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Figure 1: We present TRAvatar, a novel framework to capture and reconstruct high-fidelity volumetric avatars. Trained

efficiently end-to-end on multi-view image sequences under varying illuminations, our virtual avatars can be relighted and

animated in real-time of high fidelity.

ABSTRACT

In this paper, we propose a novel framework, Tracking-free Re-

lightable Avatar (TRAvatar), for capturing and reconstructing high-

fidelity 3D avatars. Compared to previousmethods, TRAvatar works

in a more practical and efficient setting. Specifically, TRAvatar is

trained with dynamic image sequences captured in a Light Stage

under varying lighting conditions, enabling realistic relighting and

real-time animation for avatars in diverse scenes. Additionally,

TRAvatar allows for tracking-free avatar capture and obviates the

need for accurate surface tracking under varying illumination
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conditions. Our contributions are two-fold: First, we propose a

novel network architecture that explicitly builds on and ensures the

satisfaction of the linear nature of lighting. Trained on simple group

light captures, TRAvatar can predict the appearance in real-time

with a single forward pass, achieving high-quality relighting effects

under illuminations of arbitrary environment maps. Second, we

jointly optimize the facial geometry and relightable appearance

from scratch based on image sequences, where the tracking is

implicitly learned. This tracking-free approach brings robustness

for establishing temporal correspondences between frames under

different lighting conditions. Extensive qualitative and quantitative

experiments demonstrate that our framework achieves superior

performance for photorealistic avatar animation and relighting.

CCS CONCEPTS

• Computing methodologies→ Volumetric models;Motion

capture; Reflectance modeling.
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1 INTRODUCTION

In this work, we focus on the capture and reconstruction of high-

fidelity avatars in a Light Stage environment. As virtual repre-

sentations of humans, avatars are crucial components in various

downstream applications, such as video games, virtual reality, telep-

resence, and more [Bi et al. 2021; Guo et al. 2019; Lombardi et al.

2018; Moser et al. 2021; Schwartz et al. 2020].

Avatar creation has been a popular and challenging research

topic in computer graphics and computer vision for decades. Despite

considerable progress in this field, there are still many challenges to

overcome, including expensive and sophisticated setup for avatar

capture, lack of support for realistic relighting and animation, and

high resource demands making training time-consuming and real-

time deployment difficult to achieve. Traditional frameworks based

on graphics pipeline, including geometry reconstruction [Beeler

et al. 2010, 2011; Collet et al. 2015; Guo et al. 2019; Riviere et al. 2020;

Wu et al. 2018] and physically-inspired reflectance capture [Debevec

et al. 2000; Ghosh et al. 2011; Ma et al. 2007; Moser et al. 2021;

Weyrich et al. 2006], are often difficult to set up and lack robustness,

especially for dynamic subjects and non-facial parts. Recent deep

learning based methods [Bi et al. 2021; Cao et al. 2022; Lombardi

et al. 2018, 2021; Remelli et al. 2022] have demonstrated promis-

ing improvements for avatar representation by approximating the

geometry and appearance with neural networks. However, most

learning-based methods struggle to handle relighting effectively

and have computationally expensive pre-processing and training

steps that cannot meet the aforementioned requirements.

To this end, we propose a novel framework, Tracking-free Re-

lightable Avatar (TRAvatar), that can circumvent the above obsta-

cles, supporting efficient capture, high-quality reconstruction, as

well as real-time animation and relighting (see Figure 1). Specifically,

we improve the entire pipeline at its two primary stages, i.e., both

the data capture and avatar reconstruction.

For the data capture stage, we record a subject’s performance

under various expressions and lighting conditions. To faithfully

reproduce the identity and detailed expressions of a specific subject,

both dynamic geometry and reflectance should be captured. Con-

sidering the complexity of lighting conditions, it is non-trivial for

the avatar network to directly learn the mapping from environment

maps to the appearance. Furthermore, it is challenging to achieve

satisfactory decoupling of lighting and other input conditions. To

overcome this challenge, we take advantage of the prior knowl-

edge of lighting, specifically its linear nature, to guide the net-

work design. We design a network structure that explicitly exploits

and guarantees to satisfy the linear nature of lighting, making it

easy to train and enabling excellent generalization ability. Trained

on dynamically captured image sequences in simple controllable

group light illumination [Bi et al. 2021], our model can predict

the appearance under arbitrary and complex lighting condition

in a single forward pass, which facilitates real-time environment

relighting. The learned disentangled representation also allows our

data-driven avatar to be animated, relighted, and rendered under

novel viewpoints.

