Counting Clean Words According to the Number of Their Clean Neighbors

Shalosh B. EKHAD and Doron ZEILBERGER

> In fond memory of Marko Petkovšek (1955-2023), a great summer and enumerator

Preface

Our good friend and collaborate, Marko Petkovšek ([PWZ]), passed away on March 23, 2023, and we already wrote a eulogy $[\mathrm{Z}]$, and donated to the Online Encyclopedia of Integer Sequences in his memory (See https://oeisf.org/donate and search for Petkovsek). However we believe that we can do more than that to commemorate Marko. We looked through his list of publications, and found the delightful article [KMP] by Marko, joint with Sandi Klavz̆ar and Michel Mollard, and realized that the beautiful methodology that they used to solve one very specific enumeration problem is applicable to a wide class of enumeration problems of the same flavor. More important, since Marko was such an authority in symbolic computation, we decided to implement the method, and wrote a Maple package
https://sites.math.rutgers.edu/~zeilberg/tokhniot/Marko.txt ,
that can very fast answer these kind of questions. In particular as we will soon see, Theorem 1.1 of [KMP] can be gotten (in its equivalent form in terms of generating functions stated as $f(x, y)$ on top of p . 1321) by typing

WtEs ($\{0,1\},\{[1,1]\}, y, x, 3) ; \quad$.
Our Maple package, Marko.txt, gives, in 0.057 seconds, the answer

$$
-\frac{x^{2} y^{2}-x^{2} y-x y-1}{x^{3} y^{2}-x^{3} y-x^{2} y-x y+1} .
$$

The Problem Treated so Nicely by Klavžar, Mollard, and Petkovšek

There are 2^{n} vertices in the n-dimensional unit cube $\{0,1\}^{n}$ and every such vertex has exactly n neighbors (i.e. vertices with Hamming distance 1 from it). The Fibonacci lattice consists of those vertices whose 01 vector avoids two consecutive 1 s , in other words of words in the alphabet $\{0,1\}$ avoiding as a consecutive subword the two-letter word 11. Such words are called Fibonacci words, and there are, not surprisingly, F_{n+2} of them (why?).

Each such word has n neighbors, but some of them are not Fibonacci words. The question answered so elegantly in [KMP] was:

For any given n and k, How many Fibonacci words of length n are there that have exactly k Fibonacci neighbors? Calling this number $f_{n, k},[\mathrm{KMP}]$ derived an explicit expression for it, that is
equivalent to the generating function (that they also derived)

$$
f(x, y)=\sum_{n, k \geq 0} f_{n, k} x^{n} y^{k}=-\frac{x^{2} y^{2}-x^{2} y-x y-1}{x^{3} y^{2}-x^{3} y-x^{2} y-x y+1}
$$

They also considered the analogous problem for Lucas words that consists of Fibonacci words where the first and last letter can't both be 1. This problem is also amenable to far-reaching generalization, but will not be handled here.

The general Problem

Input:

- A finite alphabet A (In the $[\mathrm{KMP}]$ case $A=\{0,1\})$.
- A finite set of words M, (of the same length) in the alphabet A. (In the [KMP] case M is the singleton set $\{11\}$).

Definition: A word in the alphabet A is called clean if it does not have, as consecutive substring, any of the members of M.

In other words writing $w=w_{1} \ldots w_{n}$, a word is dirty if there exists an i such that $w_{i} w_{i+1} \ldots w_{i+k-1} \in$ M. For example if $A=\{1,2,3\}$ and $M=\{123,213\}$, then 12212312 is dirty while 111222333 is clean.

To get the set of clean words of length n in the alphabet A and set of 'mistakes' M , type, in Marko.txt,
CleanWords (A, M, n) ;

For example, to get the Fibonacci words of length 3 type:
CleanWords $(\{0,1\},\{[1,1]\}, 3)$; , getting:
$\{[0,0,0],[0,0,1],[0,1,0],[1,0,0],[1,0,1]\}$.
The problem of the straight enumeration of clean words is handled very efficiently via the GouldenJackson cluster algorithm [NZ], but it is not suitable for the present problem of weighted enumeration.

Definition: Two words of the same length in the alphabet A are neighbors if their Hamming distance is 1 , in other words, $u=u_{1} \ldots u_{n}$ and $v=v_{1} \ldots v_{n}$ are neighbors if there exists a location r such $u_{i}=v_{i}$ if $i \neq r$ and $u_{r} \neq v_{r}$.

