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Figure 1: Given a single ground-view image and the corresponding text description as input, Aerial Diffusion generates the corresponding
aerial-view image. Our method does not require any supervision from aerial-view data, pairs of ground-aerial view, depth maps, semantic
maps, multi-views, etc. It is one of the first approaches to achieve ground-to-aerial view translation in an unsupervised manner. We present
more results and analysis in the accompanying video.

ABSTRACT
We present a novel method, Aerial Diffusion, for generating aerial
views from a single ground-view image using text guidance. Aerial
Diffusion leverages a pretrained text-image diffusion model for
prior knowledge. We address two main challenges corresponding
to domain gap between the ground-view and the aerial view and the
two views being far apart in the text-image embedding manifold.
Our approach uses a homography inspired by inverse perspective
mapping prior to finetuning the pretrained diffusion model. Aerial
Diffusion uses an alternating sampling strategy to compute the opti-
mal solution on complex high-dimensional manifold and generate a
high-fidelity (w.r.t. ground view) aerial image. We demonstrate the
quality and versatility of Aerial Diffusion on a plethora of images
and prove the effectiveness of our method with extensive ablations
and comparisons. To the best of our knowledge, Aerial Diffusion
is the first approach that performs single image ground-to-aerial
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translation in an unsupervised manner. The full paper and code
can be found at https://arxiv.org/abs/2303.11444.
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1 INTRODUCTION
The paucity of aerial data and the complexities associated with data
capture from aerial cameras/ UAVs makes it difficult to train large
neural networks for aerial image and video analysis. Cross-view
synthesis [Regmi and Borji 2019; Tang et al. 2019] enables the syn-
thesis of realistic aerial view images from widely available ground-
view images in a controlled manner. However, cross-view synthesis
requires the network to learn a very large non-trivial translation.
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The network needs to hallucinate a new and enormously different
view of all entities in the scene and the background, while being
consistent with the details including the semantics, colors, relations
between various parts of the scene, pose, etc.

Prior work [Regmi and Borji 2019; Tang et al. 2019] on ground-
to-aerial generation use NeRFs and GANs. However, all of these
methods use paired data for ground-view and the corresponding
aerial views, which is seldom available. Moreover, training on a
specific dataset leads to domain generalization issues. Instead, our
goal is to develop a generic method for generating aerial views
from ground-views without any paired data or other auxiliary in-
formation such as multi-views, depth, 3D mapping, etc.

While there are many diverse datasets of ground images, there
are not many such good quality aerial datasets [Li et al. 2021] -
hence, unpaired image-to-image translationis not a viable solution.
On the contrary, text is an auxiliary modality that can be easily ob-
tained using off-the-shelf image/video captioning tools. Moreover,
text provides a natural representation space describing images. Con-
sequently, our goal is to use the text description of a ground-view
image to generate its aerial view. Recently, diffusion models have
emerged as state-of-the-art architectures for text-to-image [Kawar
et al. 2022; Zhang et al. 2022] high-quality realistic image synthesis.
The availability of immense prior knowledge via large-scale robust
pretrained text-to-image models [Rombach et al. 2022], motivates
us to pose ground-to-aerial view translation as text-guided single-
image translation [Kawar et al. 2022; Zhang et al. 2022]. Text-guided
single-image translation methods finetune the diffusion model to
the input image and then perform linear interpolation in the text
embedding space to generate the desired output. However, direct
application of these methods [Kawar et al. 2022; Nichol et al. 2021;
Zhang et al. 2022] to ground-to-aerial translation either generates
high-fidelity non-aerial images or low-fidelity aerial images.

Main contributions. We present two postulates for text-guided
image translation, for ground-to-aerial translation. Based on these
findings, we propose “Aerial Diffusion”, a simple, yet effective,
method for generating aerial views, given a single ground-view
image and the corresponding text description as input. We apply
our method on numerous in-the-wild images from various domains
such as nature, animals and birds, human actions, indoor objects,
etc. We conduct extensive experiments and comparisons.

2 AERIAL DIFFUSION
Notation: We use 𝐼𝑆 and 𝐼𝑇 to denote the ground-view and aerial-
view images respectively. For the ground-view, we use the source
text description txt𝐺 = ‘front view of’ + txt with text embedding
𝑒𝑠𝑟𝑐 . Similarly, for the aerial-view, we use the target text txt𝐴 =
‘aerial view of’ + txt with text embedding 𝑒𝑡𝑔𝑡 .