For avatar reconstruction, we generate a 3Dmodel from captured

data that can be manipulated in real time. It is a challenging task

to estimate temporal correspondences between captured frames

with different lighting conditions. Previous learning-based methods

typically rely on a pre-processing step to compute explicit tracked

geometry (as a deformable base mesh), which is computationally

expensive and not robust to varying light conditions. Therefore, we

propose to jointly optimize the relightable appearance and latent

geometry from scratch from image sequences, where the tracking

is implicitly learned. Different from previous methods that separate

mesh tracking and avatar creation in two stages, our tracking-free

approach implicitly learns the dynamic deformation of the base

mesh directly from the multi-view captured data, along with the

relightable appearance in a joint optimization process. In addition

to being much more efficient, this joint optimization allows our

model to be directly trained on images in varying illumination,

which is challenging for traditional explicit surface tracking.

Our experiments with TRAvatar show its effectiveness in creat-

ing high-quality and authentic avatars that can be animated and

relighted in real-time with superior visual quality and computa-

tional efficiency compared to previous methods.

In summary, our contributions are:

• We present TRAvatar, a practical and efficient capture solution for

creating high-fidelity avatars that can be animated and relighted

in real time.

• We propose a novel network architecture that explicitly exploits

the linear nature of lighting to improve generalizability, enabling

real-time relighting with high realism for given environment

maps.

• We propose to jointly optimize the relightable appearance and

latent geometry of avatars from image sequences captured under

varying lighting conditions, allowing more efficient and effective

creation of relightable virtual avatars.

• We demonstrate that TRAvatar outperforms previous methods

in terms of both visual quality and computational efficiency.

2 RELATEDWORK

Creating a data-driven, relightable facial avatar of a specific subject

typically involves capturing both dynamic geometry and reflectance.

This is followed by constructing a parametric model from the

captured data, or alternatively, employing image-based relighting

techniques to synthesize the output. Below, we provide a concise

overview of most relevant methods.

Geometry and reflectance acquisition. 3D face reconstruction

and performance capture have been active research topics for

decades. Accordingly, sophisticated 3D scanning systems have been

developed for both static geometry reconstruction [Beeler et al.

2010; Ghosh et al. 2011] and dynamic performance capture [Beeler
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et al. 2011; Bradley et al. 2010; Collet et al. 2015; Dou et al. 2017a; Guo

et al. 2019; Huang et al. 2011]. These methods utilize either multi-

view stereo (MVS) or structured light for point cloud acquisition

and then estimate the deforming geometry to achieve temporally

consistent mesh tracking. The tracking process often involves time-

consuming MVS reconstruction for thousands of frames and dense

optical-flow optimization, while existing real-time face tracking

algorithms cannot achieve satisfactory accuracy.

Besides, another crucial aspect of realistic relightable avatars is

to estimate the way in which the light interacts with the subject,

i.e., the reflectance property. Previous methods usually assume

physically-inspired reflectance functions modeled as bidirectional

reflectance distribution function (BRDF) [Schlick 1994] and solve

the parameters by observing the appearance under active or passive

lighting. Active lighting methods typically require specialized se-

tups with controllable illuminations and synchronized cameras.

Debevec et al. [2000] pioneer in using a Light Stage for facial

reflectance acquisition. One-light-at-a-time (OLAT) capture is per-

formed to obtain the dense reflectance field. Later, polarized [Ghosh

et al. 2011; Ma et al. 2007; Zhang et al. 2022] and color gradient

illuminations [Fyffe and Debevec 2015; Guo et al. 2019] are used

for rapid acquisition. Passive capture methods have significantly

reduced the necessity for an expensive capture setup. For example,

Riviere et al. [2020] and Zheng et al. [2023] propose to estimate

physically-based facial textures via inverse rendering.

3D face modeling. Modeling of facial geometry and appearance

has been a fundamental component of human related tasks in

computer graphics and computer vision. The seminal work on 3D

morphable models (3DMMs) [Blanz and Vetter 1999; Cao et al. 2013;

Yang et al. 2020] employs Principal Component Analyze (PCA) to

derive the shape basis from head scans. Despite its widespread use

in various applications such as single-view face reconstruction and

tracking [Dou et al. 2017b; Thies et al. 2016; Zhu et al. 2017], the

shape space of 3DMMs is limited by its low-dimensional linear

representation. Follow-up methods separate the parametric space

dimensions [Jiang et al. 2019; Li et al. 2017; Vlasic et al. 2005]

or use local deformation models [Wu et al. 2016] to enhance the

representation power of the morphable model.

In recent years, deep learning based methods [Bagautdinov et al.

2018; Tran and Liu 2018, 2019; Zhang et al. 2022; Zheng et al.

2022] have been widely used to achieve impressive realism in face

modeling. Lombardi et al. [2018] utilize a Variational Autoencoder

(VAE) [Kingma and Welling 2013] to jointly model the mesh and

dynamic texture, which is used for monocular [Yoon et al. 2019]

and binocular [Cao et al. 2021] facial performance capture. Bi et

al. [2021] propose to extend the VAE-based deep appearance model

by capturing the dynamic performance under controllable group

light illuminations to enable relighting.

