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Figure 1: The data extracted from our platform: image buffer data (RGB, ID map, position map, depth map) and motion data
(velocities). In the rotation velocity images, the green and red visualize a positive and negative angular value respectively. In
this scene, the camera is moving forward while the environment is static except for the sphere which is moving to the right.

ABSTRACT
We developed the Motion-Simulation Platform, a platform running
within a game engine that is able to extract both RGB imagery
and the corresponding intrinsic motion data (i.e., motion field).
This is useful for motion-related computer vision tasks where large
amounts of intrinsic motion data are required to train a model.
We describe the implementation and design details of the Motion-
Simulation Platform. The platform is extendable, such that any
scene developed within the game engine is able to take advantage
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of the motion data extraction tools. We also provide both user and
AI-bot controlled navigation, enabling user-driven input and mass
automation of motion data collection.
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Figure 2: Settings for the Motion-Simulation Platform, including the data (left), movement (centre), and scene (right) settings.

1 INTRODUCTION
Intrinsic motion data (Figure 1) is crucial for various computer vi-
sion tasks, including optical flow estimation, video-based tasks (e.g.,
frame interpolation, video stabilization, depth estimation), object
tracking, simulator sickness estimation, autonomous vehicles, and
imitation learning. Collecting real-world ground truth motion data
is very challenging, as it requires geometric understanding of the
environment to compute the motion of a given point from one
frame to the next. The use of depth sensors or object tracking is
required - which is time-consuming, impractical, and error-prone
due to limitations in existing hardware and calibration techniques.

Computer-generated imagery (CGI) provides a simulation-based
solution, with recent advancements achieving comparable accuracy
to real data for deep-learning based computer vision tasks [Wood
et al. 2021]. The data will be error-free, support automation, reduce
labor, and can be re-run, modified, and adapted to different com-
puter vision tasks. However, prior simulation methods have not
emphasized motion data generation.

We introduce ourMotion-Simulation Platform deployed in Unreal
Engine, capable of recording and extracting motion data from a
given scene. The platform’s extendability allows large-scale motion
data generation, beneficial as features for various computer vision
tasks to enhance inference quality. We detail the implementation of
motion data generation and describe an AI-bot for autonomous nav-
igation, enabling automatic mass data generation. Some computer
vision tasks also deal with user-controlled input, as such, we also
describe the setup for user input support with replay functionality
to reproduce the user’s experience.

2 RELATEDWORK
Real-world data collection requires painstaking manual effort, in-
cluding hardware setup and participant involvement [Lin et al.
2014]. Examples include targetting people [Liu et al. 2015], hand-
written digits [Deng 2012], speech [Panayotov et al. 2015], au-
tonomous vehicles [Janai et al. 2020], environmental lighting [Gard-
ner et al. 2017], and many others. These datasets are fixed and are
challenging to expand upon. Augmentation strategies (e.g., rota-
tion and scale) are often used to expand the dataset, but cannot
greatly improve the variability of the dataset as the underlying data
is 2D and rasterized [Sun et al. 2021]. Furthermore, ground truth
underlying intrinsic information, such as motion data, is often not
available. To avoid such limitations, CGI can be used to generate

large amounts of data. Previous work has focused on different types
of data for specific application areas [Dowrick et al. 2022; Tremblay
et al. 2022; Wang et al. [n. d.]; Wood et al. 2021], while we focus on
producing motion data - which is applicable for many computer
vision tasks. The use of motion data can be as part of the input to
the network (e.g., VR sickness [Hu et al. 2019]), as part of the loss
function (e.g., video frame interpolation [Huang et al. 2020]), or as
part of the output (e.g., optical flow estimation [Dosovitskiy et al.
2015]). Our simulation platform also supports real user input for
those motion-related tasks that are related to user input (e.g., VR
sickness [Hu et al. 2019] and imitation learning [Argus et al. 2020]).
Unlike previous 3D CGI datasets which operate on intercepting
graphics data on existing games [Richter et al. 2016; Shafaei et al.
2016; Wen et al. 2022], we are able to clearly demonstrate extracting
motion data since our method operates within the game engine.
Working within the game engine allows our method to be extensi-
ble and modifiable, where prior work [Mueller et al. 2017] have not
described or demonstrated motion flow extraction.

