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Figure 1: Left: A blendshape offset matrix D is clustered in both mesh (rows) and controller (columns) space, so the face model
is divided into several submodels. The inverse rig problem is solved for each cluster and the results are aggregated into the
prediction ŵ. Face model ©MetaHuman Creator. Right: Trade-off of the reconstruction error (𝐸𝑅) versus the density (𝐸𝐷 )
and versus the inter-density (𝐸𝐼𝐷 ), of the clustered blendshape matrix, for different clusterings. Each dot represents a single
clustering output, with 4 ≤ 𝐾 ≤ 𝑚 = 102, for RSJD and RSJDA.

ABSTRACT
The problem of rig inversion is central in facial animation, but with
the increasing complexity of modern blendshape models, execution
times increase beyond practically feasible solutions. A possible
approach towards a faster solution is clustering, which exploits the
spacial nature of the face, leading to a distributed method. In this
paper, we go a step further, involving cluster coupling to get more
confident estimates of the overlapping components. Our algorithm
applies the Alternating Direction Method of Multipliers, sharing
the overlapping weights between the subproblems and show a clear
advantage over the naive clustered approach. The method applies to
an arbitrary clustering of the face.We also introduce a novel method
for choosing the number of clusters in a data-free manner, resulting
in a sparse clustering graph without losing essential information.
Finally, we give a new variant of a data-free clustering algorithm
that produces good scores with respect to the mentioned strategy
for choosing the optimal clustering.
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1 INTRODUCTION
Blendshape animation deforms a 3D mesh b0 ∈ R3𝑛 by interpolat-
ing between a set of blendshapes b1, ..., b𝑚 ∈ R3𝑛 , where 𝑛 is the
number of mesh vertices [Lewis et al. 2014]. Blendshapes repre-
sent different shapes the mesh can take, and blending them as a
weighted sum generates wide range of shapes 𝑓 (w;B) = b0 + Bw,
where the weightsw = [𝑤1, ...,𝑤𝑚] define the amount of influence
each blendshapes provides, and B ∈ R3𝑛×𝑚 is a blendshape ma-
trix created by stacking the blendshape vectors as its columns. In
modern blendshape models, additional corrective terms might be
included in the rig function [Racković et al. 2023a].

A problem considered in this paper is the inversion of the rig.
I.e., given a target mesh b̂ ∈ R3𝑛 , find a configuration of the weighs
w that closely approximates the target. Model-based solutions of
the rig inversion exploit the structure of the rig functions and
rely on optimization techniques rather than data [Çetinaslan 2016;
Racković et al. 2023b]. A SOTA model-based solution is given in
[Racković et al. 2023a], and it solves the problem

minimize
0≤w≤1

1
2 ∥ 𝑓 (w) − b̂∥2

2 + 𝛼1
𝑇w, (1)

using coordinate descent. We will rely on this approach in our
experiments, although the proposed method can work with an
arbitrary model-based inverse rig solver.

The human face has local nature, hence most of the vertices are
irrelevant for estimating the majority of the weights. This calls
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Figure 2: Clustering outputs of the four approaches — for the RSJD and RSJDA, the number of clusters 𝐾 is indicated. Besides
the mesh clusters, the figure shows bipartite graphs consisting of the vertices (left) and controllers (right). Each color indicates
a single cluster, with edges representing the cluster correspondences. (The avatar Jesse ©MetaHuman Creator.)
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Figure 3: Left: Trade-off of themesh error (RMSE) vs cardinal-
ity, as functions of the regularization parameter 𝛼 > 0. The
dotted lines represent a naive clustered solution, and solid
the ADMM solution. A dashed line shows a holistic approach.
A horizontal line shows the cardinality of the ground-truth
data, with a shaded standard deviation. A red line represents
a baseline where w = 0. Right: The average execution time.

for a segmented model, where objective (1) is split into subprob-
lems with only relevant weights estimated over each mesh segment
(Fig. 1). Early works split the face manually [Choe and Ko 2006].
Some models propose segmenting the mesh based on the vertex
behavior over animated sequences [Tena et al. 2011], which makes
the clusters susceptible to the quality of the data, and unsuitable for
model-based approaches. In [Seol et al. 2011], the mesh regions are
painted manually and blendshapes are assigned to the correspond-
ing segments. In [Racković et al. 2021], mesh clusters are estimated
from a given blendshape matrix. While clustering helps reduce the
size of problem (1), and regularize the solution, question is what to
do with the weights shared between multiple clusters. Such values
can be averaged, but if the coupling between the clusters is included
in the optimization, the shared estimates improve, as we will show.

