
OpenPitonOptimizations Towards High PerformanceManycores
Neiel Leyva∗†, Alireza Monemi∗, Noelia Oliete-Escuín∗†, Guillem López-Paradís∗†,

Xabier Abancens∗, Jonathan Balkind§, Enrique Vallejo‡, Miquel Moretó∗†, Lluc Alvarez∗
∗Barcelona Supercomputing Center, Barcelona, Spain. †Universitat Politècnica de Catalunya, Barcelona, Spain

‡Universidad de Cantabria, Santander, Spain. §UC Santa Barbara, California, United States
{neiel.leyva,alireza.monemi,noelia.oliete,guillem.lopez,xabier.abancens,miquel.moreto,lluc.alvarez}@bsc.es

jbalkind@ucsb.edu,enrique.vallejo@unican.es

ABSTRACT
In recent years, numerousmulticoreRISC-Vplatformshave emerged.
Within the RISC-V ecosystem, Networks-on-Chip (NoCs) such as
OpenPiton are employed in designs that aim to scale to a large num-
berof cores.Thispaperpresents a set of extensions andoptimizations
to OpenPiton for high-performance manycores. The key contribu-
tions are enabling multiple memory controllers, supporting router
bypassing and NoC concentration, and adding support for config-
urable cache sizes and cache block sizes. On a 64-core manycore
architecture, these new features and optimizations provide a geo-
metric mean speedup of 6.5x compared to the OpenPiton baseline.

CCS CONCEPTS
•Computer systems organization→ Interconnection archi-
tectures;Multicore architectures; •Hardware→Networking
hardware; Buses and high-speed links.

KEYWORDS
Network-on-chip, OpenPiton, high-performance computing

ACMReference Format:
Neiel Leyva, Alireza Monemi, Noelia Oliete-Escuín, Guillem López-Paradís,
Xabier Abancens, Jonathan Balkind, Enrique Vallejo, Miquel Moretó and
Lluc Alvarez. 2023. OpenPiton Optimizations Towards High Performance
Manycores. In 16th edition of International Workshop on Network on Chip
Architectures (NoCArc ’23), October 28, 2023, Toronto, ON, Canada.ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3610396.3623265

1 INTRODUCTION
Multicore processors have dominated the landscape of high perfor-
mance computer architecture for many years. Industry led the way
during the early days of the multicore era, with numerous vendors
designing and fabricating multicore processors, while academia
heavily studied multicores using software simulators and modelling
tools. This trendhas changed in recent years thanks to the emergence
of RISC-V, which has drastically facilitated designing cores both in
industry and academia. In addition, multiple tools and frameworks

NoCArc ’23, October 28, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
https://doi.org/10.1145/3610396.3623265

have been developed within the RISC-V ecosystem, which allows
designing multicore processors in an easy and practical manner.

NoCs are a key component of multicore processors. The purpose
of the NoC is to interconnect multiple cores and the memory hier-
archy, allowing efficient data transfer between them. Within the
RISC-V ecosystem, NoCs are employed in large-scale multicores or
manycores such as OpenPiton [3], BlackParrot [16], and the ESP
open SoC platform [12], while simpler crossbar communication is
utilized in platforms such as lowRISC [5] and PULP [17], which pri-
marily target applications for the Internet-of-Things (IoT) and put
special emphasis on low power consumption.

OpenPiton has received a lot of attention as a development plat-
form for creatingmanycore processors due to the benefits it provides.
OpenPiton is open source, easy to use, highly scalable and config-
urable, it provides a mature tool ecosystem with Linux support, it
is easily synthesizable to FPGA and ASIC, and it provides a large
test suite. However, as it focuses on a general userbase, OpenPiton’s
NoC and memory hierarchy do not include certain features and
characteristics typically found in high-performance manycores.

This paper presents a set of extensions and optimizations to the
NoC and thememory hierarchy of OpenPiton. These extensions and
optimizations are specifically aimed at improving the performance
of large-scale multicore andmanycore architectures. The key contri-
butions are (i) adding the capability to including multiple memory
controllers in the chip to increase the memory bandwidth of the
system, (ii) adding router bypassing and NoC concentration features
to reduce the latency of core communications and data transfers
inside the NoC, and (iii) adding support for configurable cache sizes
and cache block sizes in the cache hierarchy to improve its efficiency.
Compared to the OpenPiton baseline, the combination of these new
features and optimizations provides a geometric mean speedup of
6.5x on a 64-core manycore architecture.

2 BACKGROUNDANDMOTIVATION
Originally, OpenPiton was developed for SPARC v9 architectures
(OpenSPARC T1); however, in recent projects, the platform has been
adapted to work with RISC-V architectures [4, 9, 10].

The OpenPiton architecture consists of a single chipset and mul-
tiple tiles. The chipset handles tile-to-peripheral communication,
featuring several modules like bootrom, memory controller, and
UART. The tiles construct the multicore mesh, connecting tiles via
three physical NoCs. Each tile contains the cache hierarchy (private
and shared cache levels), the three NoC routers, and the core. The
tiles can feature cores with different architectures, including RISC-V
32-bit, RISC-V 64-bit, x86, and SPARCv9 [2].

1

© Owner/Author | ACM 2023. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in: Neiel Leyva, Alireza Monemi, Noelia Oliete-Escuín, Guillem López-Paradís, Xabier Abancens, Jonathan Balkind, Enrique Vallejo,
Miquel Moretó, and Lluc Alvarez. 2023. OpenPiton Optimizations Towards High Performance Manycores. In Proceedings of the 16th International Workshop
on Network on Chip Architectures (NoCArc '23). Association for Computing Machinery, New York, NY, USA, 27–33.
http://dx.doi.org/10.1145/3610396.3623265

https://doi.org/10.1145/3610396.3623265
https://doi.org/10.1145/3610396.3623265

NoCArc ’23, October 28, 2023, Toronto, ON, Canada

2.1 OpenPiton and RISC-V Architectures
BYOC [2] enables implementationwith different architectures using
the Transaction-Response Interface (TRI). This interface enables
connecting different types of cores to OpenPiton. TRI supports cores
with or without private cache levels, a configuration that has been
followed in the integration of RISC-V cores.