3 MOTION-SIMULATION PLATFORM
TheMotion-Simulation Platform consists of three main components:
Scenes, methods of navigation, and a replay system. These compo-
nents enable gameplay simulation and support various computer
vision tasks. The platform’s user interface (Figure 2) allows flexible
customization of settings, supporting manual, sequential, or ran-
dom selection for user-controlled and automated data collection.
The motion-data generation functionality (described in the follow-
ing section) adapts to the chosen settings, providing flexibility for
different computer vision tasks.

For scenes, the platform comprises a diverse variety to extract
motion data, where additional scenes can be added. Scene selection
can be manual, iterative, or randomized, with options to modify
attributes like time of day, cloud speed, and gravity.

For navigation, this can be AI-bot based or user-controlled. The
AI Character Controller emulates user behaviors (e.g., rotation, head
movement, running) for AI-bot navigation. To mimic real user mo-
tion, we optionally add natural head sway animation (captured from
pre-motion data) to the virtual camera, with customizable sway
intensity. AI-bot navigation incorporates a randomization layer to
ensure visual and motion variety, vital for computer vision tasks.
The AI-bot spawns at predefined starting positions and navigates to
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(a) Storing the world position variable for the next frame.

(b) Difference in position from the previous to the current frame.

Figure 3: Calculating position and velocity in the Unreal
Engine material blueprint system.

randomly generated destinations using a ‘NavMesh’. Various move-
ment behaviors (translation speed, head movement speed, body
rotation speed, jumping, crouching) can be manually, iteratively, or
randomly selected. For user-controlled data collection, we support
multiple input methods, including keyboard/mouse, gamepad, and
virtual reality (VR) controllers. The behavior settings can limit user
functionality, e.g., disabling/ enabling running or jumping.

For the replay system, our platform supports the ability to record
and replay any AI or user playthrough. Replaying data is useful
for retrospection, data analysis, or generating additional data from
previous play-throughs. Since the replay is performed "offline" (i.e.,
users’ are not playing live), any additional data generation methods
applied in post, aren’t restricted by real-time computational re-
quirements. To support the replay system for the AI-bot, we record
the random seed and replay the AI-bot navigation from it. For the
user-controlled input, we developed a recording system that tracks
the transformation matrix of the camera, game objects, and light
sources during the users’ play-through. These recordings reproduce
the exact game state as experienced by the user.

4 MOTION DATA COMPUTATION
We export data for every frame during the gameplay simulation,
including six different forms of motion data, as follows.World-space
translational velocity:

T𝑤 = 𝑂𝑡 −𝑂𝑡−1, (1)

camera-relative translational velocity:

T𝑐 = 𝑇𝑡 −𝑇𝑡−1, (2)

camera-relative total rotational velocity:

R𝑡𝑜𝑡𝑎𝑙 = cos−1 (𝑁𝑡 · 𝑁𝑡−1), (3)

and camera-relative decomposed (yaw, pitch, roll) rotational
velocity:

R𝑦𝑎𝑤 = cos−1 (𝑁𝑥𝑡 · 𝑁𝑥𝑡−1 + 𝑁𝑦𝑡 · 𝑁𝑦𝑡−1), (4)

R𝑝𝑖𝑡𝑐ℎ = cos−1 (𝑁𝑥𝑡 · 𝑁𝑥𝑡−1 + 𝑁𝑧𝑡 · 𝑁𝑧𝑡−1), (5)

R𝑟𝑜𝑙𝑙 = cos−1 (𝑁𝑦𝑡 · 𝑁𝑦𝑡−1 + 𝑁𝑧𝑡 · 𝑁𝑧𝑡−1), (6)
where 𝑂 is a point on an object, 𝑇 and 𝑁 are unnormalized and

normalized direction vectors from the camera to 𝑂 , and 𝑡 denotes
the frame number. Note that Unreal Engine uses a right-handed co-
ordinate system where 𝑧 is up. The translational velocity equations
capture the movement of the objects within the scene (either in
world space, or relative to the camera), while the rotational equa-
tions capture the apparent angular motion of the object as observed
by the camera. We decompose the rotation into yaw, pitch, and roll
as it is often useful to measure each component separately. With
these equations, we are able to measure not only the movement of
the camera but also that of any dynamic object moving within the
scene. The core operation for the equations is to obtain the position
of the surface at the current and previous frame. To do this, we
utilize Unreal Engine’s ‘World Position’ variable in the Blueprint
system [Unreal Engine 2022] (Figure 3).