While mesh-based methods typically require dense correspon-

dence based on sophisticated surface tracking algorithms [Beeler

et al. 2011; Wu et al. 2018] for training and degrade in non-facial

regions, recent progress in neural volumetric rendering further en-

ables photorealistic avatar creation. Lombardi et al. [2021] propose

MVP (Mixture of Volumetric Primitives), a hybrid volumetric and

primitive-based representation that produces high-fidelity render-

ing results with efficient runtime performance. More recently, Li et

Figure 2: Illustration of our capture setup. Top left: Our

customized capturing apparatus. Top right: The layout of

24 cameras. Bottom: Snapshots of captured frames from the

frontal camera in a recording. Both the expression and the

lighting condition change across different frames.

al. [2023] extend MVP with eyeglasses to be relightable following

[Bi et al. 2021]. But it requires additional efforts for real-time

relighting.

Some other methods have been proposed to create a facial avatar

from monocular videos [Gao et al. 2022; Zielonka et al. 2023] or

RGB-D input [Cao et al. 2022] without a specialized capturing

apparatus. However, these approaches do not provide a relightable

appearance, and their quality cannot match that of avatars built

from industrial capture setups.

Image-based relighting. In contrast to model-based reflectance

acquisition approaches, image-based relighting addresses the prob-

lem from an orthogonal perspective. By exploiting the linear nature

of light transport, Debevec et al. [2000] propose to add up hundreds

of images of densely sampled reflectance fields from OLAT capture

to synthesize rendering results under novel lighting conditions.

Subsequently, the number of sampled images is reduced by using

specifically designed illumination patterns [Peers et al. 2009; Reddy

et al. 2012] or employing sparse sampling [Fuchs et al. 2007; Wang

et al. 2009]. Xu et al. [2018] propose to train a network for relighting

a scene from only five input images. Meka et al. [2019] show that

the full 4D reflectance field of human faces can be regressed from

two images under color gradient light illumination. Sun et al. [2020]

propose a learning-based method to achieve higher lighting resolu-

tion than the original Light Stage OLAT capture. Although these

approaches achieve photorealistic rendering under novel lighting

conditions, they only work from fixed viewpoints.

Meka et al. [2020] achieve relightable free viewpoint rendering

of dynamic facial performance by extending Meka et al. [2019]

with explicit 3D reconstruction and multi-view capture. However,

they extract pixel-aligned features from captured raw images under
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Figure 3: The pipeline of our framework. TRAvatar is a relightable volumetric avatar representation learned from multiview

image sequences, including dynamic expressions and varying illuminations. For each frame, a motion encoder E𝑚 forecasts

the disentangled global rigid transformation {𝑅ℎ𝑒𝑎𝑑 , 𝑡ℎ𝑒𝑎𝑑 } and expression code 𝑧𝑒 . With the given expression code, lighting

condition 𝑙 , and view direction d, a series of decoders subsequently predict the basemesh and the volumetric primitives mounted

on it. Notably, a physically-inspired appearance decoder D𝑟𝑔𝑏 (detailed in Section 4.2) is proposed to facilitate network training.

Ultimately, the avatar representation is computed and then rendered, adaptable to any viewpoint and any lighting condition.

color gradient light illumination to build relightable textures, which

limits its usage scenarios to performance replay. In contrast, our

approach enables the creation of virtual avatars that not only allows

for free viewpoint rendering with a relightable appearance but

also possesses the capability of being controlled by an animation

sequence of a different subject.

3 CAPTURING APPARATUS

To create an animatable and relightable avatar with ultra-high real-

ism and specific identity, it is necessary to capture its performance

under various expressions and lighting conditions. To this end,

we have constructed an apparatus following the design principles

of Light Stages [Debevec 2012; Guo et al. 2019]. Our customized

capturing apparatus is shown in Figure 2.

Our Light Stage, installed on a spherical structure with a 3.6-

meter diameter, comprises 356 lighting units and 24 machine vision

cameras. We strategically place the cameras to capture the subject

from multiple angles, and arrange the lighting units for precise

control over illumination conditions. The Light Stage is placed in a

dark room to prevent environment light interference.

Lighting units. The 356 lighting units are uniformly mounted on

the sphere and are oriented towards the center. Each customized

lighting unit comprises 132 high-brightness Light-Emitting Diodes

(LEDs) that are controlled by a programmable embedded system.

The LEDs are equipped with diffusers and lenses to ensure equal

density illumination at the center.

There are five different types of LEDs on the lighting unit, namely

red, green, blue, white 4500K, and white 6500K. The setup follows

the latitude-longitude polarization as proposed in [Ghosh et al.

