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Figure 1: VR-NeRF brings high-fidelity walkable spaces to real-time virtual reality. Our “Eyeful Tower” camera rig captures

spaces with high image resolution and dynamic range that approach the limits of the human visual system. We train high-

fidelity neural radiance fields that exploit the high-dynamic range nature of our captured scenes and provide level-of-detail

mip-mapping for efficient anti-aliasing. Our rendering backend leverages our accurate occupancy grid and a dynamicmulti-GPU

work distribution scheme to achieve real-time frame rates on dual 2K×2K eyebuffers for an immersive VR experience.
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ABSTRACT

We present an end-to-end system for the high-fidelity capture,
model reconstruction, and real-time rendering of walkable spaces in
virtual reality using neural radiance fields. To this end, we designed
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and built a custom multi-camera rig to densely capture walkable
spaces in high fidelity and with multi-view high dynamic range
images in unprecedented quality and density. We extend instant
neural graphics primitives with a novel perceptual color space for
learning accurate HDR appearance, and an efficient mip-mapping
mechanism for level-of-detail rendering with anti-aliasing, while
carefully optimizing the trade-off between quality and speed. Our
multi-GPU renderer enables high-fidelity volume rendering of our
neural radiance field model at the full VR resolution of dual 2K×2K
at 36Hz on our custom demo machine. We demonstrate the quality
of our results on our challenging high-fidelity datasets, and com-
pare our method and datasets to existing baselines. We release our
dataset on our project website: https://vr-nerf.github.io.
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1 INTRODUCTION

The advent of consumer virtual reality (VR) headsets has led to a
proliferation of highly immersive visual media, including breath-
taking VR photography and video. However, existing approaches
support either high-fidelity view synthesis with a small headbox of
less than 1m diameter [Broxton et al. 2020; Overbeck et al. 2018], or
scene-scale free-viewpoint view synthesis of lower quality or fram-
erate [Jang et al. 2022; Parra Pozo et al. 2019; Wu et al. 2022]. In this
work, we present a comprehensive system designed to overcome
these limitations all the way from capture to rendering for high-
fidelity free-viewpoint exploration of walkable, real-world static
spaces in VR. Our contributions address the following challenges:

(1) dense, high-fidelity capture of large-scale walkable spaces,
(2) high-fidelity neural radiance field reconstruction, and
(3) real-time rendering of our neural radiance fields in VR.

High-fidelity view synthesis depends on high-quality, densely cap-
tured multi-view images. While NeRF objects use 100s of views
[Mildenhall et al. 2020] and light field captures around 1,000 views
per location [Broxton et al. 2020], walkable scenes will need a min-
imum of several thousand input views to provide enough spatial
coverage. Existing captures of walkable spaces tend to be hand-
held and usually comprise 100s of photos [e.g. Philip et al. 2021]
or 1,000s of video frames [e.g. Knapitsch et al. 2017]. In both cases,
the space of camera poses is undersampled: photo sequences lack
sufficient density, and videos move along a 1D subspace that fails to
sample the 6D pose space sufficiently uniformly. High-fidelity view

synthesis also needs to reproduce the high dynamic range of the
real world, which existing methods do not. To this end, we designed
a custom camera rig that enables capturing walkable spaces in un-
precedented quality and density: our datasets contain thousands
of 50megapixel high dynamic range (HDR) images. Several of our
datasets exceed 100 gigapixels – two orders of magnitude more
than existing datasets [Flynn et al. 2019; Philip et al. 2021; Xu et al.
2021].

Neural radiance fields (NeRFs) have led to an explosion in high-
quality novel-view synthesis techniques [Mildenhall et al. 2020;
Tewari et al. 2022]. However, existing methods do not support the
size, scale, and dynamic range of our high-fidelity datasets, even
when downsampled to 2K resolution. We propose VR-NeRF, which
is uniquely adapted to our high-quality datasets and supports real-
time VR rendering in full NeRF quality. Specifically, we introduce a
new perceptually based color space for representing high-dynamic
range radiance values of up to 10,000 cd/m2, allowing our model to
learn up to 22 stops1 of dynamic range (or 4,194,304:1). A second cru-
cial component is a real-time-capable mip-mapping technique that
suppresses aliasing when observing objects at different distances
using level-of-detail rendering. We also developed a principled
pruning stage to obtain an accurate occupancy grid for speeding
up rendering with a focus on improved geometry estimation.