Under TRI, cores with private caches must have an instruction
cache, a write-through data cache, and (for application-class cores)
an MMU. The MMUmust be compliant with the specific core archi-
tecture to perform address translation. Cores without private cache
levels nor MMU can be directly connected to the TRI, though such
cores are not typically composed into cache-coherent manycores.

2.2 OpenPiton CacheHierarchy
The OpenPiton framework provides a slice of the shared L2 cache
and a private cache level named L1.5 per tile. The shared L2 cache
serves as the point of coherence and it implements a directory-based
MESI coherence protocol. The default L2 cache configuration is 64KB
per slice, 4-way set-associative with 64B cache blocks.

The L1.5 cache is a Physically Indexed Physically Tagged (PIPT)
write-back cache connected to the L2 cache through NoC routers.
The L1.5 cache implements TRI, managing core requests for data,
instructions, and atomic operations. Notably, the L1.5 cache does not
cache instruction memory blocks. The default L1.5 cache configu-
ration is 8KB capacity, 4-way set-associative with 16B cache blocks.

2.3 OpenPitonMemory Controller
OpenPiton implements a memory controller inside the chipset mod-
ule. The platform can scale the number of tile modules, but not the
number of chipsets normemory controllers. Being limited to a single
memory controller can cause bottlenecks, especially in medium to
large systems. In addition, OpenPiton uses a simplistic simulation
model for the memory controller in which all the memory requests
(read andwrite) are servedwith a fixed latency of a single clock cycle.

By default, the chipset links to the west port of tile 0, which is lo-
cated in the northwestmesh corner. Consequently,memory requests
must traverse the entire NoC to access the memory controller con-
nected to tile 0. This setup can pose drawbacks in large systems, po-
tentially leading to largememory access latency andNoCcongestion.

2.4 OpenPiton NoCRouters
OpenPiton tiles are interconnected using three NoCs in a 2Dmesh
topology. Pairs of adjacent routers are interconnected using two 8-
Byte uni-directional links. These links use credit-based flow control,
and packets are routed using dimension-ordered wormhole routing.
OpenPiton routers have a single-cycle latency when packets are
moved in the same direction and a two-cycle pipeline latency when
the packet involves any turn.

OpenPiton NoC packets implement a header flit and they require
data serialization. Three flits are injected into the NoC to transfer
a 16-Byte block of data from the L2 shared memory to the private
caches. For 32-Byte requests from the instruction caches, five flits
are required.

Tile Tile

Tile Tile

Brom
UART
PLIC

Chipset

ProNoC

Core
L1

$I

L2
slice

L1

$D

Tile
M.CTRL

CLINT
...

M.CTRL

M.CTRL M.CTRL

Figure 1: OpenPiton architecture upgradedwith new features.
Newmodules aremarked in red and optimizedmodules are
marked in orange.

2.5 OpenPiton andHPCRequirements
Compared with commercially available manycore architectures,
OpenPiton has performance limitations that can impact its ability to
execute computationally intensive tasks. Some of the limitations are:

Memoryhierarchy:OpenPitonprocessors facememoryconstraints
due tomemorycontroller andcache settings.The singlememorycon-
troller can bottleneck data flow from themainmemorywhen all tiles
handle large amounts of data. Enablingmultiplememory controllers
can enhance memory bandwidth per tile and address this limitation.
Improving cache sizes and block sizes also improves performance.

NoC latency: This communication delay can severely impact per-
formance, necessitating low-latency NoC design for large systems.
Employing multi-hop bypass and increasing NoC concentration are
techniques to decrease data transmission hops and lower average
communication latency.

Improving these features is critical to increasing the performance
of OpenPiton in large-scale multicore architectures.

3 NOCANDCACHEHIERARCHY
OPTIMIZATIONS FORHIGH PERFORMANCE

This section presents the modifications and optimizations made in
OpenPiton. Our aim is to customize the design for high-performance
multicores. Figure 1 visually summarizes the key improvements,
showcasing the original OpenPiton modules alongside highlighted
additions and modifications. New modules are marked in red and
optimized ones are marked in orange. They are described next.

3.1 Adapted Core Tile Using BYOC
Following the BYOC [2] methodology, we first change the core tile
to explore OpenPiton without performance decline or compatibility
issues arising from the use of foreign caches or cache modifications.
Figure 2 depicts the architecture of the core tile. Note that the core
tile has a single L1 data cache, instead of the two private data cache
levels (L1 and L1.5) in the original OpenPiton. In our core tile we
remove the the L1 data cache of OpenPiton and we use its L1.5 cache
directly as the L1 data cache.

3.1.1 Core. The core tile incorporates a core calledDVINO [6]. This
core is a 6-stage single-issue, in-order architecture, alongside a two-
lane vector processor unit. The core implements the 64-bit RV64G
scalar RISC-V ISA v2.2 and privileged ISA v1.11.

2

OpenPiton Optimizations Towards High PerformanceManycores NoCArc ’23, October 28, 2023, Toronto, ON, Canada

NoC
Request

NoC
Data

NoC
Ack.

L1 Data
Cache

(formerly L1.5)Data Cache
interface

dTLB

PTW

L1 Instruction
Cache

iTLB

Core Tile

Fetch
Stage

Decode
Stage

Register
Stage

Execution
Stage

Write-Back
Stage

RISC-V
Core

Figure 2: Architecture of the core tile using BYOC.

