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ABSTRACT
Social recommendation based on social network has achieved great
success in improving the performance of recommendation system.
Since social network (user-user relations) and user-item interac-
tions are both naturally represented as graph-structured data, Graph
Neural Networks (GNNs) have thus been widely applied for social
recommendation. Despite the superior performance of existing
GNNs-based methods, there are still several severe limitations: (i)
Few existing GNNs-based methods have considered a single hetero-
geneous global graph which takes into account user-user relations,
user-item interactions and item-item similarities simultaneously.
That may lead to a lack of complex semantic information and rich
topological information when encoding users and items based on
GNN. (ii) Furthermore, previous methods tend to overlook the re-
liability of the original user-user relations which may be noisy
and incomplete. (iii) More importantly, the item-item connections
established by a few existing methods merely using initial rating
attributes or extra attributes (such as category) of items, may be
inaccurate or sub-optimal with respect to social recommendation.
In order to address these issues, we propose an end-to-end hetero-
geneous global graph learning framework, namely Graph Learning
Augmented Heterogeneous Graph Neural Network (GL-HGNN) for
social recommendation. GL-HGNN aims to learn a heterogeneous
global graph that makes full use of user-user relations, user-item
interactions and item-item similarities in a unified perspective. To
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this end, we design a Graph Learner (GL) method to learn and op-
timize user-user and item-item connections separately. Moreover,
we employ a Heterogeneous Graph Neural Network (HGNN) to
capture the high-order complex semantic relations from our learned
heterogeneous global graph. To scale up the computation of graph
learning, we further present the Anchor-based Graph Learner (AGL)
to reduce computational complexity. Extensive experiments on four
real-world datasets demonstrate the effectiveness of our model.
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1 INTRODUCTION
Recent years have witnessed the rapid development of social rec-
ommendation, which leverages social network as side information
to effectively alleviate the problem of data sparsity [17, 27]. Con-
ceptually, users’ preferences are often largely influenced by people
around them [3, 7], including parents, friends, classmates, and so
on. Therefore, a social recommendation system based on users’
social relationships usually significantly improves the quality of
recommendations.

Recently, there are a surge of interests in graph neural networks
(GNNs) [10, 14, 19, 24, 26, 31], which have been proven to effectively
learn node representations from graph-structured data. Since social
network (user-user relations) and user-item interactions are both
naturally represented as graph-structured data [5, 28], GNNs have
thus been widely employed to learn the representations of users
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and items, which has been shown to improve the performance of
the recommendation system [11, 15, 29, 33]. Furthermore, in order
to enrich the types of the potential graphs and extract richer side
information, a few existing works have considered the construction
of extra item-item graph structure [6, 12, 30].

Despite the promising results current methods have achieved,
there are still several severe limitations in their approaches. First,
few existing GNNs-based methods have considered a single hetero-
geneous global graph which takes into account user-user relations,
user-item interactions and item-item similarities simultaneously.
As a result, these methods may fail to capture high-order cross-
semantic information and limit the delivery of messages. Second,
previous methods tend to overlook the reliability of the original
user-user social graph that may be noisy and incomplete, partially
because that the original connections often only record the social
relationships between users but rather reflect the similarity of users
preferences. For example: Bob is Ketty’s husband, Jim is Ketty’s
colleague, Bob and Jim both like sports, while Ketty likes to read.
However, in the user-user graph, Bob and Jim are not directly con-
nected, while they are connected to Ketty respectively. We can learn
from this example that there may be conflicts in interests between
nearby neighbors, while distinct neighbors could have similar pref-
erences. Such a topology will make the users preferences extracted
from user-user graph deviate from the real situation, which may
lead to the sub-optimal performance of downstream task. Third,
previous methods do not fully exploit the relationships between
items. Though a few existing methods attempt to construct the
item-item graph, they only utilize the items’ initial rating attributes
or extra attributes (such as category) in an ad-hoc fashion, which
barely reflects the optimized item-item graph structure with respect
to downstream social recommendation.

In order to address these issues, we propose an end-to-end hetero-
geneous global graph learning framework, namely Graph Learning
Augmented Heterogeneous Graph Neural Network (GL-HGNN) for so-
cial recommendation. Our GL-HGNN aims to learn a heterogeneous
global graph that makes full use of user-user relations, user-item
interactions and item-item similarities in a unified perspective.

In order to obtain and optimize heterogeneous global graph
structure, we present a Global Graph Learning module. To this end,
we first establish item-item subgraph by calculating the similarity of
the rating vectors. Then, our proposed Graph Learner (GL) method
is employed to extract richer implicit relationships and filter out
the explicit noisy edges in user-user relation subgraph and item-
item similarity subgraph. Specifically, our GL method can learn the
implicit connections between nodes by measuring the embeddings
similarity between target nodes in each mini-batch and all nodes.
We then combine the learned implicit graph with the initial graph to
obtain the refined heterogeneous global with respect to downstream
task.

To capture the high-order complex semantic relations from dif-
ferent types of edges in the heterogeneous global graph, we also
present a Heterogeneous Graph Neural Network (HGNN), to model
the refined heterogeneous global graph. Technically, it is crucial
to scale up the computation of user-user subgraph and item-item
subgraph learning, especially when the number of users or items
is very large. To this end, we further utilize anchor-based approxi-
mation technique [4] to design a scalable Graph Learner, namely

Anchor-based Graph Learner (AGL). By selecting the anchor node
set instead of all nodes to calculate the similarity to the target nodes,
we can significantly reduce computational complexity. In addition,
we design a joint learning method and a hybrid loss which con-
siders both graph learner loss and rating loss. Through multiple
epochs of optimization, we can get more refined heterogeneous
global graph structures with respect to social recommendation, and
more reliable vector representations of users and items.

