of
the 6th International Conference on Computer Aided Verification (CAV°94). 68—80. https://doi.org/10.1145/196244.196577

[7] Cadence Design Systems Inc. 2018. JasperGold: Formal Property Verification App. Retrieved November 26, 2019 from
http://www.jasper-da.com/products/jaspergold-apps/

[8] Eduard Cerny, Surrendra Dudani, John Havlicek, and Dmitry Korchemny. 2015. SVA: The Power of Assertions in Sys-
temVerilog. Springer International Publishing.

[9] Yean-Ru Chen, Wan-Ting Su, Pao-Ann Hsiung, Ying-Cherng Lan, Yu-Hen Hu, and Sao-Jie Chen. 2010. Formal mod-
eling and verification for network-on-chip. In Proceedings of the 2010 International Conference on Green Circuits and
Systems. 299-304. https://doi.org/10.1109/ICGCS.2010.5543050

[10] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman, Adam Chlipala, and Arvind. 2017. Kami: A platform
for high-level parametric hardware specification and its modular verification. Proceedings of the ACM on Programming
Languages 1, ICFP (2017), Article 24, 30 pages.

[11] Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. 2004. A simple method for parameterized verifica-
tion of cache coherence protocols. In Formal Methods in Computer-Aided Design. Lecture Notes in Computer Science,
Vol. 3312. Springer, 382-398. https://doi.org/10.1007/978-3-540-30494-4_27

[12] Michael Christensen, Timothy Sherwood, Jonathan Balkind, and Ben Hardekopf. 2021. Wire sorts: A language abstrac-
tion for safe hardware composition. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI’21). 175-189. https://doi.org/10.1145/3453483.3454037

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

https://doi.org/10.1145/2872362.2872414
https://doi.org/10.1145/1297666.1297670
https://doi.org/10.1145/196244.196577
http://www.jasper-da.com/products/jaspergold-apps/
https://doi.org/10.1109/ICGCS.2010.5543050
https://doi.org/10.1007/978-3-540-30494-4_27
https://doi.org/10.1145/3453483.3454037

89:22 H. Lu et al.

[13] D.Dill, A. Drexler, A. Hu, and C. Yang. 1992. Protocol verification as a hardware design aid. In Proceedings of the 1992
IEEE International Conference on Computer Design: VLSI in Computers and Processors. IEEE, Los Alamitos, CA, 522-525.
https://doi.org/10.1109/ICCD.1992.276232

[14] Bruno Dutertre. 2007. Formal modeling and analysis of the Modbus protocol. In Proceedings of the International Con-
ference on Critical Infrastructure Protection. 189—-204.

[15] Cindy Eisner, Irit Shitsevalov, Russ Hoover, Wayne Nation, Kyle Nelson, and Ken Valk. 2000. A methodology for
formal design of hardware control with application to cache coherence protocols. In Proceedings of the 37th Annual
Design Automation Conference (DAC’00). ACM, New York, NY, 724-729. https://doi.org/10.1145/337292.337757

[16] Hugues Evrard. 2020. Modeling the raft distributed consensus protocol in LNT. Electronic Proceedings in Theoretical
Computer Science 316 (April 2020), 15-39. https://doi.org/10.4204/eptcs.316.2

[17] J. Holzmann Gerard. 2003. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley Professional.

[18] Dimitra Giannakopoulou, Kedar S. Namjoshi, and Corina S. Pasareanu. 2018. Compositional reasoning. In Handbook
of Model Checking, Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem (Eds.). Springer,
345-383.

[19] Perumalla Giridhar and Priyanka Choudhury. 2019. Design and verification of AMBA AHB. In Proceedings of the 2019
1st International Conference on Advanced Technologies in Intelligent Control, Environment, Computing, and Communi-
cation Engineering (ICATIECE 19). IEEE, Los Alamitos, CA, 310-315.