The third and final stage of our end-to-end system is a custom
multi-GPU renderer that brings high-fidelity NeRF rendering into
virtual reality. On our custom-built demo machine, we can render
our models at the full resolution of the Quest Pro VR headset, i.e.,
two 2K×2K eye buffers (~8megapixel), at a consistent frame rate
of 36Hz, which results in a compelling VR experience that enables
free exploration of walkable spaces in high fidelity.

2 RELATEDWORK

Kanade et al. [1995] coined the term “Virtualized Reality” to see
a previously recorded event from any perspective. Our goal is to
virtually walk through previously captured scenes at high fidelity
in virtual reality. We, therefore, call our work Virtualized Walkable
Spaces. There are three crucial components to enable high-fidelity
virtualized walkable spaces: (1) a mobile high-resolution multi-view
camera system to densely capture large-scale scenes; (2) an efficient
neural representation to compactly and accurately encode a large-
scale scene with high dynamic range and level of detail; and (3)
optimized real-time rendering at VR resolution and frame rate.

High-Resolution Multi-View Capture System. Capture systems
can vary from a single moving camera [Bertel et al. 2020; Davis
et al. 2012; Gortler et al. 1996; Hedman et al. 2016; Kim et al. 2013;
Knapitsch et al. 2017; Levoy and Hanrahan 1996] to multi-camera
rigs [Broxton et al. 2020; Flynn et al. 2019; Parra Pozo et al. 2019;
Wilburn et al. 2005] and synchronized camera arrays in big studios
[Joo et al. 2019; Orts-Escolano et al. 2016]. Existing multi-view cap-
tures are either limited to a small headbox [e.g. Overbeck et al. 2018;
Parra Pozo et al. 2019] or are sparsely captured [e.g. Knapitsch et al.
2017; Yoon et al. 2020], which restricts freedom of motion. We built

1One stop is a doubling or halving of the amount of light reaching the imaging sensor.
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a multi-camera rig that densely and efficiently captures a wide vari-
ety of walkable spaces to create large-scale multi-view datasets with
high-resolution details (50megapixels) and high dynamic range.

Large-scale Novel View Synthesis. Our focus is on real-time VR
rendering of high-fidelity walkable spaces; recent surveys cover
the full range of scene representations [Richardt et al. 2020; Tewari
et al. 2022]. While mesh-based reconstructions [Straub et al. 2019;
Whelan et al. 2018] are ideal for fast rendering, they tend to lack fine
geometric detail. Image-based rendering [e.g. Hedman et al. 2016]
achieves more visual detail but struggles with reflective surfaces.
Several follow-upmethods use neural representations for explicit re-
flection support [Philip et al. 2021;Wu et al. 2022; Xu et al. 2021] and
achieve interactive frame rates. NeRFs [Mildenhall et al. 2020] have
become the de-facto standard neural representation due to their
versatility and ability to represent complex scenes with high fidelity.
They have been extended in multiple ways to represent large-scale
scenes even at a city scale [Tancik et al. 2022; Turki et al. 2022; Xian-
gli et al. 2022; Xu et al. 2023; Zhang et al. 2023]. High-resolution con-
cerns have also been addressed [Jiang et al. 2023; Wang et al. 2022].
However, these methods do not support level of detail and high
dynamic range, which are required for high-fidelity VR. LocalRF
[Meuleman et al. 2023] and F2-NeRF [Wang et al. 2023] tackle large
unbounded scenes, yet only support limited view extrapolation and
thus cannot provide fully immersive free-view exploration. Meth-
ods built on implicit surfaces, like signed distance functions, tend
to focus on high-quality 3D surface reconstruction rather than view
synthesis [Li et al. 2023; Rosu and Behnke 2023; Yu et al. 2022; Zhu
et al. 2023]. We build our model on Instant-NGP (iNGP) [Müller et al.
2022], as it supports real-time rendering without model baking, and
provides easily extensible model capacity via its hash grid. However,
it lacks support for high-fidelity rendering of large-scale walkable
spaces, such as level of detail and perceptually based HDR support.