2011], and each type of LED is grouped into three categories with

different polarization arrangements. The brightness of each group

of lights can be adjusted independently using Pulse Width Modula-

tion up to 100KHz. All the lighting units are connected to a central

control unit and a computer via a CAN bus. The lighting pattern

can be shuffled within 2ms, allowing us to capture the subject’s

performance under various lighting conditions quickly.

Cameras. Our apparatus includes 24 machine vision cameras

installed around the sphere, with a focus on the center. The cameras

consist of four 31M RGB cameras, 12 5M RGB cameras, and eight

12M monochrome cameras. The trigger ports of these cameras

are linked to the central control unit, which synchronizes the

cameras and lighting units to capture the subject’s performance

under various lighting conditions. We have disabled postprocessing

features such as automatic gain adjustments in the cameras to

ensure a linear response to the illuminance.

Depending on the camera types, we transmit the captured images

to seven PCs via 10G Ethernet or USB ports.We calibrate the camera

array with a 250mm calibration sphere similar to [Beeler et al. 2010]

and undistort the images to ensure high-quality reconstruction.

The mean reprojection error is less than 0.4 pixels, which facilitates

high-quality creation of the target avatar.

4 METHOD

In this section, we formally introduce our novel framework, namely

TRAvatar, which learns a disentangled representation for the target

avatar to be animated, relighted, and rendered from novel view-

points. As shown in Figure 3, our approach is based on a variational

autoencoder (VAE) [Kingma and Welling 2013] architecture, where
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the latent space is designed to be disentangled with linear responses

to varying lighting conditions , providing efficient and accurate

modeling of dynamic geometry and reflectance fields.

We will first describe the details of our TRAvatar, including the

training framework and network architecture (Section 4.1). The

details of our specifically designed appearance decoder will be

explained in Section 4.2. We will then describe how to use our Light

Stage for data capture under various illuminations (Section 4.3).

Finally, we will introduce the loss functions and regularization

terms used for end-to-end network training (Section 4.4).

4.1 TRAvatar

Our volumetric avatar is built upon Mixed Volumetric Primitives

(MVP) [Lombardi et al. 2021], which is a generalized hybrid rep-

resentation using both a base mesh and volumetric primitives

(see Figure 4). Each primitive is mounted to the base mesh and

is represented as a volumetric grid with a resolution of𝑀3. We set

𝑀 = 8 in our implementation.

Inspired by the success of image based relighting methods, our

lighting condition is modeled as a vector 𝑙 ∈ R+
356 representing

the incoming light field of 356 densely sampled directions corre-

sponding to the light positions of the Light Stage. We employ a

VAE based architecture to train our relightable avatar. Different

from previous methods [Bi et al. 2021; Remelli et al. 2022], we do

not require tracked geometry in training. Note that the motion

of a human head can be separated into global rigid motion and

expression related motion. We utilize a motion encoder E𝑚 , to

predict the disentangled motion. During training, for each frame,

the convolutional motion encoder E𝑚 takes a subset of the camera

views as input and outputs the global head rotation 𝑅ℎ𝑒𝑎𝑑 ∈ 𝑆𝑂 (3)

and translation 𝑡ℎ𝑒𝑎𝑑 ∈ R3 as well as the mean 𝜇 ∈ R256 and the

standard deviation 𝜎 ∈ R+
256 of a Gaussian distribution N(𝜇, 𝜎2).

The expression code 𝑧𝑒 ∈ R256 is sampled from this Gaussian

distribution and represents expression related motion.

Taking the expression code 𝑧𝑒 , the lighting condition 𝑙 , and the

view direction d as input, we use several decoders to predict the base

mesh and volumetric primitives for output synthesis. Specifically,

a mesh decoder D𝑚𝑒𝑠ℎ : R256 → R3×𝑁𝑚𝑒𝑠ℎ , which is a multilayer

perceptron, predicts the residual vertex positions 𝛿v based on the

vertex positions v̂ of a template mesh with a fixed topology, where

𝑁𝑚𝑒𝑠ℎ is the number of mesh vertices. Then the resulting vertex

position v of the base mesh is computed as v = 𝑅ℎ𝑒𝑎𝑑 (v̂+𝛿v)+𝑡ℎ𝑒𝑎𝑑 .
Following [Lombardi et al. 2021], three decoders D𝑇 , D𝛼 , and

D𝑟𝑔𝑏 with 2D convolutional architectures predict the volumetric

primitives upon the base mesh. Specifically, the transformation

decoder D𝑇 : R256 → R9×𝑁𝑝𝑟𝑖𝑚 computes the rotation 𝑅𝑝 , trans-
lation 𝑡𝑝 , and scale 𝑠𝑝 of 𝑁𝑝𝑟𝑖𝑚 primitives relative to the tangent

space of the base mesh, which compensate for the motion that

is not modeled by the mesh vertex v. The opacity decoder D𝛼 :

R
256 → R𝑀

3×𝑁𝑝𝑟𝑖𝑚 also takes the expression code 𝑧𝑒 as input and

decodes the voxel opacity 𝑉𝛼 of the primitives. The appearance

decoder D𝑟𝑔𝑏 : R256+356+3 → R3×𝑀
3×𝑁𝑝𝑟𝑖𝑚 takes the expression

code 𝑧𝑒 , the lighting condition 𝑙 , and the view direction d as input

and predicts the RGB colors𝑉𝑟𝑔𝑏 of the primitives. The architecture

of our relightable appearance decoder is designed to leverage the

linear nature of lighting (see Section 4.2).