To summarize, we highlight our main contributions as follows:
• We construct a heterogeneous global graph with different se-
mantic meta-paths for social recommendation. We propose
a novel framework named GL-HGNN to learn the hetero-
geneous global graph of different relationships in a unified
perspective, which can capture the complex semantic rela-
tions and rich topological information.

• We propose the Global Graph Learning module to construct
item-item connections and optimize both user-user and item-
item subgraph structures, so as to obtain the refined global
graph with respect to the downstream social recommenda-
tion. In addition, we design an Anchor-based Graph Learner
(AGL) method to scale up the proposed method, which can
significantly reduce computational complexity.

• We conduct experiments on four real-world datasets. The ex-
perimental results demonstrate the effectiveness of our pro-
posed model over state-of-the-art methods, and also verify
that our scalable AGL module can reduce the computational
costs.

2 RELATEDWORKS
2.1 Social Recommendation
With the popularity of social platforms, social recommendation
has become one of the hottest areas in recommendation research.
Early research mainly employed matrix factorization-based meth-
ods for recommendation, such as SoRec [16], TrustFM [32] and
TrustSVD [9]. Recently, deep learning-based methods have become
the most successful methods in recommendation research. Plenty
of recent works [7, 18, 21] have applied deep learning to social
recommendation tasks and achieved promising performance.

In recent years, a lot of works [2, 5, 29] transform user-user
relations and user-item interactions to graph-structured data, and
employ the graph neural network (GNN) to learn better user and
item representations. In addition, to capture connections among
items and enhance the performance of social recommendation,
several efforts adopted the item attributes to construct item-item
graph. For example, GraphRec+ [6] and DANSER [30] leveraged the
item’s collaborative information to build item-item graph, while
KCGN [12] utilized inter-dependent knowledge of items to con-
struct graph.

However, few of thesemethods extract high-order cross-semantic
information by modeling a joint heterogeneous global graph, which
includes three kinds of meta-paths: user-user, user-item and item-
item.

2.2 Graph Structure Learning
As GNNs rely on the good quality of the original graph, graph
structure learning method was proposed to alleviate this limitation.
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Figure 1: The overview of our model GL-HGNN. We first establish the item-item subgraph structure. We employ the Graph
Learner to update and optimize the graph structure. We utilize HGNN to model the global graph to extract complex cross-
semantic information. The output embeddings are sent to the predictor for prediction. We design a hybrid loss including
Graph Learner loss and rating loss for training.
LDS [8] proposed to model each edge inside the adjacency matrix.
IDGL [4] jointly and iteratively learned graph structure and graph
embedding based on node features. HGSL [34] generated three
kinds of graph structures to fuse an optimal heterogeneous graph.

However, most of these models are applied to node classification
or graph-level prediction tasks. To our best knowledge, we are the
first to adopt the graph structure learning to improve the quality
of the heterogeneous global graph in social recommendation.

3 DEFINITION AND PRELIMINARY
In this paper, we define𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑁 } and𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑀 }
as the sets of users and items, separately. The user-user relations
can be defined as 𝐺𝑢𝑢 = {𝑈 , E𝑢 }, in which E𝑢 is the set of edges,
and (𝑢𝑖 , 𝑢𝑛, 𝑟𝑢 ) in E𝑢 represents 𝑢𝑖 is related to 𝑢𝑛 . And the user-
item interactions can be represented as the user-item graph with
𝐾 kinds of edges 𝐺𝑢𝑣 = {𝑈 ,𝑉 , E𝑟 }. The edge in E𝑟 is defined as
(𝑢𝑖 , 𝑣 𝑗 , 𝑟𝑘 ), which indicates that the user 𝑢𝑖 rates the item 𝑣 𝑗 as
𝑘 . Let𝑈 (𝑢𝑖 ) denote the set of users related to user 𝑢𝑖 . In addition,
𝑉𝑘 (𝑢𝑖 ) is defined as the set of items that the user𝑢𝑖 rates 𝑘 to, while
𝑈 𝑘 (𝑣 𝑗 ) as the set of users who give a rating 𝑘 to 𝑣 𝑗 .

Problem Formulation. Let p𝑖 , q𝑗 ∈ R𝐷 denote initial embed-
dings of the target user 𝑢𝑖 and item 𝑣 𝑗 . Given user-user relations
and user-item interactions, the task is to predict the explicit score
𝑟𝑖 𝑗 that user 𝑢𝑖 will rate item 𝑣 𝑗 .

4 METHODOLOGIES
4.1 Overview
Figure 1 provides the overall architecture of our model. We aim to
construct a heterogeneous global graph, and extract cross-semantic
relations and rich topological information from it. We first build
item-item subgraph 𝐺𝑣𝑣 = {𝑉 , E𝑣} by similarity between items.

Initial u2u Graph Similarity Leaning Implicit Graph

W
eighted

Refined u2u Graph

Item Set i2i Graph

Rating
Cosine

Similarity Leaning Implicit Graph

W
eighted

Refined i2i Graph

Figure 2: The structure of proposed Global Graph Learning.

