
A Motion-Simulation Platform to Generate Synthetic Motion Data
for Computer Vision Tasks

Andrew Chalmers
CMIC, Victoria University

of Wellington
New Zealand

andrew.chalmers@vuw.ac.nz

Junhong Zhao
CMIC, Victoria University

of Wellington
New Zealand

j.zhao@vuw.ac.nz

Weng Khuan Hoh
CMIC, Victoria University

of Wellington
New Zealand

wengkhuan.hoh@vuw.ac.nz

James Drown
CMIC, Victoria University

of Wellington
New Zealand

james.drown@vuw.ac.nz

Simon Finnie
CMIC, Victoria University

of Wellington
New Zealand

simon.finnie@vuw.ac.nz

Richard Yao
Meta Platforms, Inc.

United States of America
richard.yao@fb.com

James Lin
Meta Platforms, Inc.

United States of America
james.lin@meta.com

James Wilmott
Meta Platforms, Inc.

United States of America
jwilmott@meta.com

Arindam Dey
Meta Platforms, Inc.

United States of America
aridey@meta.com

Mark Billinghurst
The University of Auckland

New Zealand
mark.billinghurst@auckland.ac.nz

Taehyun Rhee
CMIC, Victoria University

of Wellington
New Zealand

taehyun.rhee@vuw.ac.nz

Figure 1: The data extracted from our platform: image buffer data (RGB, ID map, position map, depth map) and motion data
(velocities). In the rotation velocity images, the green and red visualize a positive and negative angular value respectively. In
this scene, the camera is moving forward while the environment is static except for the sphere which is moving to the right.

ABSTRACT
We developed the Motion-Simulation Platform, a platform running
within a game engine that is able to extract both RGB imagery
and the corresponding intrinsic motion data (i.e., motion field).
This is useful for motion-related computer vision tasks where large
amounts of intrinsic motion data are required to train a model.
We describe the implementation and design details of the Motion-
Simulation Platform. The platform is extendable, such that any
scene developed within the game engine is able to take advantage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SA Technical Communications ’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0314-0/23/12. . . $15.00
https://doi.org/10.1145/3610543.3628795

of the motion data extraction tools. We also provide both user and
AI-bot controlled navigation, enabling user-driven input and mass
automation of motion data collection.

CCS CONCEPTS
• Computing methodologies→ Simulation environments.

KEYWORDS
motion, simulation, data generation, machine learning, user study

ACM Reference Format:
Andrew Chalmers, Junhong Zhao, Weng Khuan Hoh, James Drown, Si-
mon Finnie, Richard Yao, James Lin, James Wilmott, Arindam Dey, Mark
Billinghurst, and Taehyun Rhee. 2023. A Motion-Simulation Platform to
Generate Synthetic Motion Data for Computer Vision Tasks. In SIGGRAPH
Asia 2023 Technical Communications (SA Technical Communications ’23),
December 12–15, 2023, Sydney, NSW, Australia. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3610543.3628795

https://orcid.org/0000-0001-6457-7341
https://doi.org/10.1145/3610543.3628795
https://doi.org/10.1145/3610543.3628795

SA Technical Communications ’23, December 12–15, 2023, Sydney, NSW, Australia Chalmers, et al.

Figure 2: Settings for the Motion-Simulation Platform, including the data (left), movement (centre), and scene (right) settings.

1 INTRODUCTION
Intrinsic motion data (Figure 1) is crucial for various computer vi-
sion tasks, including optical flow estimation, video-based tasks (e.g.,
frame interpolation, video stabilization, depth estimation), object
tracking, simulator sickness estimation, autonomous vehicles, and
imitation learning. Collecting real-world ground truth motion data
is very challenging, as it requires geometric understanding of the
environment to compute the motion of a given point from one
frame to the next. The use of depth sensors or object tracking is
required - which is time-consuming, impractical, and error-prone
due to limitations in existing hardware and calibration techniques.