Contributions. I) We formulate a metric to evaluate the goodness
of the blendshape clusters, based on the sparsity and the quality
of reconstruction of a given clustering, apriori to the fitting phase,
yielding the optimal number of clusters 𝐾 in a data-free manner.
II) We propose an adjustment to the blendshape assignment within
the clustering technique of [Racković et al. 2021], which, results in

a denser graph but a higher reconstruction quality.
III) We propose a model-based solution to the inverse rig problem
in a clustered setting. The proposed method applies the alternating
direction method of multipliers (ADMM) [Boyd et al. 2011], in
combination with coordinate descent similar to [Racković et al.
2023a], allowing coordination between the clusters.

2 METHOD
The above contributions build into the following pipeline. Several
instantiations of the clusterings are made and evaluated based on
the proposed metric for estimating reconstruction error vs density
trade-off, in order to choose the best representative clustering. This
pipeline can work with an arbitrary clustering method, as shown
here. The clusters are used to solve the inverse rig in a distributed
manner, where ADMM allows the coupling of the overlapping
components, as opposed to a naive clustered solution. The pipeline
produces solutions closely matching that of the holistic approach
in terms of sparsity and accuracy, while significantly reducing the
execution time (50% reduction). A naive clustered solution demands
slightly less time than a proposed method, but does not compare
with our solution in accuracy or the sparsity metric. Supplementary
videos show a clear superiority of our results.

2.1 Clustering of the Face
The clustering methods of [Seol et al. 2011] (here termed SSKLN,
from the authors’ initials) and of [Racković et al. 2021] (termed
RSJD) transform the blendshape matrix B ∈ R3𝑛×𝑚 into a matrix
of offset values D ∈ R𝑛×𝑚 . SSKLN assumes that an artist manually
selects the four mesh segments, and each blendshape 𝑖 is assigned
to a relevant mesh segment if a magnitude of deformation over the
segment M (𝑘 ) is at least half of its magnitude of deformation over
the entire mesh, producing in this way 𝐾 = 4 controller clusters
C (𝑘 ) . RSJD performs K-Means clustering over the rows of D, to
obtain mesh clusters M (𝑘 ) , for 𝑘 = 1, ..., 𝐾 . Then, K-means is ap-
plied over each blendshape vector to split it in two subvectors, one
with high entries and the other one with low. The controller 𝑖 is
assigned to clusters corresponding to the high-valued labels. 𝐾 is
slected by user based on cross-validation.

Proposed Clustering Method. Assigning blendshapes to the mesh
segments where their effect is significantly larger than in the others
does not imply that their effect within the corresponding cluster
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will be significant compared to other blendshapes. We propose
an adjustment to RSJD wrt this — the lowest magnitude value
among the blendshapes assigned to an observed cluster is taken as
a threshold, 𝑝 (𝑘 ) = min

∑
𝑖∈M (𝑘 ) (𝑏𝑖𝑗 )

2 for 𝑗 ∈ C (𝑘 ) . Consequently,
all the blendshapes such that

∑
𝑖∈M (𝑘 ) (𝑏𝑖

𝑙
)2 > 𝑝 (𝑘 ) for 𝑙 ∉ C (𝑘 ) ,

are assigned to the cluster as well. This method will be termed
RSJDA ("A" standing for "adjusted").