The edge (𝑣 𝑗 , 𝑣𝑚, 𝑟𝑣) in E𝑣 means items 𝑣 𝑗 and 𝑣𝑚 are similar. We
also define 𝑉 (𝑣 𝑗 ) to denote the set of items similar to item 𝑣 𝑗 . We
combine these three graphs {𝐺𝑢𝑢 ,𝐺𝑢𝑣,𝐺𝑣𝑣} into a heterogeneous
global graph𝐺 , which contains two kinds of nodes, three kinds of
meta-paths and 𝐾 + 2 kinds of edges, i.e. user-user relation edge,
𝐾 kinds of rating edges, and item-item similarity edge. In order
to get a better graph structure with respect to the downstream
task, capture implicit connections and filter out possible noise, we
design the Graph Learner to optimize user-user (u2u) and item-item
(i2i) connections. Moreover, the refined global graph is passed as
input to a heterogeneous graph neural network to distill high-order
complex semantic information. We employ a rating predictor to
predict the score that target user will rate the candidate item. We
design a hybrid loss to train our model.

4.2 Global Graph Learning
Figure 2 shows the architecture of Global Graph Learning module,
which constructs the heterogeneous global graph and optimizes
the graph structures. It should be noted that there is usually no
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connection information between items in the raw data, but item-
item connections can enrich the graph structure and improve the
receptive field, which allows us to extract more information of both
users and items. For this reason, we need to construct the item-item
edges first. Then, we employ Graph Learner (GL) to optimize the
user-user and item-item subgraph by adding or removing the edges
with the method of calculating the similarity of node embeddings
[4]. We will introduce the details below.

Item-item Connections Construction. We utilize the rating
matrix R ∈ R𝑁×𝑀 to calculate the cosine similarity between items
following previous work [6]. For the rating matrix R, we take the 𝑗-
th column vector e𝑗 as the item 𝑣 𝑗 vector. The similarity calculation
formula is denoted as follows:

𝑠𝑐𝑜𝑟𝑒 (𝑣 𝑗 , 𝑣𝑚) = 𝑐𝑜𝑠𝑖𝑛𝑒 (e𝑗 , e𝑚) =
e𝑗 · e𝑚

e𝑗 

 ∥e𝑚 ∥ (1)

For each item, we choose the most similar 𝐾𝐼 items to create the
edges. In this way, we construct the item-item connections.

Graph Learner. Due to the noise or lack of possible information
in the original graph structure, we propose to adapt Graph Learner
to optimize the input u2u and i2i subgraphs’ topologies.

For u2u Graph Learner, the input is the initial subgraph𝐺𝑢𝑢 with
node set {𝑢1, 𝑢2, . . . , 𝑢𝑁 } and embedding set {p1, p2, . . . , p𝑁 }. For
the target node 𝑢𝑖 , we apply the multi perspective learning method
to calculate the similarity between 𝑢𝑖 and all nodes as follows:

𝑠𝑖𝑚(𝑢𝑖 , 𝑢𝑛) =
1
𝐹

𝐹∑︁
𝑓 =1

𝑠𝑖𝑚𝑓 (𝑢𝑖 , 𝑢𝑛), 𝑛 = 1, 2, . . . , 𝑁 (2)

Where 𝐹 is the number of perspectives. For each perspective, we
can choose one from three methods, which are called weighted
cosine, attention, and add attention:

𝑠𝑖𝑚𝑓 (𝑢𝑖 , 𝑢𝑛) = 𝑐𝑜𝑠𝑖𝑛𝑒 (W𝑐
𝑓

p𝑖 ,W𝑐
𝑓

p𝑛) (3)

𝑠𝑖𝑚𝑓 (𝑢𝑖 , 𝑢𝑛) = (W𝑎
𝑓

p𝑖 )𝑇 (W𝑎
𝑓

p𝑛) (4)

𝑠𝑖𝑚𝑓 (𝑢𝑖 , 𝑢𝑛) = 𝜎 (w𝑑𝑓
𝑇

p𝑖 + w𝑑
𝑓

𝑇
p𝑛) (5)

Equation 3 is the principle of weighted cosine, and W𝑐
𝑓
is the weight

of neural network. Equation 4 shows the calculation method of
attention, where W𝑎

𝑓
is a weight matrix. Equation 5 presents the

principle of the add attention, where w𝑑
𝑓
maps the embedding of

the node to 1 dimension and 𝜎 is the ReLU function. During the
experiment, we mainly use the weighted cosine method, and the
other two methods will be compared in the ablation study.

For all the target user nodes in one batch, the initial adjacency
matrix with all nodes is A𝑢 ∈ R𝐵×𝑁 , where 𝐵 is the number of
target user nodes in the current batch. And we can obtain a new
learned implicit adjacency matrix A′

𝑢 with similarity calculation.
Though the initial graph may be noisy or missing information, it
still contains rich valuable topological information. Therefore, we
employ a weight value 𝜆𝑤 to combine the implicit matrix with the
initial matrix:

Ã𝑢 = 𝜆𝑤A′
𝑢 + (1 − 𝜆𝑤)A𝑢 (6)

Each element in the refined matrix Ã𝑢 represents the similarity of
two nodes. In order to prevent information redundancy caused by
too many edges, we set a truncation length 𝐿. For each target node,
we truncate the first 𝐿 nodes with the highest similarity to establish

new connections, and the remaining nodes are not connected to
the target node. In this way, we can get the refined subgraph 𝐺 ′

𝑢𝑢 .
For the input i2i subgraph 𝐺𝑣𝑣 , we can apply the same method

to get the refined subgraph 𝐺 ′
𝑣𝑣 .