Captured image Base mesh Volumetric primitives

Figure 4: Illustration of our hybrid avatar representation.

The base mesh and the volumetric primitives have consistent

structureswhich provide flexible control such as video driven

animation.

Output synthesis. Given the volumetric primitives, we use a dif-

ferentiable accumulative ray marching algorithm [Karras and Aila

2013; Lombardi et al. 2021] to render the output images. Specifically,

for a ray r𝑝 (𝑡) = o𝑝 + 𝑡d𝑝 with a direction d𝑝 starting from a pixel

𝑝 with a 3D position o𝑝 , we compute the pixel color 𝐼𝑟𝑔𝑏 (𝑝) as:

𝐼𝑟𝑔𝑏 (𝑝) =
∫ 𝑡max

𝑡min

𝑉𝑟𝑔𝑏 (r𝑝 (𝑡))
𝑑𝑇 (𝑝, 𝑡)

𝑑𝑡
, (1)

𝑇 (𝑝, 𝑡) = min
(
1,

∫ 𝑡

𝑡min

𝑉𝛼
(
r𝑝 (𝑡)

) )
, (2)

where 𝑡min and 𝑡max are the predefined near and far bounds of the

rendering range. The opacity of a pixel 𝑝 is set as 𝐼𝛼 (𝑝) = 𝑇 (𝑝, 𝑡max).

4.2 Relightable Appearance

In this section, we detail our specially designed appearance de-

coder D𝑟𝑔𝑏 that enables high-fidelity real-time relighting using

environment maps. Although the appearance changes drastically

when lighting condition changes, previous methods [Basri and

Jacobs 2003; Xu et al. 2018] have shown that the relighted images

often lie in low-dimensional subspaces. For example, nearly all

the lighting effects are linear [Chandrasekhar 2013; Debevec et al.

2000] and the full reflectance field can be predicted from a few

images of the object in specific lighting conditions [Meka et al.

2019; Xu et al. 2018]. However, directly predicting all OLAT images

and adding them up for environment map relighting is not feasible

for real-time rendering. Our key observation is that we can design

a network architecture upon the disentangled representation for

our appearance decoder D𝑟𝑔𝑏 to strictly satisfy the linear nature of

lighting, i.e.:

D𝑟𝑔𝑏 (𝑧𝑒 , 𝑘1𝑙1 + 𝑘2𝑙2, d) = 𝑘1D𝑟𝑔𝑏 (𝑧𝑒 , 𝑙1, d)

+ 𝑘2D𝑟𝑔𝑏 (𝑧𝑒 , 𝑙2, d),∀𝑘1 and 𝑘2 ∈ R.
(3)



SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia H. Yang, M. Zheng, W. Feng, H. Huang, Y.-K. Lai, P. Wan, Z. Wang, and C. Ma

We show the architecture of D𝑟𝑔𝑏 in Figure 3. Considering the

spatially structured effect for each light, we use a convolutional

architecture forD𝑟𝑔𝑏 . The expression code 𝑧𝑒 and the view direction

d are fed into an ordinary non-linear branch. The lighting condi-

tion 𝑙 is injected in a separate linear branch, where the activation

layers and the bias in the fully connected layer and transposed

convolutional layers are removed. The feature maps of the linear

branch Flin is point-wise multiplied with the feature maps from

the non-linear branch Fnlin at each stage:

F 𝑖+1
lin

= 𝐶𝑜𝑛𝑣𝑇
(
F 𝑖
lin

� (F 𝑖
nlin

+ 1)
)
, (4)

where 𝑖 is the index of the stage, 𝐶𝑜𝑛𝑣𝑇 represents the transposed

convolution operation, and � is point-wise multiplication. The plus

one term acts as a residual connection that stabilizes training (this

term is omitted in Figure 3 to avoid clutter). In this way, the appear-

ance decoderD𝑟𝑔𝑏 is strictly linear to the lighting condition 𝑙 while
being non-linear to the expression code 𝑧𝑒 and the view direction

d that does not limit the representation power. We empirically

find that our architecture significantly improves the generalization

ability for novel lighting conditions (see Section 5.3 for some related

evaluation results).