Choosing the Number of Clusters𝐾 . Consider a blendshapematrix
B ∈ R3𝑛×𝑚 , segmented into submatrices B(𝑘 ) ∈ R3𝑛𝑘×𝑚𝑘 , for
𝑘 = 1, ..., 𝐾 , (Fig. 1). The Density of the clustering represents the
percentage of the kept elements of the matrix, 𝐸𝐷 =

∑𝐾
𝑘=1

𝑛𝑘𝑚𝑘

𝑛𝑚 ,
where 𝑛𝑘 = |M (𝑘 ) | < 𝑚 and𝑚𝑘 = |C (𝑘 ) | < 𝑚 are the number of
vertices and the number of blendshapes assigned to cluster 𝑘 . We
can understand this as a number of edges 𝐸 in a bipartite graph
𝐺 = (𝑈 ,𝑉 , 𝐸) where𝑈 represents the vertices of the mesh and𝑉 the
controllers — an edge (𝑖, 𝑗) ∈ 𝐸 is drawn for every 𝑖 ∈ M (𝑘 ) and 𝑗 ∈
C (𝑘 ) , for 𝑘 = 1, ..., 𝐾 (Fig. 2). Inter-Density, 𝐸𝐼𝐷 , gives the size of the
clusters’ overlap — the number of edges shared between multiple
clusters in the bipartite graph 𝐺 , that is, edges (𝑖, 𝑗) ∈ 𝐸 such that
𝑗 ∈ C (𝑘1 ) ∩ C (𝑘2 ) for 𝑘1, 𝑘2 = 1, ..., 𝐾 , and 𝑘1 ≠ 𝑘2. It indicates how
much coupling should be added between the clusters in the fitting
phase. For measuring the Reconstruction Error, we focus on the ratio
between the kept and dismissed elements. Observe the submatrices
B̄(𝑘 ) ∈ R3𝑛𝑘×(𝑚−𝑚𝑘 ) , for 𝑘 = 1, ..., 𝐾 , which represent rejected
elements of B. Compute the sum of the squared entries of all these
matrices 𝐸𝑅1 =

∑𝐾
𝑘=1

∑𝑛𝑘
𝑖=1

∑𝑚−𝑚𝑘

𝑗=1 (𝐵 (𝑘 )
𝑖 𝑗

)2, and a sum of the kept
elements as 𝐸𝑅2 =

∑𝐾
𝑘=1

∑𝑛𝑘
𝑖=1

∑𝑚
𝑗=1 (𝐵

(𝑘 )
𝑖 𝑗

)2. The reconstruction
error is now 𝐸𝑅 = 𝐸𝑅1/𝐸𝑅2.

An optimal clustering should exhibit small 𝐸𝐷 and 𝐸𝑅 . The holis-
tic case has 𝐸𝑅 = 0 and 𝐸𝐷 = 1. Fig. 1 shows the results of clus-
tering methods — SSKLN is deterministic, while the other two
can vary with 𝐾 ; hence, we repeat the clustering 1000 times, for
4 ≤ 𝐾 ≤ 𝑚 = 102. We also consider the extremely sparse case,
where each mesh vertex is assigned to exactly one blendshape that
produces the largest offset (termed Sparse). The instances of RSJD
are closer to the lower left corner (left subfigure) than SSKLN or
RSJDA. RSJDA leads to low 𝐸𝑅 , but 𝐸𝐷 can get large, while RSJD
is of lower density but higher 𝐸𝑅 . In the case of 𝐸𝑅 versus 𝐸𝐼𝐷 ,
the distinction between RSJD and RSJDA is even cleaner, however,
SSKLN has 𝐸𝐼𝐷 = 0 as its clusters do not overlap. An optimal choice
of the clustering should be based on these plots, choosing the point
near the elbow of the trade-off curve. For RSJDA, this would be
one of the clusterings with low 𝐸𝐷 , and for RSJD, the one with low
𝐸𝑅 . We proceed to work on several choices of 𝐾 and we show that
a standard cross-validation leads to the same conclusions on the
choice of 𝐾 , validating that the considered 𝐾-selection works. In
Fig. 2 (and Table 1 of the supplement), we show obtained clusters.