3.1.2 Instruction Cache. The core tile features a 16KB Virtually In-
dexed Physically Tagged (VIPT) instruction cache with a two-cycle
hit latency. The address translation process is managed internally
within the instruction cache. The instruction cache has a direct link
to the L2 cache via traffic arbitrators. This is different than the default
OpenPiton, where instructions are not cached in the L1.5 cache but
the instruction requests are still sent through the L1.5 cache.

3.1.3 MMU. The core tile includes an SV39 MMU compatible with
RISC-V architectures. It comprises two 8-entry Translation Looka-
side Buffers (TLBs) and one Page TableWalker (PTW). The updates
to the dirty and access bits are handled by hardware.

3.1.4 Data Cache Interface. This module is the primary glue logic
responsible for directly connecting the RISC-V core’s Load-Store
Unit (LSU) to the TRI. The data cache interface facilitates communi-
cation with the MMU; address translation is handled before sending
a request to the L1 data cache. Additionally, this module handles
exceptions generated by the MMU and exceptions related to mis-
aligned addresses. The PTWneeds to be connected to the data cache
to request Page Table Entries (PTE) and update dirty and access bits.
An arbiter handles requests from the PTW and the core to the TRI.

3.1.5 NoC interface. The modified interface allows direct instruc-
tion cache access to routers. An arbiter in the NoC request encoder
prioritizes instruction cache requests, while another arbiter in the
NoC data decoder manages deliveries between instruction and data
caches. Instructionmemoryblocks solely reach the instruction cache,
while other responses target the data cache.

3.2 EnablingMultipleMemory Controllers
The first optimization we propose is the capability to configure the
number of memory controllers. In state-of-the-art large-scale multi-
cores the memory wall can pose a challenge if memory bandwidth is
not scaledproportionally to thenumberof tiles.Consequently, to pre-
vent the saturation of memory bandwidth, high-performance mul-
ticores typically incorporate multiple memory controllers per chip.

WemodifyOpenPiton to allowaparameterizable number ofmem-
ory controllers that are directly connected to the tiles at the edges of
the mesh. The memory controllers are equally distributed across the
edges of the mesh (north, south, east, and west). Furthermore, the L2
module is modified to route main memory requests to the memory
controller, taking into account the minimumManhattan distance.
Each memory controller is assigned an equal number of L2 modules
to manage. Moreover, an input buffer module with a configurable
pipeline latency is integrated into the memory model for a more
realistic memory controller simulation. This enables studying the
impact of different memory latencies on system performance.

3.3 Optimization of NoCRouters
Thesecondoptimizationweperformis the integrationofProNoC[15]
routers into OpenPiton. Interconnection latency is a significant fac-
tor that can impact overall performance, and it is essential to keep
it as low as possible. ProNoC introduces advanced features aimed
at optimizing interconnection latency. One such feature is multihop-
bypass [14], which enables injected flits to bypassmultiple routers in
a single cycle, effectively reducing the overall latency. Additionally,
we also leverage another ProNoC feature: increasing NoC concen-
tration. This approach reduces the number of intermediate nodes or
routers between cores, thereby diminishing communication latency,
particularly in scenarios with low congested traffic.

3.4 Improved Cache Configurability
The third optimization consists of improving the cache configurabil-
ity ofOpenPiton. In particular,we add the capability to automatically
configure the cache sizes and the cache block sizes, sowe can explore
the impact of these two parameters and find optimal configurations
for different design targets and constraints.

3.4.1 Cache sizes. OpenPiton offers cache size configuration flags
that can be specified when building the model. The sizes of the
SRAMs, the block indexing logic, and the tag selection logic of the
caches adapt to the specified cache sizes. However, the cache replace-
ment logic and the L2 address interleaving logic require manual
adjustment in OpenPiton when changing the cache sizes, or else
there will be unbalanced utilization of cache ways and L2 slices. To
address this issue, we modify the cache replacement logic and the
L2 address interleaving logic of the OpenPiton caches so that they
automatically adapt to the cache size.

3.4.2 Cache Block Sizes. OpenPiton uses different cache block sizes
in its cachehierarchy.TheL1 instruction cacheuses 32Bcacheblocks,
the L1 data cache and the L1.5 cache use 16B cache blocks, while the
L2 cache employs 64B cache blocks. To increase the performance of
the private data cache levels, we develop a configurable design that
enables use of cache block sizes of 16B or 64B in the L1 data cache
and the L1.5 cache. Implementing this feature requires adjusting the
cache pipelines and the NoC channels.

4 EXPERIMENTALMETHODOLOGY
In this section, we provide a comprehensive overview of the tools,
benchmarks and development platforms employed to evaluate our
work, aswell as themethodology used to accelerate RTL simulations.

4.1 Benchmarks
Weuse a set of bare-metal benchmarks to evaluate the proposed opti-
mizations. These benchmarks are selected from the RISC-V tests [7],
the LMbench [13] and the NAS Parallel Benchmarks [1] suites. Ta-
ble 1 shows the benchmarks categorized into three main groups.

Group a) comprises the four kernels of the Stream benchmark,
which is aimed at evaluating memory bandwidth. These kernels
perform different operations on large data vectors that exceed the
cache sizes, and they feature a linear access pattern without data
reuse, highlighting their absence of temporal locality.

3

NoCArc ’23, October 28, 2023, Toronto, ON, Canada Neiel Leyva et al.

Table 1: Benchmarks used in the evaluation.

Benchmark Size (MB) Description

a)

copy 128 Vector operation ®𝐶 = ®𝐴
scale 128 Vector operation ®𝐵=𝑘× ®𝐶
add 128 Vector operation ®𝐶 = ®𝐴+ ®𝐵
triad 128 Vector operation ®𝐴= ®𝐵+𝑘× ®𝐶

b) matmul 9,5 Multiplication of two 2D matrices of the
same dimension

somier 22 Physics calculations using 3Dmatrices

c) histogram 128 Histogram calculation of the distribution
of numerical data

int-sort 64 Sorting a large set of integer numbers

Group b) encompasses matrix operation applications for evalu-
ating arithmetic and memory subsystem efficiency. These compute-
intensive apps involve significant data movement and reuse and are
geared toward handling 2- and 3-dimensional matrices.