Computer-generated imagery (CGI) provides a simulation-based
solution, with recent advancements achieving comparable accuracy
to real data for deep-learning based computer vision tasks [Wood
et al. 2021]. The data will be error-free, support automation, reduce
labor, and can be re-run, modified, and adapted to different com-
puter vision tasks. However, prior simulation methods have not
emphasized motion data generation.

We introduce ourMotion-Simulation Platform deployed in Unreal
Engine, capable of recording and extracting motion data from a
given scene. The platform’s extendability allows large-scale motion
data generation, beneficial as features for various computer vision
tasks to enhance inference quality. We detail the implementation of
motion data generation and describe an AI-bot for autonomous nav-
igation, enabling automatic mass data generation. Some computer
vision tasks also deal with user-controlled input, as such, we also
describe the setup for user input support with replay functionality
to reproduce the user’s experience.

2 RELATEDWORK
Real-world data collection requires painstaking manual effort, in-
cluding hardware setup and participant involvement [Lin et al.
2014]. Examples include targetting people [Liu et al. 2015], hand-
written digits [Deng 2012], speech [Panayotov et al. 2015], au-
tonomous vehicles [Janai et al. 2020], environmental lighting [Gard-
ner et al. 2017], and many others. These datasets are fixed and are
challenging to expand upon. Augmentation strategies (e.g., rota-
tion and scale) are often used to expand the dataset, but cannot
greatly improve the variability of the dataset as the underlying data
is 2D and rasterized [Sun et al. 2021]. Furthermore, ground truth
underlying intrinsic information, such as motion data, is often not
available. To avoid such limitations, CGI can be used to generate

large amounts of data. Previous work has focused on different types
of data for specific application areas [Dowrick et al. 2022; Tremblay
et al. 2022; Wang et al. [n. d.]; Wood et al. 2021], while we focus on
producing motion data - which is applicable for many computer
vision tasks. The use of motion data can be as part of the input to
the network (e.g., VR sickness [Hu et al. 2019]), as part of the loss
function (e.g., video frame interpolation [Huang et al. 2020]), or as
part of the output (e.g., optical flow estimation [Dosovitskiy et al.
2015]). Our simulation platform also supports real user input for
those motion-related tasks that are related to user input (e.g., VR
sickness [Hu et al. 2019] and imitation learning [Argus et al. 2020]).
Unlike previous 3D CGI datasets which operate on intercepting
graphics data on existing games [Richter et al. 2016; Shafaei et al.
2016; Wen et al. 2022], we are able to clearly demonstrate extracting
motion data since our method operates within the game engine.
Working within the game engine allows our method to be extensi-
ble and modifiable, where prior work [Mueller et al. 2017] have not
described or demonstrated motion flow extraction.

3 MOTION-SIMULATION PLATFORM
TheMotion-Simulation Platform consists of three main components:
Scenes, methods of navigation, and a replay system. These compo-
nents enable gameplay simulation and support various computer
vision tasks. The platform’s user interface (Figure 2) allows flexible
customization of settings, supporting manual, sequential, or ran-
dom selection for user-controlled and automated data collection.
The motion-data generation functionality (described in the follow-
ing section) adapts to the chosen settings, providing flexibility for
different computer vision tasks.

For scenes, the platform comprises a diverse variety to extract
motion data, where additional scenes can be added. Scene selection
can be manual, iterative, or randomized, with options to modify
attributes like time of day, cloud speed, and gravity.

For navigation, this can be AI-bot based or user-controlled. The
AI Character Controller emulates user behaviors (e.g., rotation, head
movement, running) for AI-bot navigation. To mimic real user mo-
tion, we optionally add natural head sway animation (captured from
pre-motion data) to the virtual camera, with customizable sway
intensity. AI-bot navigation incorporates a randomization layer to
ensure visual and motion variety, vital for computer vision tasks.
The AI-bot spawns at predefined starting positions and navigates to

Motion-Simulation Platform SA Technical Communications ’23, December 12–15, 2023, Sydney, NSW, Australia

(a) Storing the world position variable for the next frame.