2.2 Distributed Solution to the Rig Inversion
The objective function for the inverse rig problem, as formulated
in [Racković et al. 2023a], is (1). In the clustered setting, one can
split this into subproblems

minimize
0≤w(𝑘 ) ≤1

1
2 ∥ 𝑓

(𝑘 ) (w(𝑘 ) ) − b̂
(𝑘 ) ∥2

2 + 𝛼
(𝑘 )1𝑇w(𝑘 ) , (2)
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Figure 4: Top left: Trade-off between the cardinality and
RMSE, as functions of 𝛼 > 0. Top right: The average exe-
cution time per frame. Bottom: Trade-off between 𝐸𝑅 and
𝐸𝐷 and between 𝐸𝑅 and 𝐸𝐼𝐷 . Large dots indicate a chosen
clustering, while the smaller ones represent discarded cases.

for 𝑘 = 1, ..., 𝐾 , where w(𝑘 ) ∈ R𝑚𝑘 is a vector containing only the
𝑚𝑘 weights assigned to the cluster 𝑘 ; b̂

(𝑘 ) ∈ R3𝑛𝑘 is a subvector
of the target mesh b̂, consisting of the 𝑛𝑘 vertices from the corre-
sponding cluster, and 𝑓 (𝑘 ) (·) is a blendshape function restricted
only to the vertices and controllers within the cluster 𝑘 (Fig. 1). If
these subproblems are solved independently, they yield a set of local
weight vectors ŵ(𝑘 ) , that should be merged into a single global
prediction vector ŵ. For the controllers that are shared among
multiple clusters, the final value is taken as the average of all the
estimates. More formally, we introduce the mapping from local
variable indices into a global variable index as 𝑗 = G(𝑘, 𝑖), i.e., for
some local variable v(𝑘 ) and a global variable v, a local component
(v(𝑘 ) )𝑖 corresponds to the global component v𝑗 . A diagonal matrix
S ∈ R𝑚×𝑚 has entries corresponding to the multiplicity of each
controller over the clusters, i.e., 𝑆𝑖𝑖 =

∑𝐾
𝑘=1

∑
G(𝑘,𝑖 ) 1. Now, the

global weight estimate is obtained as ŵ = S−1 ∑𝐾
𝑘=1 v

(𝑘 ) , where
the entries of v(𝑘 ) ∈ R𝑚 are the values of ŵ(𝑘 ) obtained for the
corresponding cluster, i.e., (v(𝑘 ) )G(𝑘,𝑖 ) = (ŵ(𝑘 ) )𝑖 .

Solution via ADMM. We now formulate a solution that includes
coupling between the clusters applying ADMM, to produce a better
estimate of the shared weights. In the workflow of ADMM, the
objective should be transformed to

minimize Φ(x) + Ψ(z) s.t. Gx + Fz = c, (3)

by choosing Φ(·), Ψ(·) and the constraints. We dualize on the reg-
ularization term, i.e., Ψ(z) = 𝛼1𝑇 z, Φ(x) = ∥ 𝑓 (x) − b̂∥2

2, G = I,
F = −I, c = 0, getting the general form consensus with regulariza-
tion [Boyd et al. 2011], with the following ADMM updates at each
iteration 𝑡 + 1:

x(𝑘 )
𝑡+1 ∈ argmin

0≤x≤1

(
∥ 𝑓 (𝑘 ) (x) − b̂

(𝑘 ) ∥2
2 + 𝜌 ∥x − z̃(𝑘 )𝑡 + u(𝑘 )

𝑡 ∥2
2

)
,

z𝑡+1 = S−1
(
𝐾∑︁
𝑘=1

q(𝑘 ) − 𝛼𝑘

𝜌

)
, u(𝑘 )

𝑡+1 = u(𝑘 )
𝑡 + x(𝑘 )

𝑡+1 − z(𝑘 )
𝑡+1 .

(4)
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Figure 5: Results over the test set. Dotted-face bars represent
naive clustered solutions, while the same-color solid bars are
the corresponding ADMM solutions. A gray horizontal line
shows the metric value of the ground-truth data.