Group c) consists of applications that count the frequency of dis-
tinct values or ranges within datasets. The distinguishing feature is
their reliance on atomic operations, comprising a considerable num-
ber of such operations which are executed in the L2 shared memory.

4.2 Simulation Tools
WeuseQuestasim-64 2020.4 for simulation. Our design is compatible
with Verilator 4.03, which allows the execution of multiple simula-
tions in parallel without license restrictions. To generate the results
we use Verilator with Metro-MPI [11], which enables the paralleliza-
tion of a single RTL simulation across different cores and nodes of
a cluster and, thus, it greatly reduces the RTL simulation times.

5 EVALUATIONRESULTS
This section delves into the results derived from a range of exper-
iments focused on the design space exploration of OpenPiton and
the newly added features for high-performance manycores.

All experiments take as reference the following default configu-
ration of OpenPiton: 8KB of L1 data cache, 16 KB of L1 instruction
cache, 64KB of L2 cache per slice, 16B memory blocks, 1 memory
controller, and OpenPiton routers. These routers have single-cycle
latency for packet forwarding in the same direction and two-cycle
latency for changes in direction. Furthermore, the simulations are
conducted using a memory controller pipeline latency of 150 cycles
and a mesh with 64 cores in an 8x8 configuration.

5.1 MultipleMemory Controllers Exploration
Figure 3 shows the kernel execution time speed-up when varying
the number of memory controllers. The x-axis shows the number
of memory controllers ranging from 1 to 16, and the y-axis shows
the speed-up over the baseline configuration. Notably, group b)
(blue lines) are not memory-bound applications and do not signifi-
cantly benefit fromaddingmemory controllers. In contrast, the other
groups present significant speed-ups. As the number ofmemory con-
trollers increases from 1 to 5, the speed-up in groups a) and c) (green
and purple lines) increases drastically. However, as the number of
memory controllers increases from 5 to 16, the speed-up reaches

Baseline 1 2 3 4 5 6 8 12 16
Number of Memory Controllers

0
1
2
3
4
5

Ke
rn

el
 E

xe
cu

tio
n

Sp
ee

d-
up

copy
scale

add
triad

matmul
somier

histogram
int-sort

gmean

Figure 3: Speed-up withmultiplememory controllers.

copy scale add triad matmulsomier
histogramint-sort gmean

Multi-thread Benchmarks

0.8
0.9
1.0
1.1
1.2

Ke
rn

el
 E

xe
cu

tio
n

Sp
ee

d-
up Baseline

HPCmax1
HPCmax2
HPCmax3

HPCmax4
HPCmax5

HPCmax6
HPCmax7

(a) Different number of𝐻𝑃𝐶𝑚𝑎𝑥 and 1memory controller.

copy scale add triad matmulsomier
histogramint-sort gmean

Multi-thread Benchmarks

0

1

2

3

4

Ke
rn

el
 E

xe
cu

tio
n

Sp
ee

d-
up Baseline

HPCmax1
HPCmax2
HPCmax3

HPCmax4
HPCmax5

HPCmax6
HPCmax7

(b) Different number of𝐻𝑃𝐶𝑚𝑎𝑥 and 4memory controllers.

Figure 4: Speed-up of different degrees of NoC multi-hop
bypass (𝐻𝑃𝐶𝑚𝑎𝑥) with 1 and 4memory controllers.

a plateau, only showing a slight performance increase in group c).
On average (gmean line), the speed-up achieved with 4 memory
controllers is 2.2x, while with 16 memory controllers it is 2.4x.

The int-sort benchmark demonstrates a greater speed-up as the
number of memory controllers increases. In particular, the speed-up
achieved with 5 memory controllers is 4.1x over using only 1 mem-
ory controller. Moreover, when employing 16 memory controllers,
the speed-up is enhanced even further, reaching 4.5x speed-up com-
pared to a single memory controller scenario. This is attributed to
the nature of being amemory-bound application. The application ex-
ecutes a substantial amount of atomic operations on sharedmemory
together with numerous movements in memory.

5.2 Multi-Hop Bypass Exploration
To analyze the impact of multi-hop bypass on application execution
time, we perform simulations using 64 cores with 1 and 4 memory
controllers. Figure 4 presents the results. The baseline configuration
is compared against ProNoCwith varying values of𝐻𝑃𝐶𝑚𝑎𝑥 , from
0 to 7, in which packets with a destination in the same direction can

4

OpenPiton Optimizations Towards High PerformanceManycores NoCArc ’23, October 28, 2023, Toronto, ON, Canada

copy scale add triad matmulsomier
histogramint-sort gmean

Multi-thread Benchmarks

0

1

2

3

4

Ke
rn

el
 E

xe
cu

tio
n

Sp
ee

d-
up

Baseline C2-1MC C4–1MC C2–4MC C4–4MC

Figure 5: Speed-up of NoC concentration 2 and 4 (C2/C4) with
1 and 4memory controllers (1MC/4MC).

bypass𝐻𝑃𝐶𝑚𝑎𝑥 −1 routers within a single cycle. For𝐻𝑃𝐶𝑚𝑎𝑥 = 1,
ProNoC routers present the same base latency as the routers in the
OpenPiton baseline, but with a different router architecture. On
average, in a system with 1 memory controller, multi-hop bypass
provides up to 3% speed-upwith𝐻𝑃𝐶𝑚𝑎𝑥 3, while in a systemwith 4
memory controllers it provides up to 2.4x speed-up with𝐻𝑃𝐶𝑚𝑎𝑥 4.