[20] Vladimir Herdt, Hoang M. Le, Daniel Grof3e, and Rolf Drechsler. 2018. Towards fully automated TLM-to-RTL property
refinement. In Proceedings of the 2018 Design, Automation, and Test in Europe Conference and Exhibition (DATE’18).
1508-1511. https://doi.org/10.23919/DATE.2018.8342253

[21] Birgit Hofer, Radu Mateescu, Wendelin Serwe, and Franz Wotawa. 2018. Using LNT formal descriptions for model-
based diagnosis. In Proceedings of the 29th International Workshop on Principles of Diagnosis. 1-8.

[22] Bo Yuan Huang, Hongce Zhang, Aarti Gupta, and Sharad Malik. 2019. ILAng: A modeling and verification platform
for SoCs using instruction-level abstractions. In Tools and Algorithms for the Construction and Analysis of Systems.
Lecture Notes in Computer Science, Vol. 11427. Springer, 351-357.

[23] Bo-Yuan Huang, Hongce Zhang, Pramod Subramanyan, Yakir Vizel, Aarti Gupta, and Sharad Malik. 2018. Instruction-
level abstraction (ILA): A uniform specification for system-on-chip (SoC) verification. ACM Transactions on Design
Automation of Electronic Systems 24, 1 (Dec. 2018), Article 10, 24 pages. https://doi.org/10.1145/3282444

[24] IEEE. 2005. IEEE Standard for Property Specification Language (PSL). IEEE Standard 1850-2005. IEEE.

[25] Ranjit Jhala and Kenneth L. McMillan. 2001. Microarchitecture verification by compositional model checking. In Com-
puter Aided Verification. Lecture Notes in Computer Science, Vol. 2102. Springer, 396-410.

[26] Rajeev Joshi, Leslie Lamport, John Matthews, Serdar Tasiran, Mark Tuttle, and Yuan Yu. 2003. Checking cache-
coherence protocols with TLA+. Formal Methods in System Design 22, 2 (March 2003), 125-131. https://doi.org/10.
1023/A:1022969405325

[27] Zurab Khasidashvili, Marcelo Skaba, Daher Kaiss, and Ziyad Hanna. 2004. Theoretical framework for compositional
sequential hardware equivalence verification in presence of design constraints. In Proceedings of the IEEE/ACM Inter-
national Conference on Computer Aided Design (ICCAD’04). IEEE, Los Alamitos, CA, 58-65.

[28] Mallory Knodel and Niels ten Oever. 2020. Terminology, Power and Inclusive Language. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-knodel-terminology-02, accessed on: 2023-07.

[29] Leslie Lamport. 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-
Wesley Professional.

[30] Yongjian Li, Kaiqiang Duan, Yi Lv, Jun Pang, and Shaowei Cai. 2016. A novel approach to parameterized verification of
cache coherence protocols. In Proceedings of the 2016 IEEE 34th International Conference on Computer Design (ICCD’16).
560-567. https://doi.org/10.1109/ICCD.2016.7753341

[31] Xiaojun Liu. 1999. Formal specification and verification of a dataflow processor array. In Proceedings of the 1999
IEEE/ACM International Conference on Computer-Aided Design: Digest of Technical Papers (ICCAD’99). IEEE, Los Alami-
tos, CA, 494-499.

[32] Makai Mann. 2019. AXI Protocol Checker for the OH! Implementation of the AXI Protocol. Retrieved November 26,
2019 from https://github.com/upscale-project/case-studies/tree/master/axi

[33] Panagiotis Manolios and Sudarshan Srinivasan. 2008. A refinement-based compositional reasoning framework for
pipelined machine verification. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 16 (2008), 353-364.
https://doi.org/10.1109/TVLSI.2008.918120

[34] Panagiotis Manolios and Sudarshan K. Srinivasan. 2005. A complete compositional reasoning framework for the effi-
cient verification of pipelined machines. In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design (ICCAD’05). https://doi.org/10.1109/ICCAD.2005.1560183

[35] C. Mattarei, M. Mann, C. Barrett, R. G. Daly, D. Huff, and P. Hanrahan. 2018. CoSA: Integrated verification for ag-
ile hardware design. In Proceedings of 2018 International Conference on Formal Methods in Computer-Aided Design
(FMCAD’18). 1-5. https://doi.org/10.23919/FMCAD.2018.8603014