2.1 Postulates
In this section, we analyze text-guided single image translation
in the context of ground-to-aerial view synthesis and present two
postulates. A common strategy adopted for text-based single image
translation is to use a robust text-to-image pretrained model in a
two-stage process. The first step finds the ‘optimized text embed-
ding’ 𝑒𝑜𝑝𝑡 (in the vicinity of 𝑒𝑡𝑔𝑡 ) that best generates the ‘source’

image 𝐼𝑆 and subsequently finetune the diffusion model to gener-
ate the ‘source’ image 𝐼𝑆 using 𝑒𝑜𝑝𝑡 . In the second step, a linear
interpolation of 𝑒𝑡𝑔𝑡 and 𝑒𝑜𝑝𝑡 are used to generate the edited image
𝐼𝑇 from the finetuned neural network, i.e., the backward diffusion
process is 𝑥𝑡−1 = 𝑥𝑡 − 𝑓 (𝑥𝑡 , 𝑡, 𝛼𝑒𝑡𝑔𝑡 + (1 − 𝛼)𝑒𝑜𝑝𝑡 ), 𝑡 = 𝑇, · · · , 0.

A text-based single image translation approach [Brooks et al.
2022; Hertz et al. 2022; Kawar et al. 2022; Kim et al. 2022] for ground-
to-aerial generation overcomes multiple limitations in terms of data
availability and generalization. However, the challenges involved in
ground-to-aerial translation inhibit the direct application of existing
text-based single image translation methods for ground-to-aerial
generation. We present two postulates for text-based single-image
translation in the context of ground-to-aerial generation.

Postulate 2.1. Domain gap between the finetuning task (e.g., ground
view generation) and target task (aerial view generation) hinders the
diffusion model from generating accurate target views and introduces
bias towards the source view.

Diffusion models are probabilistic models. They are trained [Ho
et al. 2020] by optimizing the negative log-likelihood of the model
distribution under the expectation of the data distribution. Fur-
ther simplification of the equation for formulating the training loss
function involves variance reduction. In the first step of finetun-
ing, the diffusion model is being trained to reproduce the source
image given the optimized text embedding, irrespective of the in-
put random noise. Hence, it has a natural bias towards the source
image.

When the image space corresponding to the target text embed-
ding is in the vicinity of the image space corresponding to the
optimized text embedding, consistent with the variance within
which the neural network was trained to generate, the generated
target image is a high fidelity image consistent with the target text.
When the desired transformation is large (ground-to-aerial), outside
the limits of the variance, the diffusion model is unable to generate
an aerial image.

Postulate 2.2. A finetuned diffusion model cannot generalize well
to the target prompt if the text embedding and image spaces corre-
sponding to the source and the target are very different and far away
from each other on the nonlinear text-image embedding manifold.

The embedding space and the corresponding image representa-
tion space are locally linear. Hence, when the target text embedding
dictates a relatively small change to the source image, a linear com-
bination between the optimized text embedding and the target
text embedding generates a high-fidelity target image, faithful to
the target text. In contrast, when a linear interpolation of the text
prompts is applied to ground-to-aerial translation, depending on
𝛼 , the images generated are either high fidelity (but low target
text faithfulness) or high target text faithfulness (but low fidelity).
Moreover, the ground-view image doesn’t gradually change to an
oblique-view image followed by aerial-view image, the manifold
is not smooth. Rather, the change is quite drastic and it is difficult
to find an optimal solution in the linear interpolation space. Essen-
tially, when there is a large perspective changes from the source
to target images (i.e. involving large rotation of camera poses), the
image representation space is no longer “locally linear”, thereby
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Figure 2: Aerial Diffusion.

linear interpolation is no longer adequate to generate high-fidelity
images.