High Dynamic Range (HDR). The human visual system supports
a significantly higher dynamic range than current camera or display
technology [Reinhard et al. 2006]. When recreating highly realistic
walkable spaces, it is therefore important to accurately capture and
render the scene in HDR. RawNeRF learns linear radiance from raw
sensor measurements using a weighted L2 loss that approximates a
tonemapped loss [Mildenhall et al. 2022]. Several methods learn to
reconstruct linear radiance from low dynamic range images using
differentiable tonemapping models [Huang et al. 2022; Jun-Seong
et al. 2022; Rückert et al. 2022]. We train our HDR model directly
using HDR input images in a novel perceptually uniform color
space that does not require custom losses or tonemapping modules.

Level of Detail (LOD). Takikawa et al. [2021] and Barron et al.’s
Mip-NeRF [2021] introduced the notion of level of detail into neural
signed distance and radiance fields, respectively, to reduce geomet-
ric and visual complexity, e.g. to minimize aliasing when viewing
objects from a distance. As Mip-NeRF’s integrated positional en-
coding is incompatible with efficient grid-based NeRF approaches
like iNGP [Müller et al. 2022], Zip-NeRF [Barron et al. 2023] uses
supersampling as an approximation, but multi-second inference
times still prevent real-time rendering. Aroudj et al. [2022] store the
scene redundantly at multiple LOD levels in a sparse voxel octree.

We introduce an efficient LOD approach designed for iNGP that
enables high-fidelity real-time VR rendering with anti-aliasing.

3 THE “EYEFUL TOWER” CAPTURE RIG

Capturing scenes with a hand-held camera quickly reaches limits:
taking hundreds of photos is tedious, achieving consistent coverage
of viewpoints is difficult, and hand-held exposure bracketing is
tricky due to camera shake. To capture real-world environments
with the highest visual fidelity in terms of spatial resolution and dy-
namic range, we designed, built, and refined a custom multi-camera
capture rig affectionately referred to as the Eyeful Tower. The design
of our capture rig was guided by the following considerations:

(1) Coverage: Place cameras for approximately uniform light
field capture, and parallelize data capture across cameras.

(2) Fidelity: Match human visual perception in terms of acuity
and high dynamic range.

(3) Mobility: Allow single-person operation, and be usable with-
out external power or network connection.

(4) Rigidity: Support multi-exposure bracketing for high dy-
namic range (HDR) reconstruction without camera motion.

(5) Storage: Record photos on-camera, so no server is needed.
Offload all photos via a single network cable.

3.1 Capture Rig Design

We built our capture rig using extruded
aluminium around an 80×80 cm base
with a 1.8m vertical pole for 22 cameras
that are distributed on 7 levels with 3
cameras each, plus one upward-facing
camera at the top (see right). A 1.5 kWh
Li-ion battery powers cameras, a 24-
port network switch, and a Raspberry
Pi controlling the cameras. We chose
Sony 𝛼1 mirrorless cameras for their
high-quality 50-megapixel raw images
with 14 stops of dynamic range. Please
see our supplement for details on the
rig design and camera/lens choices.

3.2 Capture Process

3.2.1 Desirable Capture Density. Reproducing the appearance of
a static scene from any viewpoint in theory requires observations
for the entire 5D plenoptic function [Adelson and Bergen 1991].
The widely used NeRF synthetic dataset [Mildenhall et al. 2020] has
viewpoints densely distributed on a hemisphere, which allows the
renderings to generalize continuously across the whole hemisphere
of viewing directions. For scene-scale rendering, we are lacking
such a densely captured dataset, which results in the limited ca-
pability to extrapolate novel viewpoints. However, this is critically
important for virtual reality, where we want to deliver walkable
spaces with 6-degrees-of-freedom allowable head movement.