Anchor-based Graph Learner. In the real world, the number
of nodes is often very huge. For target nodes, if we calculate the
similarity of all the nodes to them, the costs of computation are
high. Inspired by [4], we proposed a scalable Anchor-based Graph
Learner (AGL). Next, we take the item-item subgraph as an ex-
ample. For target item nodes, we randomly select 𝐻𝑖 (𝐻𝑣 ≪ 𝑀)
nodes as the anchor nodes set {𝑣𝑚1 , 𝑣𝑚2 , . . . , 𝑣𝑚𝐻𝑣

}. We can get the
initial adjacency matrix between target nodes and anchor nodes
A𝑣,𝑎𝑛𝑐ℎ𝑜𝑟 ∈ R𝐵×𝐻𝑣 from the initial connections. We calculate the
target-anchor similarity matrix A′

𝑣,𝑎𝑛𝑐ℎ𝑜𝑟
, as Equation 2. Then we

use the weight value 𝜆𝑤 and the truncation length 𝐿 to calculate the
refined item-item subgraph 𝐺 ′

𝑣𝑣 . Similarly, we can randomly select
𝐻𝑢 (𝐻𝑢 ≪ 𝑁 ) user nodes as the anchor nodes set, and employ AGL
to get the refined user-user subgraph 𝐺 ′

𝑢𝑢 .

4.3 Heterogeneous Graph Neural Network
In this subsection, we discuss how to extract user and item latent
features in a unified perspective, based on the refined global graph
𝐺 ′ = {𝐺 ′

𝑢𝑢 ,𝐺𝑢𝑣,𝐺
′
𝑣𝑣} learned by Global Graph Learning. The global

graph includes three kinds of semantic meta-paths: user-user rela-
tions, user-item interactions and item-item similarities. Inspired by
[20], we employ a Heterogeneous Graph Neural Network (HGNN)
to extract high-order information and fuse different semantic infor-
mation.

We employ 𝑇 -layer HGNN to model our refined heterogeneous
global graph to distill cross-semantic information. For the target
user 𝑢𝑖 and target item 𝑣 𝑗 , the initial input embeddings of the first
layer are p(0)

𝑖
= p𝑖 and q(0)

𝑗
= q𝑗 . Let p(𝑡 )

𝑖
and q(𝑡 )

𝑗
denote the

representations of user 𝑢𝑖 and the item 𝑣 𝑗 after the propagation of
𝑡-th layer. We next introduce the user node aggregation and item
node aggregation in each layer of HGNN.

User node aggregation. Generally, for each user node in the
refined heterogeneous global graph, there exits one type of edges
𝑟𝑢 connecting the user neighbors and 𝐾 types of edges 𝑟𝑘 , (𝑘 ∈
{1, 2, . . . , 𝐾}) connecting the item neighbors. For the user-user so-
cial semantic connections, we aggregate the features of user neigh-
bors as follows:

p(𝑡+1)
𝑖,𝑢

= b(𝑡+1)
𝑢 +

∑︁
𝑢𝑛 ∈𝑈 (𝑢𝑖 )

1
𝑐𝑖,𝑛

W(𝑡+1)
𝑢 p(𝑡 )

𝑛 (7)

𝑐𝑖,𝑛 =
√︁
|𝑈 (𝑢𝑖 ) | |𝑈 (𝑢𝑛) | (8)

Where W(𝑡+1)
𝑢 is a trainable transformation matrix, b(𝑡+1)

𝑢 is the
bias vector, and 𝑐𝑖,𝑛 is the normalization coefficient.

Similarly, we perform user𝑢𝑖 node aggregation based on𝐾 types
of user-item rating connections. Specifically, for each type of edges
𝑟𝑘 , we also aggregate neighbor items under the same rating level
as follows

p(𝑡+1)
𝑖,𝑘

= b(𝑡+1)
𝑘

+
∑︁

𝑣𝑚 ∈𝑉 𝑘 (𝑢𝑖 )

1
𝑐𝑖,𝑚

W(𝑡+1)
𝑘

q(𝑡 )
𝑚 (9)
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𝑐𝑖,𝑚 =

√︃��𝑉𝑘 (𝑢𝑖 )�� ��𝑈 𝑘 (𝑣𝑚)
�� (10)

where 𝑘 ∈ {1, 2, . . . , 𝐾}.
For user 𝑢𝑖 , we accumulate all messages propagated by different

𝐾 +1 types of edges [p(𝑡+1)
𝑖,𝑢

, p(𝑡+1)
𝑖,1 , . . . , p(𝑡+1)

𝑖,𝐾
]. Then, we aggregate

the information of these 𝐾 + 1 embeddings:

p(𝑡+1)
𝑖

= 𝜎 ( 1
𝐾 + 1

(p(𝑡+1)
𝑖,𝑢

+
𝐾∑︁
𝑘=1

p(𝑡+1)
𝑖,𝑘

)) (11)

𝜎 is the ReLU function, p(𝑡+1)
𝑖

is the output embedding of user 𝑢𝑖
in 𝑡 + 1-th HGNN layer. It is worth noting that, for the current
layer, we integrate two kinds of meta-paths (user-user, user-item)
information into the user’s features, while the item features already
contain the item-item semantic information after 𝑡 layers aggrega-
tion. Therefore, the user’s features can also fuse item-item semantic
information by the multi-layer HGNN.

Item node aggregation. The target item 𝑣 𝑗 also involves in
two meta-paths: item-item similarity and user-item interactions
including 𝐾 types of edges. Similarly, for the 𝑡 + 1-th layer, we
propagate different mesages from𝐾+1 types of edges and obtain𝐾+
1 embeddings [q(𝑡+1)

𝑗,𝑣
, q(𝑡+1)
𝑗,1 , . . . , q(𝑡+1)

𝑗,𝐾
] of 𝑣 𝑗 . Then we aggregate

these embeddings into the output embedding q(𝑡+1)
𝑗

:

q(𝑡+1)
𝑗

= 𝜎 ( 1
𝐾 + 1

(q(𝑡+1)
𝑗,𝑣

+
𝐾∑︁
𝑘=1

q(𝑡+1)
𝑗,𝑘

)) (12)

After 𝑇 layers of HGNN, we can extract high-order and cross-
semantic information from the refined heterogeneous global graph,
which enables us to distill more latent features of users and items.