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

https://doi.org/10.1109/ICCD.1992.276232
https://doi.org/10.1145/337292.337757
https://doi.org/10.4204/eptcs.316.2
https://doi.org/10.23919/DATE.2018.8342253
https://doi.org/10.1145/3282444
https://doi.org/10.1023/A:1022969405325
https://datatracker.ietf.org/doc/html/draft-knodel-terminology-02
https://doi.org/10.1109/ICCD.2016.7753341
https://github.com/upscale-project/case-studies/tree/master/axi
https://doi.org/10.1109/TVLSI.2008.918120
https://doi.org/10.1109/ICCAD.2005.1560183
https://doi.org/10.23919/FMCAD.2018.8603014

SoC Protocol Implementation Verification Using ILA Specifications 89:23

(36]
(37]

(38]

(39]

(40]

(41]

[42

—

(43]

[44

[l

(45

=

[46

—

(47]

(48]

(49]

(50]

[51]

[52

—

(53]

[54]

(55]
[56]

(57]

Kenneth L. McMillan. 1997. A compositional rule for hardware design refinement. In Computer Aided Verification.
Lecture Notes in Computer Science, Vol. 1254. Springer, 24-35.

M. N. Mneimneh and K. A. Sakallah. 2005. Principles of sequential-equivalence verification. IEEE Design & Test of
Computers 22, 3 (2005), 248-257. https://doi.org/10.1109/MDT.2005.68

Kedar S. Namjoshi and Richard J. Trefler. 2016. Parameterized compositional model checking. In Tools and Algorithms
for the Construction and Analysis of Systems. Lecture Notes in Computer Science, Vol. 9636. Springer, 589-606. https://
doi.org/10.1007/978-3-662-49674-9_39

Minh D. Nguyen, Max Thalmaier, Markus Wedler, Jorg Bormann, Dominik Stoffel, and Wolfgang Kunz. 2008. Un-
bounded protocol compliance verification using interval property checking with invariants. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 27, 11 (2008), 2068-2082.

Minh D. Nguyen, Max Thalmaier, Markus Wedler, Dominik Stoffel, Wolfgang Kunz, and Jorg Bormann. 2009. A re-use
methodology for formal SoC protocol compliance verification. In Proceedings of the 2009 Forum on Specification and
Design Languages (FDL’09). IEEE, Los Alamitos, CA, 1-6.

Minh D. Nguyen, Max Thalmaier, Markus Wedler, Dominik Stoffel, Wolfgang Kunz, and Jérg Bormann. 2009. A re-use
methodology for formal SoC protocol compliance verification. In Proceedings of the 2009 Forum on Specification and
Design Languages (FDL’09). IEEE, Los Alamitos, CA, 1-6.

Rishiyur Nikhil. 2004. Bluespec System Verilog: Efficient, correct RTL from high level specifications. In Proceedings of
the 2nd ACM/IEEE International Conference on Formal Methods and Models for Co-Design (MEMCODE’04). 1EEE, Los
Alamitos, CA, 69-70.

John O’Leary, Murali Talupur, and Mark R. Tuttle. 2009. Protocol verification using flows: An industrial experience. In
Proceedings of the 2009 International Conference on Formal Methods in Computer-Aided Design (FMCAD’09). 172-179.
https://doi.org/10.1109/FMCAD.2009.5351126

Andreas Olofsson, Roman Trogan, Fred Huettig, Ola Jeppsson, and Peter Saunderson. 2016. Epiphany eLink AXI.
Retrieved November 26, 2019 from https://github.com/aolofsson/oh/tree/master/axi

Preeti Ranjan Panda. 2001. SystemC: A modeling platform supporting multiple design abstractions. In Proceedings of
the 14th International Symposium on Systems Synthesis. 75-80.

Laurence Pierre. 2021. Refinement rules for the automatic TLM-to-RTL conversion of temporal assertions. Integration
76 (2021), 190-204.