For example if $A=\{1,2,3\}$, the set of neighbors of 111 is

$$
\{211,311,121,131,112,113\}
$$

Obviously every word of length n in the alphabet A has $n \cdot(|A|-1)$ neighbors.
However, if w is a clean word, some of its neighbors may be dirty, so if there is one typo, it can become dirty, and that would be embarrassing (Oops, embarrassing is already dirty). While the word, duckling is clean, not all its neighbors are clean.

To see the number of clean neighbors of a word w in the alphabet A and set of mistakes M, type
$\operatorname{NCN}(w, A, M)$;
Output: Having fixed the (finite) alphabet A, and the finite set of forbidden substrings M (all of the same length), let $f_{n, k}$ be the number of clean words in the alphabet A of length n having k clean neighbors. Compute the bi-variate generating function

$$
f(x, y):=\sum_{n, k \geq 0} f_{n, k} x^{n} y^{k} .
$$

It would follow from the algorithm (inspired by the methodology of [KMP], but vastly generalized) that this is always a rational function of x and y.

This is implemented in procedure
WtEs(A, M, y, x, MaxK),
where MaxK is a 'maximum complexity parameter'. See the beginning of this article for the case treated in [KMP]. For a more complicated example, where a word is clean if it avoids the substrings 000 and 111, type

WtEs ($\{0,1\},\{[1,1,1],[0,0,0]\}, y, x, 5)$;
getting, immediately:
$\frac{2 x^{5} y^{4}-4 x^{5} y^{3}+2 x^{5} y^{2}-2 x^{4} y^{3}+4 x^{4} y^{2}-2 x^{4} y-y^{2} x^{3}+2 x^{3} y-4 x^{2} y^{2}-x^{3}+2 x^{2} y+x^{2}-2 x y+x-1}{y^{2} x^{3}-x^{3}+x^{2}+x-1}$.

If you want to keep track of the individual letters, rather than just the length, use the more general procedure

WtEg(A, M, x,y,t,MaxK).

Reverse-Engineering the beautiful Klavz̆ar-Mollard-Petkovšek Proof and Vastly Generalizing It

In fact, the authors of [KMP] proved their results in two ways, and only the second way used generatingfunctionology. Even that part argued directly in terms of the (double) sequence $f_{n, k}$ itself, and only at the end of the day, took the (bi-variate) generating function.

A more efficient, and streamlined, approach is to forgo the actual bi-sequence and operate directly with weight-enumerators. Let $\mathcal{C}(A, M)$ be the ('infinite') set of words in the alphabet A, avoiding, as consecutive substrings, the members of M, and for each word w in $\mathcal{C}(A, M)$, define the weight, Weight (w) by

$$
W e i g h t(w)=x^{\operatorname{length}(w)} y^{N C N(w)} .
$$

For example, for the original case of $A=\{0,1\}$ and $M=\{11\}$,

$$
W \operatorname{eight}(10101)=x^{5} y^{3} .
$$

We are interested in the weight-enumerator

$$
f(x, y):=W \operatorname{eight}(\mathcal{C}(A, M))=\sum_{w \in \mathcal{C}(A, M)} W \operatorname{eight}(w) .
$$

Once you have it, and you are interested in a specific $f_{n, k}$, all you need is to take a Taylor expansion about $(0,0)$ and extract the coefficient of $x^{n} y^{k}$.

Let $\mathcal{C}(A, M)^{(i)}$ be the subset of $\mathcal{C}(A, M)$ of words of length i, and pick a positive integer k. For any word $v \in \mathcal{C}(A, M)^{(k)}$, let $\mathcal{C}_{v}(A, M)$ be the set of words in $\mathcal{C}(A, M)$ of length $\geq k$ that start with v. Obviously

$$
\mathcal{C}(A, M)=\bigcup_{i=0}^{k-1} \mathcal{C}(A, M)^{(i)} \cup \bigcup_{v \in \mathcal{C}(A, M)^{(k)}} \mathcal{C}(A, M)_{v}
$$

We can decompose $\mathcal{C}(A, M)_{v}$ as follows

$$
\mathcal{C}(A, M)_{v}=\bigcup_{a \in A} \mathcal{C}(A, M)_{v a}
$$

where, of course $\mathcal{C}(A, M)_{v a}$ is empty if appending the letter a turns the clean v into a dirty word. Now, writing $v=v_{1} \ldots v_{k}$, and for $a \in A$ the computer verifies whether the difference

$$
N C N\left(v_{1} \ldots v_{k} a w\right)-N C N\left(v_{2} \ldots v_{k} a w\right)
$$

is always the same, for any $v_{1} \ldots v_{k} a w \in \mathcal{C}\left(A_{M}\right)_{v a}$. The way we implemented it is to test it for sufficiently long words, and then in retrospect have the computer check it 'logically', by looking the at the difference in the number of clean neighbors that happens by deleting the first letter v_{1}. Let's call this constant quantity $\alpha(v, a)$.