4.4 Rating Predictor
The initial embeddings and output of each HGNN layer constitute
the user 𝑢𝑖 embedding lists [p(0)

𝑖
, p(1)
𝑖
, . . . , p(𝑇 )

𝑖
] and item 𝑣 𝑗 em-

bedding lists [q(0)
𝑗
, q(1)
𝑗
, . . . , q(𝑇 )

𝑗
]. In this module, we design the

shared attention mechanism to get the final user and item latent
embeddings. For the user 𝑢𝑖 , the final embedding is defined as
follows:

p∗𝑖 =
𝑇∑︁
𝑡=0

𝛼𝑡,𝑢p(𝑡 )
𝑖

(13)

𝛼∗𝑡,𝑢 = s𝑇𝜎 (W𝑠p
(𝑡 )
𝑖

+ b𝑠 ) (14)

𝛼𝑡,𝑢 =
𝛼∗𝑡,𝑢∑𝑇
𝑡 ′=0 𝛼

∗
𝑡 ′,𝑢

(15)

Where W𝑠 , s and b𝑠 are the shared trainable parameters, 𝜎 is the
ReLU function. And the final embedding q∗

𝑗
of item 𝑣 𝑗 can be cal-

culated in the same way. In this paper, we focus on the rating pre-
diction task in social recommendation, so we design the predictor
based on multi layer perceptron (MLP) :

𝑟𝑖 𝑗 = MLP( [p∗𝑖 , q
∗
𝑗 ]) (16)

Where [, ] is the concatenation operation.

4.5 Model Training
To better train our model, we design a special loss function, which
contains two aspects of loss: (i) Graph Learner loss, (ii) rating loss.

Graph Learner Loss. In our work, the updated graph structure
plays an important role in rating prediction. In order to obtain the
better graph topology with respect to the social recommendation
task, we design the Graph Learner (GL) loss through graph regu-
larization [1, 4]. For the u2u GL, we can get the refined adjacency
matrix Ã𝑢 ∈ R𝐵×𝑁 . Generally, graph regularization is often appli-
cable for symmetric adjacency matrix. Since Ã𝑢 is not symmetric,
we first transform it to be symmetric as follows:

Â𝑢 = Ã𝑢∆−1Ã𝑇𝑢 (17)

Where ∆ ∈ R𝑁×𝑁 (Δ𝑖𝑖 =
∑𝑁
𝑘=1𝐴𝑢,𝑘𝑖 ) is a diagonal matrix. As we

all know, that values change smoothly among adjacent nodes is
a widely applied assumption. Therefore, we utilize Â𝑢 and initial
user feature matrix P to design the smoothness loss as follows:

𝐿(Â𝑢 , P) =
1

2𝐵2
∑︁
𝑖,𝑛

𝐴𝑢,𝑖𝑛 ∥p𝑖 − p𝑛 ∥2 =
1
𝐵2

tr(P𝑇 LP) (18)

Where tr(·) indicates the trace of a matrix, L = D𝑢 −Â𝑢 is the graph
Laplacian, and D𝑢 =

∑
𝑛 𝐴𝑢,𝑖𝑛 denotes the degree matrix. However,

only minimizing the smoothness loss will cause over smoothing,
so we impose constraints[4] to control smoothness as follows:

𝐶 (Â𝑢 ) = − 𝛽1
𝐵

1𝑇 𝑙𝑜𝑔(Â𝑢1) + 𝛽2
𝐵2



Â𝑢

2 (19)

Where 1 indicates the vector in which elements are 1, and


Â𝑢

2

indicates the Euclidean norm of Â𝑢 . We then define the overall
Graph Learner loss of u2u GL as the sum of the previously defined
losses:

𝐿𝑢𝐺 = 𝛽𝐿(Â𝑢 , P) +𝐶 (Â𝑢 ) (20)

𝛽 is a non-negative hyper-parameters.
While for u2u AGL, we can convert the refined adjacency matrix

Ã𝑢,𝑎𝑛𝑐ℎ𝑜𝑟 ∈ R𝐵×𝐻𝑢 to the symmetric matrix Â𝑢,𝑎𝑛𝑐ℎ𝑜𝑟 as Equation
17. And we can rewrite Equation 20 to define the Anchor-based
Graph Learner loss:

𝐿𝑢𝐺 = 𝛽𝐿(Â𝑢,𝑎𝑛𝑐ℎ𝑜𝑟 , P) +𝐶 (Â𝑢,𝑎𝑛𝑐ℎ𝑜𝑟 ) (21)

We can also calculate i2i GL or AGL loss 𝐿𝑣
𝐺
by the same method.

Rating Loss. For the task of rating prediction, we adopt mean
square error (MSE) loss function as:

𝐿𝑟 =
1
𝐵

∑︁
𝑖, 𝑗



𝑟𝑖 𝑗 − 𝑟𝑖 𝑗 

2 (22)

Where 𝑟𝑖 𝑗 is the ground-truth value. For our model, we apply a
hybrid loss to jointly learn the parameters:

𝐿 = 𝐿𝑟 + 𝛾𝑢𝐿𝑢𝐺 + 𝛾𝑣𝐿𝑣𝐺 + 𝜂Ω(Θ) (23)