Paul Regnier, George Lima, and Aline Andrade. 2009. A TLA+ formal specification and verification of a new real-time
communication protocol. Electronic Notes in Theoretical Computer Science 240 (2009), 221-238. https://doi.org/10.1016/
j-entcs.2009.05.054

Frank Rogin, Thomas Klotz, Gorschwin Fey, Rolf Drechsler, and Steffen Rulke. 2008. Automatic generation of complex
properties for hardware designs. In Proceedings of the 2008 Design, Automation, and Test in Europe Conference and
Exhibition (DATE’ 08). 545-548. https://doi.org/10.1109/DATE.2008.4484908

Adam Rose, Stuart Swan, John Pierce, and Jean-Michel Fernandez. 2005. Transaction level modeling in SystemC. Open
SystemC Initiative 1 (2005), 1-17.

Abhik Roychoudhury, Tulika Mitra, and Satyanarayana R. Karri. 2003. Using formal techniques to debug the AMBA
system-on-chip bus protocol. In Proceedings of the 2003 Design, Automation, and Test in Europe Conference and Exhibi-
tion (DATE’03). IEEE, Los Alamitos, CA, 828-833.

Murali Talupur and Mark R. Tuttle. 2008. Going with the flow: Parameterized verification using message flows. In
Proceedings of the 2008 International Conference on Formal Methods in Computer-Aided Design (FMCAD’08). 1-8. https:
//doi.org/10.1109/FMCAD.2008.ECP.14

Michael Bedford Taylor. 2018. INVITED: Basejump STL: SystemVerilog needs a standard template library for hardware
design. In Proceedings of the 55th Annual Design Automation Conference (DAC’18). 1-6. https://doi.org/10.1109/DAC.
2018.8465909

C. A.]J. Van Eijk. 2000. Sequential equivalence checking based on structural similarities. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 19, 7 (2000), 814-819.

Shobha Vasudevan, David Sheridan, Sanjay Patel, David Tcheng, Bill Tuohy, and Daniel Johnson. 2010. GoldMine:
Automatic assertion generation using data mining and static analysis. In Proceedings of the 2010 Design, Automation,
and Test in Europe Conference and Exhibition (DATE’10). 626—-629. https://doi.org/10.1109/DATE.2010.5457129
Muralidaran Vijayaraghavan, Adam Chlipala, and Nirav Dave. 2015. Modular deductive verification of multiprocessor
hardware designs. In Computer Aided Verification. Lecture Notes in Computer Science, Vol. 9207. Springer, 109-127.
Thuy Duong Vu, Li Zhang, and Chris Jesshope. 2008. The verification of the on-chip COMA cache coherence protocol.
In Proceedings of the International Conference on Algebraic Methodology and Software Technology. 413-429.

Phillip J. Windley. 1995. Formal modeling and verification of microprocessors. IEEE Transactions on Computers 44, 1
(1995), 54-72.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

https://doi.org/10.1109/MDT.2005.68
https://doi.org/10.1007/978-3-662-49674-9_39
https://doi.org/10.1109/FMCAD.2009.5351126
https://github.com/aolofsson/oh/tree/master/axi
https://doi.org/10.1016/j.entcs.2009.05.054
https://doi.org/10.1109/DATE.2008.4484908
https://doi.org/10.1109/FMCAD.2008.ECP.14
https://doi.org/10.1109/DAC.2018.8465909
https://doi.org/10.1109/DATE.2010.5457129

89:24 H. Lu et al.

[58] Yue Xing, Huaixi Lu, Aarti Gupta, and Sharad Malik. 2021. Leveraging processor modeling and verification for gen-
eral hardware modules. In Proceedings of the 2021 Design, Automation, and Test in Europe Conference and Exhibition
(DATE’21). 1-6.

[59] Yue Xing, Huaixi Lu, Aarti Gupta, and Sharad Malik. 2022. Compositional verification using a formal component

and interface specification. In Proceedings of the 2022 IEEE/ACM International Conference on Computer Aided Design
(ICCAD’22).

Received 26 January 2023; revised 29 May 2023; accepted 8 July 2023

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 6, Article 89. Pub. date: October 2023.