In addition to the motion data, we also export the RGB frame data
as observed by the camera, the depth buffer, as well as the world-
space position of the point on the object at each pixel. An object ID
map is also exported to link the per-pixel information back to the
scene objects. See Figure 1 for a visualization of all the exported
data. All images are exported as 16-bit 4-channel raster images in
the OpenEXR format [Kainz et al. 2009], except the ID map which is
comprised of unsigned integers. The ID map is particularly useful
for data analysis or data modification, as it gives an idea of what
parts of the scene impact the computer vision task.

5 EVALUATION
To show that the Motion-Simulation Platform extracts the motion
data reliably, we perform both a qualitative and ablation study.

The qualitative results are shown in Figure 1. This scene includes
a camera moving forward with a dynamically moving sphere. We
can observe that the translational velocity in world space is entirely
black except for themoving sphere, as expected. The camera relative
translational velocity adds the constant motion across all pixels
due to the camera motion. For the rotation, the yaw, pitch, and
roll angular motion moves in the expected direction, where the
green and red pixels indicate a positive and negative angular change
respectively. The total rotational velocity radially increases from the
centre to the periphery, where there is the most observable change
in motion. We show the results in motion in the supplemental video.

The ablation study uses the motion features in practice. As an
example, we used a simple U-Net convolutional neural network that
is designed to estimate depth maps from RGB video. We used our
Motion-Simulation Platform to generate the video sequence with
ground truth depth maps. The base network will estimate a depth
map given an RGB frame of video at time 𝑡 , where the loss is the
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Figure 4: Ablation study results on a computer vision task.
As an example, this task aims to estimate depth from RGB
video - without (orange) and with (blue) motion data.

(a) Ground truth (b) w/o motion data (c) w motion data

Figure 5: A sample from the test set of the ablation study,
including the (a) ground truth depth map, and the estimated
depth maps (b) without and (c) with the motion data.

ℓ2-norm between the estimated and ground truth depth map. The
network using the motion data is also a U-Net, and will additionally
include the two previous frames at 𝑡 − 1 and 𝑡 − 2, and the loss
also includes the ℓ2-norm between motion data in addition to the
depth map estimate. We trained the network on 10260 samples, and
tested on 3392 samples. The overall MSE is 0.09096 and 0.04881 for
the network without and with the motion data respectively. The
error for each sample is visualized in Figure 4, and an example of
the estimated depth map is shown in Figure 5. As you can see, the
motion data from the Motion-Simulation Platform is reliable and
offers a clear benefit to improving the quality of computer vision
tasks, such as depth map estimation from RGB video.

6 CONCLUSION
In this paper, we presented the Motion-Simulation Platform, a plat-
form that provides researchers with the ability to generate motion
data for motion-related computer vision tasks. We described im-
plementation details including the motion-related equations, scene
integration, level navigation, and a replay system. The platform is
designed to be flexible so that data can be generated and exported
from any scene (e.g., free scenes from online repositories, in-house
scenes, scenes designed for user studies, etc.). The platform settings
make it easy to customize for different computer vision tasks, as
well as the ability to target mass automation and user-driven input.

Limitations: The motion data is based on computing differences
in positions for objects with geometry. As such, the motion of parti-
cle effects will not be captured. For the AI-bot to sensibly navigate
the environment, a NavMesh needs to be manually created for the

level - future work can consider integrating an automated NavMesh
generator. We hope to see researchers expand upon the features of
the Motion-Simulation Platform to be suitable for more tasks. For
example, we focused on human-like behaviors, but our underlying
motion data could be adapted to other forms of navigation, such as
vehicles.
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