As shown in Firgure 4a, the benefit achieved by multi-hop bypass
when using 1 memory controller is negligible in groups a) and c),
while for group b) it is between 2% to 12%. The effectiveness of multi-
hop bypass increases when the bandwidth bottleneck is alleviated
by using 4 memory controllers, as shown in Firgure 4b. In this case,
increasing𝐻𝑃𝐶𝑚𝑎𝑥 provides performance benefits in all the bench-
marks, up to 17% in triad with𝐻𝑃𝐶𝑚𝑎𝑥 7 compared to𝐻𝑃𝐶𝑚𝑎𝑥 1.

5.3 NoCConcentration Exploration
To observe the influence of Noc concentration on performance, we
execute experiments with NoC concentrations of 2 and 4. The simu-
lations are performed with two different configurations of memory
controllers, 1 and 4. Figure 5 illustrates the results of this experiment.

When using 1 memory controller, the overall performance re-
sults indicate a 1% performance decrease with concentration 2 (bar
C2-1MC), but using concentration 4 (bar C4-1MC) restores the per-
formance of the baseline. When employing 4 memory controllers,
a consistent 2.3x geometric mean speed-up is achieved in both con-
figurations of concentration (bars C4-1MC and C4-4MC). The most
noticeable speedups are achieved by group c)with 4 memory con-
trollers, where increasing the concentration to 4 provides up to 5%
speed-up in int-sort compared to using concentration 2. Groups a)
and b) do not benefit fromNoC concentration or even present a very
slight performance degradation in group a).

5.4 Cache Block Size Exploration
Figure 6 illustrates the speed-up achieved by increasing the L1 cache
block size from 16 to 64 Bytes. Furthermore, it highlights the impact
of enlarging thememoryblock size in twodistinct scenarios,wherein
the number of memory controllers is varied. The average speed-up
obtained with 64B cache blocks is 1.3x with 1 memory controller
and 3.8x with 4 memory controllers.

It is challenging to perceive the impact of using 64B cache blocks
with just 1 memory controller, given the bottlenecks generated in
the main memory. However, when these bottlenecks are reduced
by incorporating more memory controllers, the benchmarks take
better advantage of this new feature, resulting in higher speed-ups.

copy scale add triad matmulsomier
histogramint-sort gmean

Multi-thread Benchmarks

0
1
2
3
4
5
6
7
8
9

10
11

Ke
rn

el
 E

xe
cu

tio
n

Sp
ee

d-
up

Baseline
64 Bytes 1 MC
16 Bytes 4 MC
64 Bytes 4 MC

Figure 6: Speed-up of 16- and 64-Bytes cache blocks with 1
and 4memory controllers (1MC/4MC).

In group a)with 1 memory controller the speed-up achieved by
enlarging the cache blocks to 64B is negligible because the main
bottleneck remains in the memory bandwidth. By contrast, using
4 memory controllers with 16B cache blocks provides good speed-
ups of 2.3x to 2.8x, and enlarging the cache block size to 64B with 4
memory controllers further increases the speed-ups to more than 4x.

Within group b), we encounter two special cases. The data reuse
within this group is notably high. However, somier exhibits a greater
benefit thanmatmul when the cache block size is enlarged. somier
processes 3D matrices, whereasmatmul is limited to 2D matrices.
Consequently, somier demonstrates more pronounced data reuse
compared tomatmul, resulting in increased traffic between shared
and private caches, as opposed to traffic to/from the main memory.
Conversely,matmul canefficientlyhandle thedatawithin theprivate
caches due to its smaller input dataset.

Group c) shows the least benefit when enlarging the cache blocks,
both with 1 and 4 memory controllers. These benchmarks have very
poor spatial locality, as they are dominated by sparse atomicmemory
operations to large data structures, which are served by the shared
L2 cache. Thus, these atomic operations do not show any benefit
when increasing the private L1 cache block size.

5.5 Cache Size Exploration
Figure 7 depicts the exploration results of using larger caches within
the system. In this experiment we explore different cache config-
urations with L1 cache capacities ranging from 8KB to 128KB and
L2 cache capacities ranging from 64KB to 512KB. To observe the
impact of large caches we perform simulations using 1 and 4 mem-
ory controllers. Overall we observe that larger caches provide great
performance improvements, specially when enlarging the L2 cache
capacity. On average, the largest cache configuration achieves speed-
ups of 2.8x and 4.9x with 1 and 4 memory controllers, respectively.

Group a) shows limited benefits after increasing the cache sizes.
This behavior is attributed to the fact that this group of applications
fails to exploit temporal locality. In the scenario with 4 memory
controllers, a noticeable benefit of up to 3.2x is observed. This is a
result of reduced bottlenecks when accessing main memory, rather
than being due to an increase in cache sizes.

The significant data reuse observed in group b) contributes to
achieving greater speed-ups when cache sizes are increased. Both
with 1 and 4 memory controllers, in somier the benefits of larger
caches are evident, with up to 38x speed-up when using a 128KB L1
cache and a 512KB L2 cache with 1 memory controller. The large
speed-ups achieved in somier are the result of having more traffic

5

NoCArc ’23, October 28, 2023, Toronto, ON, Canada

30
35
40

copy scale add triad matmul somier histogram int-sort gmean
Multi-thread Benchmarks

0
1
2
3
4
5
6
7
8

Baseline
L2 64KB L1 32KB
L2 64KB L1 64KB
L2 128KB L1 8KB
L2 128KB L1 32KB
L2 128KB L1 64KB
L2 128KB L1 128KB

L2 256KB L1 8KB
L2 256KB L1 32KB
L2 256KB L1 64KB
L2 256KB L1 128KB
L2 512KB L1 8KB
L2 512KB L1 32KB
L2 512KB L1 64KB
L2 512KB L1 128KB

Ke
rn

el
 E

xe
cu

tio
n

Sp
ee

d-
up

(a) Different cache sizes and 1memory controller.