4.3 Data Acquisition

Capturing each transient facial expression under a variety of light-

ing conditions for relightable appearance poses a significant chal-

lenge. Instead, for each subject, we record image sequences of

dynamic expressions with different lighting conditions in each

frame and rely on our self-supervised training framework for disen-

tanglement by using information across frames. Following [Bi et al.

2021; Li et al. 2023], we use group light patterns for capture, i.e.,

for each frame seven randomly selected adjacent lights are turned

to the maximum. Differently, since we do not use interleaved full-

on frames for tracking, we find a large part of the face is dark

in group light conditions that makes the implicit tracking in our

network unstable. To provide basic illumination, we set all lights not

included in the selected group to a known low brightness. Thanks

to the linear nature of light and our network architecture design,

the fully disentangled relightable appearance can be learned from

such coalescent lighting conditions.

During the capture process, a subject is asked to perform 41 pre-

defined expressions and read out two paragraphs. Then a freestyle

performance is captured to cover extreme and complex expression

combinations.We capture 10200 frames for each subject at 20fps.We

show a snapshot of our captured images in Figure 2. The background

without the subject is also captured.

4.4 Network Training

Our model is trained end-to-end on the multi-view image sequences

under varying illuminations. The training loss L𝑡𝑜𝑡𝑎𝑙 consists of

two parts: L𝑡𝑜𝑡𝑎𝑙 = L𝑖𝑚𝑔 + L𝑟𝑒𝑔 , where L𝑖𝑚𝑔 is the data term and

L𝑟𝑒𝑔 is the regularization term.

The data term L𝑖𝑚𝑔 contains three components and measures

the similarity between the captured input and the rendered output:

L𝑖𝑚𝑔 = L1 + 𝜆VGGLVGG + 𝜆GANLGAN, (5)

whereL1 is theMAE loss,LVGG is the perceptual loss, andLGAN is

the adversarial loss that improves the visual quality. 𝜆VGG and 𝜆GAN

are the balancing weights. We clip the pixel values of the rendered

images 𝐼𝑟𝑔𝑏 before calculating loss to simulate the truncation of the

imaging process.

The regularization loss L𝑟𝑒𝑔 comprises four components:

L𝑟𝑒𝑔 = 𝜆LapLLap + 𝜆𝑝𝑅L𝑝𝑅 + 𝜆𝑣𝑜𝑙L𝑣𝑜𝑙 + 𝜆KLDLKLD, (6)

where LLap = | |L(v − v𝑏𝑎𝑠𝑒 ) | |
2 is the expression-aware Laplacian

loss to encourage a smooth base mesh. L is the sparse Laplacian

matrix. v𝑏𝑎𝑠𝑒 = B(B𝑇B)−1B𝑇 v is calculated in a least-squares

manner based on the 51 predefined expression blendshapes B ∈

R
51×3𝑁𝑚𝑒𝑠ℎ from the FaceScape dataset [Yang et al. 2020]. L𝑝𝑅 =
1

𝑁𝑝𝑟𝑖𝑚
| | (D𝑇 )𝑅,𝑡 | | regularizes the predicted rotation and translation

(D𝑇 )𝑅,𝑡 to be small. We apply a predefined mask on the base

mesh to assign higher weights of LLap and L𝑝𝑅 on facial regions

compared to non-facial parts. L𝑣𝑜𝑙 and LKLD are the volume mini-

mization prior and KL-divergence loss as in [Lombardi et al. 2021],

respectively. 𝜆Lap, 𝜆𝑝𝑅 , 𝜆𝑣𝑜𝑙 , and 𝜆KLD are balancing weights.

Since our training images are captured under varying illumi-

nations, the background changes across frames. To prevent the

encoding of background flashes into the avatar, the final image 𝐼
in training is generated by blending the rendered foreground 𝐼𝑟𝑔𝑏
with the captured background 𝐼𝐵𝐺 based on the computed opacity

value 𝐼𝛼 :

𝐼 = 𝐼𝛼 𝐼𝑟𝑔𝑏 + (1 − 𝐼𝛼 )𝐼𝐵𝐺 . (7)

We use the Adam optimizer [Kingma and Ba 2015] to train

the network with a learning rate of 10−4. We choose frontal, left,

and right views as input of the encoder. The input images are

normalized and converted to grayscale to prevent the light from

being encoded in the expression code 𝑧𝑒 . We use the per-camera

color calibration similar to [Lombardi et al. 2021]. For monochrome

cameras, the rendered images are explicitly converted to grayscale

before calculating loss functions. We fit a base mesh on the first

frame for initialization.

The network training for each subject takes about two days on a

single NVIDIAV100 graphics card. The decoding and rendering take

around 22ms for a frame of a resolution 1280 × 960, enabling real-

time relighting and animation. Please refer to our supplementary

materials for implementation details such as network architectures

and hyperparameters.