𝛾𝑢 , 𝛾𝑣 and 𝜆 are non-negative hyper-parameters. Θ is the trainable
parameters, Ω(·) denotes the L2 regularization. Through multiple
epochs of optimization, we can iteratively learn an optimized global
graph structure with respect to the social recommendation as well
as reliable user and item features.
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4.6 Model Complexity Analysis
GL-HGNN. As for GL-HGNN, the computational cost of the Graph
Learner is O(𝐸 (𝑁 +𝑀)𝐷) for 𝑁 user nodes,𝑀 item nodes and 𝐸
missing user-item rates to be predicted. The computational cost of
HGNN is O(𝑇𝑋 (𝑀 + 𝑁 )𝐷), where 𝑇 denotes the number of layers
and𝑋 indicates the average neighbors of each node. The rating task
costs O(𝐸𝑑𝐷) where 𝑑 is the hidden size, while the computational
complexity of the hybrid loss is O(𝐸 (𝑁 +𝑀)𝐷). The overall cost is
about O((𝑇𝑋 + 𝐸) (𝑁 +𝑀)𝐷 + 𝐸𝑑𝐷). If we assume that 𝐸 ≈ 𝑁 +𝑀
and𝑇𝑋,𝑑 ≪ 𝑁 +𝑀 , the overall time complexity is O((𝑁 +𝑀)2𝐷).

AGL-HGNN. As for AGL-HGNN, the computational cost of the
Anchor-based Graph Learner is O(𝐸 (𝐻𝑢 +𝐻𝑣)𝐷), while computing
node embeddings by HGNN costs O(𝑇𝑋 ′(𝑀+𝑁 )𝐷), where𝑋 ′ indi-
cates the average neighbors of each node. The rating task also costs
O(𝐸𝑑𝐷), and computing the hybrid loss costs O(𝐸 (𝐻𝑢 +𝐻𝑣)𝐷). As
𝐻𝑢 , 𝐻𝑣, 𝑑 ≪ (𝑁 +𝑀), the overall time complexity of AGL-HGNN is
O(𝑇𝑋 ′(𝑁 +𝑀)𝐷), which is linear to the number of user and item.
Therefore, AGL-HGNN can significantly reduce the computational
complexity.

Table 1: Statistics of datasets.

Dataset Ciao-5 Ciao-28 Epinions Flixster

# of Users 2,248 10,994 22,164 147,612
# of Items 16,861 112,802 296,277 48,794
# of Ratings 36,065 304,493 922,267 8,196,067
# of Ratings Density 0.095% 0.025% 0.014% 0.114%
Rating Range [1,5] [1,5] [1,5] [0.5,5]

# of Links 52,907 131,427 362,433 2,442,886
# of Links Density 1.047% 0.108% 0.073% 0.011%

5 EXPERIMENTS
In this section, we will detail the settings of our experiment and
present the experimental results1. To fully demonstrate the superi-
ority of our model, we conduct experiments to verify the following
four research questions (RQ):

• (RQ1): Compared with the state-of-the-art models, does our
model achieve better performance?

• (RQ2): What are the impacts of key components on model
performance?

• (RQ3): How does the setting of hyper-parameters (such as
the truncation length in Graph Learner) affect our model?

• (RQ4): How can Global Graph Leaning module improve the
performance of our model?

5.1 Experiment Setup
5.1.1 Datasets. We conduct experiments on several public social
recommendation benchmark datasets Ciao2 [23], Epinions3 [22]
and Flixster4[13], which all contain rating information and social
networks. The detailed statistics of dataset are given in Table 1.
1Our code and data will be released for research purpose.
2http://www.ciao.co.uk
3http://www.epinions.com
4https://www.flixster.com

• Ciao: Ciao is drieved from a popular social networking e-
commerce platform.We process two available versions of the
Ciao datasets, separately called Ciao-5 and Ciao-28. Ciao-5
collects 5 categories of items and their corresponding users,
while Ciao-28 contains all 28 categories of items (such as
DVDS) and users. The rating range is [1, 5] with the step
size 1..

• Epinions: Epinions comes from a social based product re-
view platform. The rating values contain five discrete num-
bers, which are {1, 2, 3, 4, 5}.

• Flixster: Flixster comes from a popular movie review web-
site, where people can add others as friends to create the
social network. The range of rating value is [0.5, 5] with the
step size 0.5.

For each dataset, we select 20% as the test set, 10% as valid set
and remaining 70% as training set.

5.1.2 Evaluation Metrics. In order to better evaluate the perfor-
mance of models, we employ two widely used metrics, namely
RMSE (root mean square error) and MAE (mean absolute error)
[25]. The two metrics both indicate the error between the predicted
value and the ground-truth, while RMSE is more sensitive to out-
liers.

5.1.3 Baselines. To evaluate the performance of our model, we
select representative seven models, including classic and state-of-
the-art (SOTA) social recommendation models as follows:

• SoRec [16]: It learns users’ feature vectors by decomposing
the scoring matrix and the social relation matrix simultane-
ously.

• TrustMF [32]: According to the direction of trust, this model
maps users to the trusted space and the trustee space, by
matrix factorization.

• TrustSVD [9]: This is one matrix factorization-based model,
aggregating friends embeddings into target users embed-
dings to learn explicit and implicit information.

• DSCF [7]: This method proposes a deep learning-based
framework, which captures the influence of distant social
relationships on target users.

• GC-MC[2]: This model generates the implicit information
between users and items in the form of information transfer
in the bipartite interaction graph. However, it only models
the links between users and item. In the experiment, we also
join social network to make predictions.

• GraphRec [5]: This method jointly captures the user-item
interaction and opinion between users and items from user-
item graph, and learns the heterogeneous social relationship
between users from user-user graph.

• DANSER [30]: This method constructs a large graph that
contains user-user, item-item, and user-item sub-graphs. By
modeling this large graph, it learns the dynamic and static at-
tributes of users and items, and then fuses the dual attributes
to predict users’ ratings on target items through one fusion
strategy.