2.2 Method
Motivated by the challenges described above, we propose Aerial
Diffusion for text guided single-image ground-to-aerial translation.
An overview of our solution is as follows. We start with a pretrained
robust stable diffusion [Rombach et al. 2022] model as the back-
bone. Our method has three stages. In the first step, we preprocess
the ground-view image 𝐼𝑆 with a carefully crafted homography
transformation to generate 𝐼𝑆ℎ . This reduces the bias in the fine-
tuning step. In the second step, we finetune the diffusion model
by first optimizing the text-embedding within the vicinity of 𝑒𝑠𝑟𝑐
to find 𝑒𝑜𝑝𝑡 that best generates 𝐼𝑆ℎ . Subsequently, we finetune the
diffusion model to reconstruct 𝐼𝑆ℎ , given 𝑒𝑜𝑝𝑡 . In the third step on
inferencing/sampling, we use an alternating strategy to manipulate
the text embedding layer to generate a high-fidelity aerial image
𝐼𝑇 . Next we describe each step in detail.

Step 1: Preprocessing using a homography transformation. The
bias acquired by the diffusion model during the second step of fine-
tuning inhibits large transformations. One way to decrease the bias
is to reduce the number of iterations while finetuning. However, this
leads to unsurprisingly low quality generated images. To decrease
the bias while finetuning, we preprocess the ground-view image
by transforming it with a 2D homography transformation [Szeliski
2022] (inverse perspective mapping). This homography projects the
ground-view image to its rough 2D projected aerial view. Note that
we are unable to use a 3D homography mapping to obtain the 3D
aerial view projection, a better pseudo estimate of the aerial view,
due to the unavailability of camera matrix, multi-views, depth infor-
mation, etc. On the other hand, depth estimation methods [Fu et al.
2018; Godard et al. 2017] increase the complexity of the problem.

Consider a 3D cube (Figure 2). Without loss of generality, the
2D image captured by a ground-camera can be regarded as the
projection of the scene in the front-face of the cube. A camera
facing the top face of the cube will be able to capture the accurate
2D aerial view of the scene. Since we have no knowledge of the
camera parameters corresponding to the ground-view image, we
are unable to shift the camera to obtain a different view of the scene.
With respect to the ground-camera, the 2D projection of the front-
face of the cube on the bottom face of the cube is the best ‘aerial
projection’ that we can get (inverse perspective mapping [Szeliski
2022]). This aerial projection is nowhere close to the true aerial
view and does not resemble the ground-view either. Hence, when

the diffusion model is finetuned, the bias is much lower than what it
would have been if the optimization/finetuning were done directly
with the ground-view image. This is because of the disparities
between the image space of 𝐼𝑆ℎ and 𝑒𝑠𝑟𝑐 / 𝑒𝑡𝑔𝑡 , ingrained in the
pretrained network. Moreover, it provides a pseudo estimate of the
direction in which the image needs to be transformed in order to
generate its aerial view at the inference stage.

Step 2: Finetuning the diffusion model. We first optimize the text-
embedding [Kawar et al. 2022; Zhang et al. 2022] to generate 𝐼𝑆ℎ and
subsequently finetune the diffusion model using 𝑒𝑜𝑝𝑡 to generate
𝐼𝑆ℎ . We find 𝑒𝑜𝑝𝑡 in the vicinity of the source text embedding 𝑒𝑠𝑟𝑐 -
(i) the disparity between the homography transformed view and
the target text is still large (though much smaller than the disparity
between the ground-view and target text). Hence, it is unlikely that
a good 𝑒𝑜𝑝𝑡 will be obtained when the optimization is run (around
𝑒𝑡𝑔𝑡 ) for a limited number of iterations. (ii) we do not want the
network to develop a bias towards the homography image as the
‘aerial view’.

To find 𝑒𝑜𝑝𝑡 , we freeze the parameters of the generative dif-
fusion model 𝑓𝜃 and optimize 𝑒𝑠𝑟𝑐 using the denoising diffusion
objective [Ho et al. 2020]. This optimization is run for a small num-
ber of iterations, in order to remain close to 𝑒𝑠𝑟𝑐 for meaningful
embedding space manipulation at inferencing.To enable 𝑒𝑜𝑝𝑡 recon-
struct the 𝐼𝑆ℎ with high fidelity, we finetune the diffusion model,
again using the denoising diffusion objective [Ho et al. 2020; Saharia
et al. 2022].