5 EXPERIMENTS

5.1 Qualitative Evaluation Results

Mesh-volume representation. Figure 4 shows two examples of our

avatars based on the hybrid mesh-volume representation. Although

our avatars are trained without explicit tracking, the base mesh and

the volumetric primitives are roughly aligned. The inherently con-

sistent structures enable explicit control and can be naturally used

for applications such as video-driven animations and relighting.

Disentanglement of illumination and motion. Both illumination

and motion are varied in our captured sequences. To evaluate the

disentanglement of illumination and motion in our model, for each

input frame, we keep the extracted expression code 𝑧𝑒 fixed and

change the lighting condition 𝑙 extracted from environment maps

to generate the relighting results. We use the appearance decoder

to predict the relighted appearance of RGB channels separately for
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Ground-truth MVP MVP+ Ours

Figure 5: Comparison to MVP [Lombardi et al. 2021] on novel

view synthesis. Our results are comparable toMVP andMVP+

(an improved version of MVP trained by ourselves) even

without explicit tracking of the base mesh.

Table 1: Quantitative evaluation results of novel view

synthesis in comparison with MVP [Lombardi et al. 2021].

The two subjects are from the Multiface Dataset [Wuu et al.

2022].

Subject #002421669 Subject #5067077

Method MAE ↓ SSIM ↑ LPIPS ↓ MAE ↓ SSIM ↑ LPIPS ↓

MVP 2.08 0.910 0.273 2.21 0.923 0.232

MVP+ 1.76 0.930 0.193 2.11 0.928 0.211

Ours 1.73 0.932 0.186 2.01 0.934 0.208

colorful environment map relighting. As shown in Figure 8, the

lighting conditions are fully disentangled from the motion and are

consistent across different subjects.

5.2 Comparisons to Prior Work

Comparison toMVP. Since existing explicit surface trackingmeth-

ods [Beeler et al. 2011; Wu et al. 2018] do not generalize well under

varying lighting conditions, we compare to MVP [Lombardi et al.

2021] on the publicly available Multiface Dataset [Wuu et al. 2022],

which consists of high quality multi-view recordings of 13 different

identities under fixed illumination. We perform qualitative and

quantitative evaluations on eight held out views of two subjects. The

vanilla MVP uses an L2 loss during training, which leads to blurry

results. We train an improved version, namely MVP+, using the

similar data term as ours for fair comparison. The other components

remain identical to the vanilla MVP.

The visual comparison on Subject #002421669 from the dataset

is shown in Figure 5. The Mean Absolute Error (MAE), Structural

Similarity Index (SSIM), and Learned Perceptual Image Patch Sim-

ilarity (LPIPS) measurements are reported in Table 1. Both our

method and MVP+ generate clearer details compared to vanilla

MVP. Even without a computationally intensive tracking process,

the quantitative reconstruction error of our method is slightly lower

than that of MVP+. We attribute the improvement to the avoidance

of information loss in the explicit surface tracking process.

Input DPR Ours

Figure 6: Comparison to DPR [Zhou et al. 2019] on single-

view portrait relighting. The input illumination is shown as

inset in each relighting result.

Table 2: Quantitative evaluation results of ablation study. In

each column, the best number is highlighted in bold. Some

corresponding visual results are shown in Figure 9.

Subject A Subject B

Method MAE ↓ SSIM ↑ LPIPS ↓ MAE ↓ SSIM ↑ LPIPS ↓

NL 10.47 0.665 0.417 13.87 0.601 0.440

NL + ENV 7.10 0.677 0.418 9.78 0.604 0.445

NL + LCL 9.74 0.661 0.428 12.19 0.601 0.449

NL + TS 8.03 0.672 0.401 9.77 0.597 0.423

Ours 6.32 0.707 0.334 7.99 0.635 0.356

Comparison to single-view portrait relighting methods. We com-

pare our method to Deep Portrait Relighting (DPR) [Zhou et al.

2019] to evaluate the relighting results. The illumination is repre-

sented as the first three bands of Spherical Harmonics (SH) in DPR.

We use their default SH coefficients and calculate the corresponding

point light brightness for our model. We use a portrait in uniform

illumination as the input of DPR.

As shown in Figure 6, DPR fails to predict correct relighting ef-

fects such as specularities and shadows consistent with the identity-

specific geometry and skin material. As a result, the identity is

shifted after relighting. In contrast, our method achieves more

faithful portrait relighting results.

5.3 Ablation Study

We perform ablation studies to evaluate the effectiveness of our

physically-inspired appearance decoderD𝑟𝑔𝑏 . Specifically, we com-

pare our method to four alternative design options:

(1) NL: We remove the linear lighting branch of D𝑟𝑔𝑏 and di-

rectly feed the concatenated lighting condition 𝑙 and other

latent codes to an ordinary non-linear network with the

same layers as for appearance prediction.
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(2) NL + ENV:We use the same network architecture as in (1) but

use the Light Stage to simulate environment maps [Debevec

et al. 2002] instead of group lights for training.