(b) Difference in position from the previous to the current frame.

Figure 3: Calculating position and velocity in the Unreal
Engine material blueprint system.

randomly generated destinations using a ‘NavMesh’. Various move-
ment behaviors (translation speed, head movement speed, body
rotation speed, jumping, crouching) can be manually, iteratively, or
randomly selected. For user-controlled data collection, we support
multiple input methods, including keyboard/mouse, gamepad, and
virtual reality (VR) controllers. The behavior settings can limit user
functionality, e.g., disabling/ enabling running or jumping.

For the replay system, our platform supports the ability to record
and replay any AI or user playthrough. Replaying data is useful
for retrospection, data analysis, or generating additional data from
previous play-throughs. Since the replay is performed "offline" (i.e.,
users’ are not playing live), any additional data generation methods
applied in post, aren’t restricted by real-time computational re-
quirements. To support the replay system for the AI-bot, we record
the random seed and replay the AI-bot navigation from it. For the
user-controlled input, we developed a recording system that tracks
the transformation matrix of the camera, game objects, and light
sources during the users’ play-through. These recordings reproduce
the exact game state as experienced by the user.

4 MOTION DATA COMPUTATION
We export data for every frame during the gameplay simulation,
including six different forms of motion data, as follows.World-space
translational velocity:

T𝑤 = 𝑂𝑡 −𝑂𝑡−1, (1)

camera-relative translational velocity:

T𝑐 = 𝑇𝑡 −𝑇𝑡−1, (2)

camera-relative total rotational velocity:

R𝑡𝑜𝑡𝑎𝑙 = cos−1 (𝑁𝑡 · 𝑁𝑡−1), (3)

and camera-relative decomposed (yaw, pitch, roll) rotational
velocity:

R𝑦𝑎𝑤 = cos−1 (𝑁𝑥𝑡 · 𝑁𝑥𝑡−1 + 𝑁𝑦𝑡 · 𝑁𝑦𝑡−1), (4)

R𝑝𝑖𝑡𝑐ℎ = cos−1 (𝑁𝑥𝑡 · 𝑁𝑥𝑡−1 + 𝑁𝑧𝑡 · 𝑁𝑧𝑡−1), (5)

R𝑟𝑜𝑙𝑙 = cos−1 (𝑁𝑦𝑡 · 𝑁𝑦𝑡−1 + 𝑁𝑧𝑡 · 𝑁𝑧𝑡−1), (6)
where 𝑂 is a point on an object, 𝑇 and 𝑁 are unnormalized and

normalized direction vectors from the camera to 𝑂 , and 𝑡 denotes
the frame number. Note that Unreal Engine uses a right-handed co-
ordinate system where 𝑧 is up. The translational velocity equations
capture the movement of the objects within the scene (either in
world space, or relative to the camera), while the rotational equa-
tions capture the apparent angular motion of the object as observed
by the camera. We decompose the rotation into yaw, pitch, and roll
as it is often useful to measure each component separately. With
these equations, we are able to measure not only the movement of
the camera but also that of any dynamic object moving within the
scene. The core operation for the equations is to obtain the position
of the surface at the current and previous frame. To do this, we
utilize Unreal Engine’s ‘World Position’ variable in the Blueprint
system [Unreal Engine 2022] (Figure 3).

In addition to the motion data, we also export the RGB frame data
as observed by the camera, the depth buffer, as well as the world-
space position of the point on the object at each pixel. An object ID
map is also exported to link the per-pixel information back to the
scene objects. See Figure 1 for a visualization of all the exported
data. All images are exported as 16-bit 4-channel raster images in
the OpenEXR format [Kainz et al. 2009], except the ID map which is
comprised of unsigned integers. The ID map is particularly useful
for data analysis or data modification, as it gives an idea of what
parts of the scene impact the computer vision task.