40
42
44

copy scale add triad matmul somier histogram int-sort gmean
Multi-thread Benchmarks

0
2
4
6
8

10
12

Baseline
L2 64KB L1 8KB
L2 64KB L1 32KB
L2 64KB L1 64KB
L2 128KB L1 8KB
L2 128KB L1 32KB
L2 128KB L1 64KB
L2 128KB L1 128KB

L2 256KB L1 8KB
L2 256KB L1 32KB
L2 256KB L1 64KB
L2 256KB L1 128KB
L2 512KB L1 8KB
L2 512KB L1 32KB
L2 512KB L1 64KB
L2 512KB L1 128KB

Ke
rn

el
 E

xe
cu

tio
n

Sp
ee

d-
up

(b) Different cache sizes and 4memory controllers.

Figure 7: Speed-up of different combinations of L1 data cache
and L2 cache sizes with 1 and 4memory controllers.

between shared and private caches than between shared caches
and main memory, due to data reuse. This avoids bottlenecks in the
main memory. However, in the case ofmatmul, the benefit is not as
pronounced due to the smaller dataset used.

Group c) also experiences benefits from the large caches, particu-
larly when the shared L2 cache is enlarged. A remarkable character-
istic of this group is the utilization of atomic operations, which are
executed within the shared L2 cache. With an increase in L2 cache
capacity, the hit ratio for atomic operations improves, leading to a
reduction of main memory accesses.

5.6 Comparison with OpenPiton Baseline
Finally, we conduct experiments that combine the proposed exten-
sions and optimizations to OpenPiton, and we compare their perfor-
mance with the OpenPiton baseline. The evaluated configurations
are presented in Table 2. The configurations are selected after analyz-
ing the experiments previously conducted in this section, focusing
on those that provide the largest performance benefits.

Figure 8 presents the results obtained from incorporating all the
features and optimizations into OpenPiton. On average, the speed-
up achieved by implementing large caches (Large) and enlarging the
cache block size (Large+Block) from 16 to 64 Bytes is quite similar,
around2.8x.Byaddingmorememorycontrollers (Large+Ctrl), theav-
erage speed-up increases to 4.8x. By combining these three features
we can build a systemwith 32KB of L1 cache, 512KB of L2 cache, 64B
cache blocks and 4 memory controllers (Large+Block+Ctrl), which
achieves an average speed-up of 6.3x. On top of this configuration,
introducing multi-hop bypass (Large+Block+Ctrl+Byp) or concentra-
tion (Large+Block+Ctrl+Con) in the routers results in a slight average
performance increase, reaching 6.5x over the baseline.

Table 2: Tested configurations with new features.

Configuration name L1 L2 Block Mem. By- Concen-
(KB) (KB) Size (B) Ctrl. pass tration

Baseline 8 64 16 1 - -
Large 32 512 16 1 - -
Large+Block 32 512 64 1 - -
Large+Ctrl 32 512 16 4 - -
Large+Block+Ctrl 32 512 64 4 - -
Large+Block+Ctrl+Byp 32 512 64 4 4 -
Large+Block+Ctrl+Con 32 512 64 4 - 4

34
38
42
46

copy scale add triad matmul somier histogram int-sort gmean
Multi-thread Benchmarks

0
2
4
6
8

10
12
14

Baseline
Large
Large+Block
Large+Ctrl
Large+Block+Ctrl
Large+Block+Ctrl+Byp
Large+Block+Ctrl+Con

Ke
rn

el
 E

xe
cu

tio
n

Sp
ee

d-
up

Figure 8: Speed-up of different configurations with the newly
added features against the OpenPiton baseline.

6 RELATEDWORK
BlackParrot [16] is a 64-bit RISC-Vmulti-core processor featuring
a cache hierarchy with private L1 and shared L2 cache levels. It em-
ploys VI, MSI, and MESI cache coherency protocols and introduces
specific-purpose tiles to enhance the L2 cache. Each L2 tile provides
an additional slice of the L2 cache. Similar to OpenPiton, both share
multiple memory controllers, a 2-D mesh using three physical chan-
nels NoC routers and lack virtual channeling. Unlike OpenPiton,
BlackParrot integrates a network to connect memory controllers,
and each L2 slice accesses this network. While system scalability
isn’t detailed, a taped-out quad-core design exists.

The PULP platform [17] is a low-power SoC targeting IoT appli-
cations. It features a RISC-V core and an octa-core accelerator. Its
cache hierarchy includes a 512KB L2 shared cache split into four
banks. The RISC-V core lacks a private cache level but has two 32 KB
banks for program stack and private data. The octa-core accelerator
directly accesses the L2 cache and a scratch cache. PULP employs
AXI-based interconnections for core and memory communication.
Unlike OpenPiton, PULP is not focused on manycore systems.

Agiler [8] is a RISC-Vmulti-core architecture designed for hetero-
geneous systems, featuring two types of processing elements. The
main type comprises a quad-core using AXI-based interconnection
for communication between cores, shared instruction cache, and
memory controller. The second type consists of accelerators with
distinct tile architectures interconnected via mesh routers. This in-
cludes a 64-bit dual-core and a 32-bit quad-core RISC-V architecture,
both internally linked with AXI. Tiles are mapped to memory re-
gions, and tasks are allocated by loading data and instructions into
corresponding memory spaces during compilation. In contrast, in
OpenPiton, each tile works within the same memory space.