It follows that we have a system of $\left|\mathcal{C}(A, M)^{(k)}\right|$ equations with $\left|\mathcal{C}(A, M)^{(k)}\right|$ unknowns.

$$
W \operatorname{eight}\left(\mathcal{C}(A, M)_{v}\right)=\sum_{\substack{a \in A \\ v a \in \mathcal{C}(A, M)}} x y^{\alpha(v, a)} W \operatorname{eight}\left(\mathcal{C}(A, M)_{v_{2} \ldots v_{k-1} a}\right)
$$

After the computer algebra system (Maple in our case) automatically found all the $\alpha(v, a)$, and set up the system of equations, we kindly asked it to solve it, getting certain rational functions of x and y. Finally, our object of desire, $f(x, y)$, is given by

$$
W e i g h t(\mathcal{C}(A, M))=\sum_{i=0}^{k-1} W \operatorname{eight}\left(\mathcal{C}(A, M)^{(i)}\right)+\sum_{v \in \mathcal{C}(A, M)^{(k)}} W \operatorname{eight}\left(\mathcal{C}(A, M)_{v}\right) .
$$

This is implemented in procedure WtEs (A, M, y, x, MaxK).
If you also want to keep track of the individual letters, having the variable t take care of the length, the equations are

$$
W \operatorname{eight}\left(\mathcal{C}(A, M)_{v}\right)=\sum_{\substack{a \in A \\ v a \in \mathcal{C}(A, M)}} x_{v_{1}} t y^{\alpha(v, a)} W \operatorname{eight}\left(\mathcal{C}(A, M)_{v_{2} \ldots v_{k-1} a}\right)
$$

This is implemented in procedure $\operatorname{WtEg}(\mathrm{A}, \mathrm{M}, \mathrm{x}, \mathrm{y}, \mathrm{t}, \mathrm{MaxK})$.

Sample output

- If you want to see the bi-variate generating functions for words in the alphabet $\{0,1\}$, avoiding i consecutive occurrences of 1 , for $2 \leq i \leq 6$, see
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oMarko1.txt .
Note that the original case was $i=2$.
- If you want to see the bi-variate generating functions for words in the alphabet $\{0,1\}$, avoiding i consecutive occurrences of 1 , and i consecutive occurrences of 0 , for $3 \leq i \leq 6$, see
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oMarko2.txt .
- If you want to see all such generating functions (still with BINARY words) for all possible SINGLE patterns of length $3,4,5$ (up to symmetry), look at:
https://sites.math.rutgers.edu/~zeilberg/tokhniot/oMarko3.txt .
The front of this article contains numerous other output files, but you dear reader, can generate much more!

Conclusion

The value of the article [KMP], that inspired the present article, is not so much with the actual result, that in hindsight, thanks to our Maple package, is trivial, but in the human-generated ideas and methodology that enabled one of us to generalize it to a much more general framework.

References

[KMP] Sandi Klavz̆ar, Michel Mollard and Marko Petkovs̆ek, The degree sequence of Fibonacci and Lucas cubes, Discrete Math. 311 (2011) 1310-1322.
https://www-fourier.ujf-grenoble.fr/~mollard/soumis/DegSeqSubmit.pdf
[NZ] John Noonan and Doron Zeilberger, The Goulden-Jackson Cluster Method: Extensions, Applications, and Implementations, J. Difference Eq. Appl. 5 (1999), 355-377.
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/gj.html
[PWZ] Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger, " $A=B$ ", A.K. Peters, 1996.
https://www2.math.upenn.edu/~wilf/AeqB.pdf.
[Z] Doron Zeilberger, Marko Petkos̆vs̆ek (1955-2023), My $A=B$ Mate, Personal Journal of Shalosh B. Ekhad and Doron Zeilberger, April 14, 2023.
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/mpm.html

Shalosh B. Ekhad, c/o D. Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.
Email: ShaloshBEkhad at gmail dot com.

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill CenterBusch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.
Email: DoronZeil at gmail dot com .

April 21, 2023.