A vector z̃(𝑘 ) ∈ R𝑚𝑘 is a local copy of the global variable z ∈
R𝑚 , i.e., (z̃(𝑘 ) )𝑖 = zG(𝑘,𝑖 ) . The entries of q(𝑘 ) ∈ R𝑚 are the
values of x(𝑘 )

𝑡+1 + u(𝑘 )
𝑡 obtained for the corresponding cluster, i.e.,

(q(𝑘 ) )G(𝑘,𝑖 ) = (x(𝑘 )
𝑡+1)𝑖 + (u(𝑘 )

𝑡 )𝑖 . Further, we proceed by solving
the 𝑥-update step following the approach of [Racković et al. 2023a].

3 RESULTS
For each clustering strategy, we observe two approaches: I) a naive
clustered solution, where (2) is solved independently for each clus-
ter, and shared weights are averaged in the end; II) the proposed
ADMM approach (4), where the shared components are constrained
to be similar, by coupling between the local and global variables,
to get more confident estimates. Additionally, we include a holistic
case, i.e., the method of [Racković et al. 2023a], where problem (1)
is solved without segmentation.

Mesh error is computed as a root mean squared error (RMSE)
between the target mesh b̂ and the estimated 𝑓 (ŵ), where ŵ is
the estimated weight vector. Cardinality is the number of non-zero
weights in ŵ. The character Jesse (©unrealengine.com), is animated
to give a wide range of motion. We need to choose a good value
of 𝛼 , for each approach, and the optimal 𝐾 for RSJD and RSJDA.
We run experiments on 300 training frames with varying 𝛼 > 0
and 0 ≤ 𝐾 ≤ 𝑚 = 102 (Fig. 3), and choose 𝛼 at which cardinality is
equal to ground-truth, as in this sense we have a fair comparison of
different methods. The results of the Sparse approach are extremely
poor, hence, we will dismiss it from further consideration. In all the
other cases, the results obtained using ADMM outperform those
of a naive clustered solution. For RSJD and RSJDA, we need an
optimal 𝐾 , based primarily on the error vs cardinality trade-off, but
also the execution time. For both methods, 𝐾 = 4 leads to the best
ADMM trade-off, yet, the time is considerably longer than for other
choices of 𝐾 . For RSJD we choose 𝐾 = 22, as it gives only a slightly
worse curve in the case of ADMM, while the time is almost half of
the case with 𝐾 = 4, and the results of a simple clustered method
are the best performing for this choice. For RSJDA, an increase in
𝐾 leads to a decrease in the overall trade-off, and with 𝐾 = 20 the
execution time is as low as it gets.

The selected results are presented in Fig. 4. ADMM significantly
improves the results compared to the naive clustered approach. The
trade-off curve of SSKLN (using ADMM) is the only one reaching
the accuracy of a holistic model, yet its execution time is the largest
of the three distributed methods. The trade-off of 𝐸𝑅 versus 𝐸𝐷
and 𝐸𝐼𝐷 confirms the cross-validation would lead to choosing RSJD
clustering with smaller 𝐸𝑅 , and RSJDA clustering with smaller 𝐸𝐷 .
Also, we can see a relationship between the execution time and 𝐸𝐷 ,
as the denser clusterings lead to a longer execution.

Test results in Fig. 5 show a clear distinction — in all three cases,
the upper quartile of the ADMM solution is lower than the lower
quartile of clustered solution. ADMM under SSKLN is comparable
to the holistic in terms of median and quartiles, while with RSJD
it is just slightly worse. The execution time of the clustered solu-
tion is lower than that of ADMM, yet the difference is not as large
as between the holistic case to others. Finally, since the test set
consists of an animation sequence, we are interested in the tem-
poral smoothness, expressed using the Roughness penalty (lower
values of correspond to smoother curves). The values for ADMM
are significantly lower than the corresponding values for a naive
clustered approach or holistic case, as can be also noticed in the
smooth animation in supplementary video.

The application of ADMM on the clustered face leads to signif-
icant outperformance compared to the previous approaches that
solved each cluster independently and averaged the shared compo-
nents. ADMM produces visibly lower values of each metric, except
of the execution time. However, the execution time under ADMM
is still less than half of the holistic approach.
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