• GraphRec+ [6]: On the basis of Graphrec, Graphrec+ not
only models user-item and user-user graphs, but adds item-
item graph to aggregate information between similar items.
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Table 2: Performance comparison of different models on the four datasets. The smaller the RMSE and MAE, the better the
performance.

Models Ciao-5 Ciao-28 Epinions Flixster
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

SocRec 1.0288 0.7847 1.1881 0.8571 1.1964 0.9045 1.1237 0.8323
TrustMF 1.0182 0.8004 1.1506 0.8799 1.1723 0.8832 1.0594 0.8132
TrustSVD 0.9796 0.7845 1.0986 0.8480 1.1394 0.8601 1.0402 0.8097
DSCF 0.9785 0.7651 1.0932 0.8391 1.1295 0.8532 1.0220 0.8034

GC-MC 0.9260 0.7230 1.0736 08226 1.1168 0.8594 0.9870 0.7571
GraphRec 0.9226 0.7006 1.0503 0.8157 1.1036 0.8485 0.9360 0.7161
DANSER 0.9038 0.6857 1.0496 0.8102 1.0821 0.8164 0.9400 0.7113
GraphRec+ 0.9191 0.7065 1.0477 0.8088 1.0943 0.8377 0.9225 0.7054

GL-HGNN 0.8615 0.6497 1.0320 0.7763 1.0709 0.8017 0.9142 0.6993
AGL-HGNN 0.8676 0.6535 1.0330 0.7758 1.0727 0.8092 0.9091 0.6899

5.1.4 Parameters Setting. We implement our model based on Py-
torch and DGL. We set the embedding dimension 𝐷 = 64, and
the batch size as 128. For all trainable parameters, we initialize
them with a Gaussian distribution with an average of 0 and a
standard deviation of 0.01. We use mini-batch Adam optimizer
to train the model parameters with initial learning rate of 0.001. In
order to prevent over-fitting, we add dropout layers with a prob-
ability value of 0.4 during training. In construction of item-item
edges, we select top 20 items for each item to build connections,
according to the similarity cosine values. For the Graph Learner,
we search the weight 𝜆𝑤 of learned implicit graph structure in
[0.1, 0.3, 0.5, 0.7, 0.9]. The number 𝐹 of perspectives of node similar-
ity calculation in the Graph Learner, is tuned in the set of [1, 2, 3, 4].
For the truncation length 𝐿 in Graph Learner, we obtain the opti-
mal value in the range [20, 40, 60, 80, 100] through the grid search.
In addition, we set the number of graph neural network layers in
range of [1, 2, 3, 4].

In addition, we also apply Anchor-based Graph Learner module
in our experiments. We define the anchor rate 𝜏 = 𝐻𝑢/𝑁 = 𝐻𝑣/𝑀 .
We test the value of 𝜏 in the set [0.01, 0.02, 0.05, 0.1, 0.15, 0.2].

For all the baselines, in order to achieve the best performance
of these models, we set the parameters strictly according to the
papers.

5.2 Results:RQ1
The experimental results of the baseline models and our models on
four datasets are shown in Table 2. Based on the comparison in the
table, we can summarize our findings as follows:

• Our model GL-HGNN comprehensively outperforms all the
baseline models on the four datasets. The results indicate
that our model is effective to the rating prediction task of the
social recommendation. Different from the SOTA methods:
GraphRec+ and DANSER, our approach models the hetero-
geneous global graph to capture high-order features and
different semantic information. In addition, to obtain a bet-
ter graph structure for social recommendation, GL-HGNN

Table 3: Results of the Ablation Study.

Models Ciao-5 Epinions
RMSE MAE RMSE MAE

GL-HGNN 0.8615 0.6497 1.0709 0.8017

GL-HGNN-Attention 0.8642 0.6539 1.0745 0.8059
GL-HGNN-Add Attention 0.8692 0.6531 1.0738 0.8065

GL-HGNN-w/o u2u GL 0.8708 0.6889 1.0746 0.8164
GL-HGNN-w/o i2i GL 0.8654 0.6632 1.0764 0.8212
GL-HGNN-w/o GLs 0.8813 0.6893 1.0795 0.8258
GL-HGNN-w/o GLs&i2i edges 0.9171 0.7077 1.0860 0.8369

employs Graph Learners to optimize initial u2u and i2i con-
nections. Besides, compared with GL-HGNN, AGL-HGNN
can achieve comparable results, even better ones sometimes.

• Among all the baselines, the performance of deep learning-
based methods is better than that of traditional methods,
which shows that deep learning-basedmethods have a stronger
learning ability for user relations and user-item interaction
signals. Moreover, the GNN-based models achieve better re-
sults than other models without graph structure. It proves
the effectiveness of GNN for social recommendation. Further-
more, GraphRec+ and DANSER achieve a better performance
than other model without i2i subgraph construction. That
suggests that adding extra i2i connections into the user-item
graph can be helpful for social recommendation.

5.3 Ablation Study: RQ2
In order to verify the effectiveness of some keymodules, we conduct
a series of ablation experiments on the Ciao-5 and Epinions datasets.
The results are shown in Table 3. Firstly, we compare different
calculation methods of nodes similarity in the Graph learner by
replacing weighted cosine with attention and add attention. As can
be seen in Table 3, it is clear that the weighted cosine method is the
best one of three methods to capture similar attributes between
nodes.
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Figure 3: Comparisons of different hyper-parameters w.r.t. the weight value 𝜆𝑤 of learned graph structure, the number of
perspectives 𝑃 and the truncation length 𝐿.

Table 4: Performance with different number𝑇 of HGNN lay-
ers.