(3) NL + LCL: We adopt the same network architecture as in (1)

and add a lighting consistency loss inspired by the recent

single image portrait relighting method [Yeh et al. 2022] to

enforce the linearity of lighting.

(4) NL + TS: We adopt the same network architecture as in

(1) and use a two-stage training framework [Bi et al. 2021]

for relighting. Specifically, we initially train an appearance

decoderD𝑟𝑔𝑏 for OLAT relighting, and subsequently use the

trained network to synthesize data for training the environ-

ment map relighting appearance decoder.

We capture 600 frames for each subject under various preset

lighting conditions in a Light Stage as ground truth for quantitative

evaluation. Quantitative results are summarized in Table 2 and

qualitative comparisons are shown in Figure 9. Note that not all

the lighting conditions can be simulated in a Light Stage due to

hardware limitations such as the maximum brightness of a lighting

unit. The results demonstrate that our linear lighting branch of

D𝑟𝑔𝑏 significantly enhances the generalization performance for

relighting.

5.4 Video-Driven Animation

Our volumetric avatar can be animated by replacing the motion

encoder E𝑚 with an application-specific module predicting the

low-dimensional expression code 𝑧𝑒 . Existing methods perform

domain adaptation on synthetic datasets [Lombardi et al. 2018] or

use triplet supervision [Zhang et al. 2022] to train the expression

code predictor. In our implementation, we simply use an off-the-

shelf expression regressor similar to [Weise et al. 2011] to predict

the identity-independent blendshape weights of each frame from

the frontal view in our captured data. Then we train a three-layer

MLP to predict the expression code 𝑧𝑒 from the blendshape weights.

Our volumetric avatar can be animated by the extracted blendshape

weights from monocular videos.

We find that the rigid head rotation and translation are success-

fully disentangled from the expression code even without explicit

constraint. Thanks to the consistent structures of the base mesh

and volumetric primitives, we can explicitly constrain the motion

beyond face, achieving plausible animation results. Figure 7 shows

some performance-driven animation results. Please refer to our

accompanying video for the corresponding animations results.

6 CONCLUSION AND FUTUREWORK

In this work, we propose a novel framework, named TRAvatar,

for capturing and reconstructing high-fidelity and relightable 3D

avatars in a practical and efficient setting. We train the framework

with dynamic image sequences captured in a Light Stage under

varying lighting conditions, enabling natural relighting and video-

driven animation.

Our contributions are two-fold. First, we present a novel network

architecture that satisfies the linear nature of lighting, allowing

for real-time appearance prediction and high-quality relighting

effects. Second, we propose to jointly optimize facial geometry

and relightable appearance based on image sequences, with the

Input Subject B Subject C

Figure 7: Video-driven animation results. Our method can

faithfully generate identity-specific dynamic wrinkle details

for different expressions.

deformation of the base mesh implicitly learned. Our tracking-

free scheme provides robustness for establishing temporal corre-

spondences between frames under different lighting conditions.

Both qualitative and quantitative experiments demonstrate that

our framework achieves superior performance in photorealistic

avatar animation and relighting, facilitating further advancements

in content creation of 3D avatars.

Despite our promising results, there are some limitations to

be addressed in future work. First, the data capturing apparatus

employed in our framework is expensive, which may limit its

applicability and adoption. Second, due to the lack of sufficient

surface constraints, it becomes challenging to perform precise

manual control on the learned implicit representation. Future work

could explore methods to create relightable avatars with more

affordable equipment and investigate representations that offer

more flexible control. Finally, we are interested in extending our

method to handle near-field and high-frequency relighting [Bi et al.

2021; Sun et al. 2020] as well as accessories such as glasses [Li et al.

2023].
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Subject D Lighting 1 Lighting 2 Subject E Lighting 1 Lighting 2

Figure 8: Evaluation results of lighting and motion disentanglement. For both subjects, we show the input frames of two

different expressions on the left and the corresponding relighting results in the middle and on the right. The two input

environment maps for relighting are shown on the top. The relighting effects are consistent with the dynamic expressions.

NL NL + ENV NL + LCL NL + TS Ours Ground truth

Figure 9: Ablation study results on Subjects A (top) and B (bottom) about our physically inspired linear light branch for the

appearance decoder D𝑟𝑔𝑏 . From left to right: relighting results of four alternative baselines (see detailed explanations in

Section 5.3), our results, and the ground truth. Note that here we use simulated environment map light which is similar to the

lighting conditions that NL + ENV is trained on. Therefore, the results of NL + ENV are comparable to ours in this figure but

downgrades significantly when using real HDR environments for testing (see more results in our supplementary materials).