Open ESP (Open Embedded Systems Platform) [12] is an open-
source framework for accelerator-rich SoC prototyping. In addition

6

OpenPiton Optimizations Towards High PerformanceManycores NoCArc ’23, October 28, 2023, Toronto, ON, Canada

to providing tools and libraries to create software applications, it fea-
tures amodularFPGASoCarchitectureusing tiles interconnectedvia
a 2D-MeshNoCwith look-ahead routing. The four tile types (proces-
sor, accelerator, memory, and auxiliary) offer diverse functionalities.
The processor tiles house a dual-cache core with MESI-coherent L2
cache, the accelerator tiles facilitate efficient data exchange with
memory, the memory tiles include a shared LLC slice and a memory
controller port, and the auxiliary tiles manage peripherals. Simi-
lar to OpenPiton, ESP supports multiple memory controllers and
coherence protocols, enhancing scalability in manycores.

7 CONCLUSIONS
In the last years, the advent of RISC-V has caused the proliferation of
academic and industrial muticore processor prototypes. Given the
importance of NoCs in large-scale multicores and manycores, devel-
opment platforms like OpenPiton have received a lot of attention.
However, theNoCand thememoryhierarchyofOpenPitondonot in-
clude key features usually present in high-performance manycores.

This paper presents a set of extensions and optimizations to the
NoC and the memory hierarchy of OpenPiton for improving the
performance of large-scale multicores and manycores. In particular,
we add the capability to increase the number of memory controllers,
we add router bypassing and NoC concentration features, and we
add support for configurable cache sizes and cache block sizes in the
cachehierarchy.WeevaluateourproposalusingRTLsimulationsand
wedemonstrate thatmanyapplicationswithdifferent characteristics
can take advantage of the presented optimizations and new features,
including memory-bound, cache-intensive and synchronization-
intensive applications. Overall, the combination of the proposed
new features and optimizations on a 64-core manycore architecture
provides an speedup of 6.5x compared to the OpenPiton baseline.

ACKNOWLEDGMENTS
This work has been partially supported by the European HiPEAC
Network of Excellence, by the Spanish Ministry of Science and
Innovation MCIN/AEI/10.13039/501100011033 (contracts PID2019-
107255GB-C21, PID2019-105660RB-C22 and TED2021-131176B-I00),
by the Generalitat de Catalunya (contract 2021-SGR-00763), by the
EuropeanUnionwithin the frameworkof theERDFofCatalonia2014-
2020 under the DRAC project [001-P-001723] and by the European
NextGenerationEU/PRTR, and byLenovo-BSCContract-Framework
Contract (2022). TheMEEPProject has received funding from the Eu-
ropean High-Performance Computing Joint Undertaking (JU) under
grant agreement No 946002. The JU receives support from the Eu-
ropean Union’s Horizon 2020 research and innovation program and
Spain, Croatia and Turkey. G. López-Paradís has been supported by
the Generalitat de Catalunya through a FI fellowship 2021FI-B00994.

REFERENCES
[1] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum, R.A. Fa-

toohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon, V. Venkatakrish-
nan, and S.K.Weeratunga. 1991. TheNas Parallel Benchmarks. Int. J. High Perform.
Comput. Appl. 5, 3 (sep 1991), 63–73. https://doi.org/10.1177/109434209100500306

[2] Jonathan Balkind, Katie Lim, Michael Schaffner, Fei Gao, Grigory Chirkov, Ang Li,
Alexey Lavrov, Tri M. Nguyen, Yaosheng Fu, Florian Zaruba, Kunal Gulati, Luca
Benini, and DavidWentzlaff. 2020. BYOC: A "Bring Your Own Core" Framework
for Heterogeneous-ISA Research. In Proceedings of the Twenty-Fifth International

Conference onArchitectural Support for Programming Languages andOperating Sys-
tems (Lausanne, Switzerland) (ASPLOS ’20). Association forComputingMachinery,
New York, NY, USA, 699–714. https://doi.org/10.1145/3373376.3378479

[3] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Minh Nguyen, Yanqi
Zhou, Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua
Liang, Matthew Matl, and David Wentzlaff. 2016. OpenPiton: An Open Source
Manycore Research Framework. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2016, Atlanta, GA, USA, April 2-6, 2016, TomConte and Yuanyuan
Zhou (Eds.). ACM, 217–232. https://doi.org/10.1145/2872362.2872414

[4] Jonathan Balkind, Michael Schaffner, Katie Lim, Florian Zaruba, Fei Gao, Jinzheng
Tu, DavidWentzlaff, and Luca Benini. 2019. OpenPiton+Ariane: The First SMP
Linux-booting RISC-V System Scaling from One to Many Cores. InWorkshop on
Computer Architecture Research with RISC-V, CARRV 2019, Phoenix, AZ, USA, June
22, 2019. https://carrv.github.io/2019/papers/carrv2019_paper_12.pdf

[5] Alex Bradbury, Gavin Robert Ferris, and Robert D. Mullins. 2014. Tagged memory
and minion cores in the lowRISC SoC.

[6] Guillem Cabo, Gerard Candón, Xavier Carril, Max Doblas, Marc Domínguez,
AlbertoGonzález, CésarHernández, Víctor Jiménez, Vatistas Kostalampros, Rubén
Langarita, Neiél Leyva, Guillem López-Paradís, Jonnatan Mendoza, Francesco
Minervini, Julián Pavón, Cristóbal Ramírez, Narcís Rodas, Enrico Reggiani, Mario
Rodríguez, Carlos Rojas, Abraham Ruiz, Víctor Soria, Alejandro Suanes, Iván
Vargas, Roger Figueras, Pau Fontova, Joan Marimon, Víctor Montabes, Adrián
Cristal, Carles Hernández, Ricardo Martínez, Miquel Moretó, Francesc Moll,
Oscar Palomar, Marco A. Ramírez, Antonio Rubio, Jordi Sacristán, Francesc
Serra-Graells, Nehir Sonmez, Lluís Terés, Osman Unsal, Mateo Valero, and Luís
Villa. 2022. DVINO: A RISC-V Vector Processor Implemented in 65nmTechnology.
In 2022 37th Conference on Design of Circuits and Integrated Circuits (DCIS). 1–6.
https://doi.org/10.1109/DCIS55711.2022.9970128

[7] RISC-V International. 2012. riscv-tests. https://github.com/riscv-software-
src/riscv-tests. Accessed Aug. 2023.