Models Ciao-28 Epinions
RMSE MAE RMSE MAE

GL-HGNN-1 1.0501 0.8072 1.1276 0.8617
GL-HGNN-2 1.0343 0.7753 1.0912 0.8345
GL-HGNN-3 1.0320 0.7763 1.0709 0.8017
GL-HGNN-4 1.0398 0.7847 1.0846 0.8204

Besides, we explore to evaluate the effectiveness of the critical
modules of GL-HGNN. We delete each module of GL-HGNN to
observe the change of model performance, e.g., removing the u2u
GL module and removing the i2i GL module. We can observe that
the Graph Learner module is pivotal for the model performance
by seeing "GL-HGNN-w/o GLs". These results demonstrate that
a more suitable graph structure with respect to the downstream
task plays an important role. In addition, without i2i connection
information, the model performance declines to a certain extent,
which shows that capturing implicit item relations from the user
rating matrix is valuable for the rating prediction task.

5.4 Parameter Sensitivity: RQ3
Global Graph Learning The performance of the Global Graph
Learning is mainly affected by four important parameters, i.e., the
weight value 𝜆𝑤 of learnt implicit graph structure, the number of
perspectives 𝑃 , the truncation length 𝐿 and the anchor rate 𝜏 .

• Graph Leaner: For the first three parameters, we adjust
these parameters respectively for u2u and i2i Graph Learn-
ers on Epinions datasets. The results are shown in Figure
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Figure 4: Performance comparison and running time (sec-
onds) with different anchor rates.

3 and we can see that: (i) For u2u and i2i Graph Learners,
appropriate implicit graph weight values are required. If
the weight is too large, a lot of noise may be introduced
leading to sub-optimal performance. Too small weight value
also hurt model performance since the learnt implicit infor-
mation would become less. (ii) The increase of numbers of
perspectives in GL does not necessarily lead to an increase in
performance. On the contrary, too many perspectives may
result in the over-fitting. (iii) As shown in Figure 3c, the
model performance reaches the best values when 𝐿 is 40.
The performance change in the figure can indicate that too
long or too short truncation will bring loss to the model
effect. The most suitable truncation length should achieve
the balance between effective information and irrelevant
information in the graph learning.

• Anchor-based Graph Leaner: For the anchor rate 𝜏 , we
perform experiments on a single NVIDIA Tesla V100 GPU
on Ciao-28 and Epinions datasets. We record the training
time (seconds) of each epoch and RMSE evaluation results.
As we can see from Figure 4, with the increase of the anchor
rate, the performance of the model improves first and then
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Figure 5: Visualization of an example for the case study
from Ciao-5 data. Given the social connections among five
users and the corresponding user-item ratings, the predic-
tion target is the rating of user 𝑢4 (white circular) on item
𝑣1 (green diamond). The coverage area represents the neigh-
boring area of the target user or item.We obtain the updated
graph through theGraphLearner, based on the initial graph.

tends to be stable, while the training time is on the rise. It
can be concluded that by controlling the anchor rate within
a reasonable range, the model running time can be reduced
without almost loss of model performance.

Heterogeneous Graph Neural Network. Generally, the num-
ber 𝑇 of layers plays an important role for the GNN. We conduct
the experiments on two datasets, and Table 4 presents the results
of our model with different number of HGNN layers. From𝑇 = 1 to
𝑇 = 2, the model performance is greatly improved for both datasets,
which shows the necessity of the high-order interconnection. For
the Epinions dataset, from 𝑇 = 2 to 𝑇 = 3, the performance still
increases quickly. Generally, appropriate increase in the number of
layers will make information fusion deeper. However, when 𝑇 is
too large, the performance will drop, probably because the model
introduces too much noise or becomes over-smoothing.

5.5 Case Study: RQ4
To show the effectiveness and rationality of Global Graph Learning
module, we conduct a simple case study on several users from Ciao-
5 dataset. Specifically, we make a comparison between GL-HGNN
and the basic GNN-based methods (HGNN) without Global Graph
Learning.

Generally, we can build a graph using user-item ratings and user
social relationships as the initial graph shown in the left part of
Figure 5. However, we can find that there is noise in this graph
structure. Although there exist social connection between user 𝑢4
and 𝑢2, there are huge rating differences between user 𝑢4 and 𝑢2
on the same item set. Besides, despite 𝑢4 and 𝑢1 do not have the
direct social connection, their rating histories are highly overlapped.
It illustrates that they may be potential friends with the similar
preferences.

On the contrary, GL-HGNN propose to adopt the Global Graph
Learning module to construct item-item connections and iteratively
optimize the graph structure based on the initial graph. As shown
in the the right part of Figure 5, the updated graph increases the
potential relationship edge and reduces noise compared with the
initial graph. We utilize the initial graph and updated graph to
make scoring predictions through HGNN, respectively. Given the
ground-truth rating 2, HGNN with the updated graph (GL-HGNN)
predicts the result as 2.97, which is closer to the ground truth label
compared to the value 3.44 generated by HGNN with the initial
graph. The result demonstrates the validity and rationality of our
proposed Global Graph Learning module.

6 CONCLUSION
In this paper, we proposed a novel method GL-HGNN to learn
the heterogeneous global graph with different relationships in a
unified perspective for social recommendation. Our comparative
experiments and ablation studies on four datasets illustrate that
GL-HGNN can learn better graph structure with respect to social
recommendation, and significantly improve the performance of rec-
ommendation. In addition, to reduce the computational complexity,
we propose the Anchor-based Graph Learner.

In the future, we plan to introduce more nodes information (such
as review information) for mapping multi-relation to multi-type
edges in refined graph automatically.
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