5 EVALUATION
To show that the Motion-Simulation Platform extracts the motion
data reliably, we perform both a qualitative and ablation study.

The qualitative results are shown in Figure 1. This scene includes
a camera moving forward with a dynamically moving sphere. We
can observe that the translational velocity in world space is entirely
black except for themoving sphere, as expected. The camera relative
translational velocity adds the constant motion across all pixels
due to the camera motion. For the rotation, the yaw, pitch, and
roll angular motion moves in the expected direction, where the
green and red pixels indicate a positive and negative angular change
respectively. The total rotational velocity radially increases from the
centre to the periphery, where there is the most observable change
in motion. We show the results in motion in the supplemental video.

The ablation study uses the motion features in practice. As an
example, we used a simple U-Net convolutional neural network that
is designed to estimate depth maps from RGB video. We used our
Motion-Simulation Platform to generate the video sequence with
ground truth depth maps. The base network will estimate a depth
map given an RGB frame of video at time 𝑡 , where the loss is the

SA Technical Communications ’23, December 12–15, 2023, Sydney, NSW, Australia Chalmers, et al.

Figure 4: Ablation study results on a computer vision task.
As an example, this task aims to estimate depth from RGB
video - without (orange) and with (blue) motion data.

(a) Ground truth (b) w/o motion data (c) w motion data

Figure 5: A sample from the test set of the ablation study,
including the (a) ground truth depth map, and the estimated
depth maps (b) without and (c) with the motion data.

ℓ2-norm between the estimated and ground truth depth map. The
network using the motion data is also a U-Net, and will additionally
include the two previous frames at 𝑡 − 1 and 𝑡 − 2, and the loss
also includes the ℓ2-norm between motion data in addition to the
depth map estimate. We trained the network on 10260 samples, and
tested on 3392 samples. The overall MSE is 0.09096 and 0.04881 for
the network without and with the motion data respectively. The
error for each sample is visualized in Figure 4, and an example of
the estimated depth map is shown in Figure 5. As you can see, the
motion data from the Motion-Simulation Platform is reliable and
offers a clear benefit to improving the quality of computer vision
tasks, such as depth map estimation from RGB video.

6 CONCLUSION
In this paper, we presented the Motion-Simulation Platform, a plat-
form that provides researchers with the ability to generate motion
data for motion-related computer vision tasks. We described im-
plementation details including the motion-related equations, scene
integration, level navigation, and a replay system. The platform is
designed to be flexible so that data can be generated and exported
from any scene (e.g., free scenes from online repositories, in-house
scenes, scenes designed for user studies, etc.). The platform settings
make it easy to customize for different computer vision tasks, as
well as the ability to target mass automation and user-driven input.

Limitations: The motion data is based on computing differences
in positions for objects with geometry. As such, the motion of parti-
cle effects will not be captured. For the AI-bot to sensibly navigate
the environment, a NavMesh needs to be manually created for the

level - future work can consider integrating an automated NavMesh
generator. We hope to see researchers expand upon the features of
the Motion-Simulation Platform to be suitable for more tasks. For
example, we focused on human-like behaviors, but our underlying
motion data could be adapted to other forms of navigation, such as
vehicles.

REFERENCES
M Argus, L Hermann, J Long, and T Brox. 2020. FlowControl: Optical Flow Based

Visual Servoing. In 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 7534–7541. https://doi.org/10.1109/IROS45743.2020.9340942

Li Deng. 2012. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine 29, 6 (2012), 141–142.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir
Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. 2015. Flownet:
Learning optical flow with convolutional networks. In Proceedings of the IEEE
international conference on computer vision. 2758–2766.

Thomas Dowrick, Brian Davidson, Kurinchi Gurusamy, and Matthew J Clarkson. 2022.
Large scale simulation of labeled intraoperative scenes in unity. International
Journal of Computer Assisted Radiology and Surgery 17, 5 (2022), 961–963.

Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emiliano Gam-
baretto, Christian Gagné, and Jean-François Lalonde. 2017. Learning to predict
indoor illumination from a single image. arXiv preprint arXiv:1704.00090 (2017).

Ping Hu, Qi Sun, Piotr Didyk, Li-Yi Wei, and Arie E Kaufman. 2019. Reducing simulator
sickness with perceptual camera control. ACM Transactions on Graphics (TOG) 38,
6 (2019), 1–12.

Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi, and Shuchang Zhou. 2020.
Rife: Real-time intermediate flow estimation for video frame interpolation. arXiv
preprint arXiv:2011.06294 (2020).

Joel Janai, Fatma Güney, Aseem Behl, and Andreas Geiger. 2020. Computer vision
for autonomous vehicles: Problems, datasets and state of the art. Foundations and
Trends® in Computer Graphics and Vision 12, 1–3 (2020), 1–308.

Florian Kainz, Rod Bogart, and Piotr Stanczyk. 2009. Technical introduction to
OpenEXR. Industrial light and magic 21 (2009).

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common ob-
jects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 740–755.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep Learning Face
Attributes in theWild. In Proceedings of International Conference on Computer Vision
(ICCV).

MMueller, V Casser, J Lahoud, N Smith, and B Ghanem. 2017. Ue4sim: A photo-realistic
simulator for computer vision applications. CoRR, abs/1708.05869. arXiv preprint
arXiv:1708.05869 (2017).

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. 2015. Lib-
rispeech: An ASR corpus based on public domain audio books. In 2015 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). 5206–5210.
https://doi.org/10.1109/ICASSP.2015.7178964

Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. 2016. Playing for
data: Ground truth from computer games. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part II 14. Springer, 102–118.

Alireza Shafaei, James J Little, and Mark Schmidt. 2016. Play and learn: Using video
games to train computer vision models. arXiv preprint arXiv:1608.01745 (2016).

Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun Jampani, Michael Krainin, Hui-
wen Chang, Ramin Zabih, William T Freeman, and Ce Liu. 2021. Autoflow: Learning
a better training set for optical flow. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 10093–10102.

Jonathan Tremblay, Moustafa Meshry, Alex Evans, Jan Kautz, Alexander Keller, Sameh
Khamis, Charles Loop, Nathan Morrical, Koki Nagano, and Towaki Takikawa. 2022.
RTMV: A Ray-Traced Multi-View Synthetic Dataset for Novel View Synthesis.
arXiv preprint arXiv:2205.07058 (2022).

Unreal Engine. 2022. Coordinates Material Expressions: World Position.
Cheng Yao Wang, Eyal Ofek, Daniel McDuff, Oron Nir, Sai Vemprala, Ashish Kapoor,

and Mar Gonzalez-Franco. [n. d.]. CityLifeSim: A High-Fidelity Pedestrian and
Vehicle Simulation with Complex Behaviors. ([n. d.]).

Elliott Wen, Tharindu Indrajith Kaluarachchi, Shamane Siriwardhana, Vanessa Tang,
Mark Billinghurst, Robert W Lindeman, Richard Yao, James Lin, and Suranga
Nanayakkara. 2022. VRhook: A Data Collection Tool for VR Motion Sickness
Research. In Proceedings of the 35th Annual ACM Symposium on User Interface
Software and Technology. 1–9.

ErrollWood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian Dziadzio, Thomas J Cashman,
and Jamie Shotton. 2021. Fake it till you make it: face analysis in the wild using
synthetic data alone. In Proceedings of the IEEE/CVF international conference on
computer vision. 3681–3691.

https://doi.org/10.1109/IROS45743.2020.9340942
https://doi.org/10.1109/ICASSP.2015.7178964

	Abstract
	1 Introduction
	2 Related Work
	3 Motion-Simulation Platform
	4 Motion Data Computation
	5 Evaluation
	6 Conclusion
	References