Step 3: Inferencing/ sampling by text embedding manipulation.
Our next step is to use the finetuned diffusion model to generate
a high-fidelity aerial image. Prior work [Kawar et al. 2022; Zhang
et al. 2022] use linear interpolation between the optimized text
embedding 𝑒𝑜𝑝𝑡 and the target text embedding 𝑒𝑡𝑔𝑡 . Linear inter-
polation is not the best solution for large transformations such as
ground-to-aerial generation and is unable to generate high-fidelity
aerial images.

Sampling from stable diffusion [Rombach et al. 2022] involves
iteratively denoising the image for 𝑇 steps conditioned by text,
starting with random noise. We propose to alternate between two
text embeddings 𝑒1 and 𝑒2, starting with 𝑒1. We designate 𝑒1 as the
target text embedding 𝑒𝑡𝑔𝑡 . This imposes a strong constraint on the
diffusion model to generate an aerial view image corresponding
to the text description. The bias of the diffusion neural network
motivates the network to generate an image whose details are close
to the ground-view image. However, merely relying on the bias of
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the neural network to capture all details of the scene is severely
insufficient. Hence, we designate 𝑒2 to be the linear interpolation
of 𝑒𝑜𝑝𝑡 and 𝑒𝑡𝑔𝑡 , controlled by the hyperparameter 𝛼 . The linear
interpolation can be mathematically represented as 𝑒2 = 𝛼 ∗ 𝑒𝑡𝑔𝑡 +
(1 − 𝛼) ∗ 𝑒𝑜𝑝𝑡 . 𝑒2 enables the network to generate a high fidelity
image while retaining the aerial viewpoint. For very low values of 𝛼 ,
the generated image is less aerial, despite reinforcing the viewpoint
to be aerial by applying 𝑒1 alternatingly. This is because of the
bias of the neural network. Very high values of 𝛼 result in low
fidelity images, some details of the generated aerial image are not
consistent with the ground-view image. An optimal solution is by
tuning 𝛼 .

Linear interpolation enforces the generation of an image consis-
tent with a text embedding in the linear space between 𝑒𝑜𝑝𝑡 and
𝑒𝑡𝑔𝑡 . This is a reasonable when the desired change is small: when
the image spaces corresponding to 𝑒𝑜𝑝𝑡 and 𝑒𝑡𝑔𝑡 are closeby, linear
interpolation works due to local linearity. When the desired change
is large (such as ground-to-aerial translation), the image spaces cor-
responding to 𝑒𝑜𝑝𝑡 and 𝑒𝑡𝑔𝑡 are not nearby. Since the representation
spaces are not globally linear, it becomes essential to search for the
solution in a much higher dimensional non-linear space. This is
achieved by our alternating strategy. In summary, we manipulate
the text embedding layer, such that it prioritizes fidelity and the
aerial viewpoint in an alternating manner. Alternating between text
embeddings corresponding to the viewpoint and fidelity switches the
denoising direction, such that the backward diffusion takes one step
towards preserving fidelity followed by another step towards gen-
erating an aerial view. As noises are gradually removed, the process
ends up with a high-fidelity aerial-view image on a manifold with
a better fidelity-viewpoint trade-off than linear interpolation

While the sampling repetitively alternates between 𝑒1 and 𝑒2,
it is more beneficial to use 𝑒1 (over 𝑒2) at the first iteration. When
the diffusion process starts with 𝑒1, the network generates starts
by generating an aerial image with details weakly dictated by its
bias. On the contrary, when the diffusion process starts with 𝑒2,
the generated image in the first iteration is less aerial though with
very high fidelity. The bias, along with 𝑒𝑜𝑝𝑡 serve as a strong prior
towards a non-aerial viewpoint. Subsequent iterations that use 𝑒1
are unable to overcome this strong prior to alter the viewpoint to
aerial view. Hence, we start inferencing with 𝑒1.

3 LIMITATIONS AND FUTUREWORK
Our method has some limitations: (i) the homography transforma-
tion results in a directional (diagonal) bias in the generated aerial
image in many cases; (ii) it is limited to the knowledge contained
in the pretrained stable diffusion model; (iii) the value of 𝛼 needs
to be manually tuned. Future work can focus overcoming these
limitations. Other directions include extending Aerial Diffusion to
complex scenes, generating higher-fidelity images, extending the
method to videos, using the synthetic aerial data for aerial video
analysis, detection, and recognition tasks.
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