[8] Ahmed Kamaleldin and Diana Göhringer. 2022. AGILER: An Adaptive Hetero-
geneous Tile-Based Many-Core Architecture for RISC-V Processors. IEEE Access
10 (2022), 43895–43913. https://doi.org/10.1109/ACCESS.2022.3168686

[9] Neiel I. Leyva-Santes, Ivan Pérez, César A. Hernández-Calderón, Enrique
Vallejo, Miquel Moretó, Ramón Beivide, Marco A. Ramírez-Salinas, and Luis A.
Villa-Vargas. 2019. Lagarto I RISC-V Multi-core: Research Challenges to Build
and Integrate a Network-on-Chip. In Supercomputing, Moisés Torres and Jaime
Klapp (Eds.). Springer International Publishing, Cham, 237–248.

[10] Katie Lim, Jonathan Balkind, and David Wentzlaff. 2018. JuxtaPiton: Enabling
Heterogeneous-ISA Research with RISC-V and SPARC FPGA Soft-cores.
https://doi.org/10.48550/ARXIV.1811.08091

[11] Guillem López-Paradís, Brian Li, Adrià Armejach, Wallentowitzm Stefan, Miquel
Moretó, and Jonathan Balkind. 2023. Fast Behavioural RTL Simulation of 10B
Transistor SoC Designs with Metro-MPI. In Proceedings of the Design, Automation
and Test in Europe Conference (DATE’23).

[12] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni, Joseph
Zuckerman, Emilio G. Cota, Michele Petracca, Christian Pilato, and Luca P.
Carloni. 2020. Agile SoC Development with Open ESP. In Proceedings of the
39th International Conference on Computer-Aided Design (Virtual Event, USA)
(ICCAD ’20). Association for Computing Machinery, New York, NY, USA, Article
96, 9 pages. https://doi.org/10.1145/3400302.3415753

[13] Larry McVoy and Carl Staelin. 1996. Lmbench: Portable Tools for Performance
Analysis. In Proceedings of the 1996 Annual Conference on USENIXAnnual Technical
Conference (San Diego, CA) (ATEC ’96). USENIX Association, USA, 23.

[14] Alireza Monemi, Iván Pérez, Neiel Leyva, Enrique Vallejo, Ramón Beivide,
and Miquel Moretó. 2021. PlugSMART: A Pluggable Open-Source Module
to Implement Multihop Bypass in Networks-on-Chip. In Proceedings of the
15th IEEE/ACM International Symposium on Networks-on-Chip (Virtual Event)
(NOCS ’21). Association for Computing Machinery, New York, NY, USA, 41–48.
https://doi.org/10.1145/3479876.3481601

[15] Alireza Monemi, Jia Wei Tang, Maurizio Palesi, and Muhammad N. Marsono.
2017. ProNoC: A low latency network-on-chip based many-core system-on-chip
prototyping platform. Microprocessors and Microsystems 54 (2017), 60–74.
https://doi.org/10.1016/j.micpro.2017.08.007

[16] Daniel Petrisko, Farzam Gilani, MarkWyse, Dai Cheol Jung, Scott Davidson, Paul
Gao, Chun Zhao, Zahra Azad, Sadullah Canakci, Bandhav Veluri, Tavio Guarino,
Ajay Joshi, Mark Oskin, and Michael Bedford Taylor. 2020. BlackParrot: An Agile
Open-Source RISC-V Multicore for Accelerator SoCs. IEEE Micro 40, 4 (2020),
93–102. https://doi.org/10.1109/MM.2020.2996145

[17] Antonio Pullini, Davide Rossi, Igor Loi, Giuseppe Tagliavini, and Luca Benini.
2019. Mr.Wolf: An Energy-Precision Scalable Parallel Ultra Low Power SoC for
IoT Edge Processing. IEEE Journal of Solid-State Circuits 54, 7 (2019), 1970–1981.
https://doi.org/10.1109/JSSC.2019.2912307

7

https://doi.org/10.1177/109434209100500306
https://doi.org/10.1145/3373376.3378479
https://doi.org/10.1145/2872362.2872414
https://carrv.github.io/2019/papers/carrv2019_paper_12.pdf
https://doi.org/10.1109/DCIS55711.2022.9970128
https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-tests
https://doi.org/10.1109/ACCESS.2022.3168686
https://doi.org/10.48550/ARXIV.1811.08091
https://doi.org/10.1145/3400302.3415753
https://doi.org/10.1145/3479876.3481601
https://doi.org/10.1016/j.micpro.2017.08.007
https://doi.org/10.1109/MM.2020.2996145
https://doi.org/10.1109/JSSC.2019.2912307

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 OpenPiton and RISC-V Architectures
	2.2 OpenPiton Cache Hierarchy
	2.3 OpenPiton Memory Controller
	2.4 OpenPiton NoC Routers
	2.5 OpenPiton and HPC Requirements

	3 NoC and Cache Hierarchy Optimizations For High Performance
	3.1 Adapted Core Tile Using BYOC
	3.2 Enabling Multiple Memory Controllers
	3.3 Optimization of NoC Routers
	3.4 Improved Cache Configurability

	4 Experimental methodology
	4.1 Benchmarks
	4.2 Simulation Tools

	5 Evaluation Results
	5.1 Multiple Memory Controllers Exploration
	5.2 Multi-Hop Bypass Exploration
	5.3 NoC Concentration Exploration
	5.4 Cache Block Size Exploration
	5.5 Cache Size Exploration
	5.6 Comparison with OpenPiton Baseline

	6 Related work
	7 Conclusions
	References