3.2.2 Capture Procedure. We capture scenes by ‘tiling’ the avail-
able floor area with rig positions that are spaced roughly 30 cm
apart. For complete captures, we capture forward- and backward-
facing views, while trying to stay at least 30 cm away from walls or
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objects. Near walls, it is often sufficient to only capture the direction
facing away from the wall, as defocused close-ups of a wall usually
add little value. Before each capture, we also place scale bars (for
automatic scale estimation) and a Macbeth ColorChecker (for color
verification and white balance) into the scene. During the capture,
we try to stay out of view of any camera, avoid moving any objects,
such as chairs or carpets, and aim to minimize lighting changes and
shadow casting.

3.3 Data Preprocessing

3.3.1 HDR Image Merging. We use LibRaw 0.21 to debayer the
raw images captured by our cameras to 16-bit linear TIFF images.
We then merge 9 different exposures into one high-dynamic range
image using a robustified version of Hanji et al.’s Poisson photon
noise estimator [2020], which provides an unbiased estimate of
scene radiance. We observed that the Sony 𝛼1 raw image values
do not saturate as quickly as expected, which produces outliers
that can reduce the estimated radiance sufficiently to cause visible
color changes. Therefore, we keep track of the minimum radiance
estimate per pixel and color channel, so that we can ignore it when
merging the input exposures. In addition, we set fully saturated
pixels to the lowest radiance that saturates in all images.

3.3.2 Camera Calibration. Weestimate camera poses and intrinsics
using Agisoft Metashape Pro 2.0 [Agisoft, LLC 2023], a professional
photogrammetry software that supports rig calibration, in which
the relative pose between cameras is constant across all positions
of the capture rig within a scene. Metashape effectively handles our
large-scale datasets with up to 6,300 photos at 50megapixel reso-
lution [Over et al. 2021]. It also automatically detects the markers
on our calibrated scale bars, such that camera poses are in metric
space for 1:1 scale rendering in VR.

3.3.3 Captured Datasets. We captured multiple datasets using our
Eyeful Tower capture rig, which are summarized in Table 1. Our
captures took between 5minutes and 6 hours, depending on the
scale and complexity of the scene, with an average speed of around
one minute per m2. The resulting datasets comprise 29–303 billion
pixels, or rays, covering spaces of 6–120m2.

4 HIGH-FIDELITY NEURAL RADIANCE

FIELDS

Volume rendering using neural radiance fields is a compelling
choice for photorealistic scene representations due to the versatil-
ity of representing semi-transparent surfaces and finely detailed
objects while being suitable for delivering scene-scale rendering.
As our focus is on maximizing rendering fidelity in the available
compute budget, we use neural radiance fields as a foundation and
leave alternative representations as future work. Instead of con-
structing a large, complex model with extra capacity to account
for various effects, our goal is to design a simple yet general model
that facilitates real-time VR rendering for large-scale scenes.

We therefore build on the Instant NGP architecture [Müller et al.
2022] with its efficient and scalable multi-level hash encoding for
fast rendering of large-scale static scenes. We make several contri-
butions to improve the visual fidelity of high-resolution room-scale

Table 1: Statistics of scenes captured using our Eyeful Tower

rig: We show the number of cameras, rig positions, and im-

ages, as well as the capture time, surface area, and the number

of rays at full resolution (5,784×8,660) and 1368×2048 (‘2K’),

our typical training and rendering image resolution.

Scene Cameras # Pos. # Img. Time Area Rays Rays @ 2K

apartment 22 180 3,960 60min 55m2 190.6 B 10.7 B
kitchen 19 318 6,024 43min 54m2 302.7 B 16.9 B
office1a 9 85 765 23min 20m2 29.1 B 1.6 B
office1b 22 71 1,562 16min 20m2 78.2 B 4.4 B
office2 9 233 2,097 39min 35m2 79.8 B 4.5 B
office_view1 22 126 2,772 31min 18m2 138.9 B 7.8 B
office_view2 22 67 1,474 10min 33m2 73.8 B 4.1 B
riverview 22 48 1,008 5min 6m2 52.9 B 3.0 B
seating_area 9 168 1,512 22min 16m2 55.9 B 3.1 B
table 9 134 1,206 14min 24m2 45.2 B 2.5 B
workshop 9 700 6,300 364min† 120m2 239.4 B 13.4 B

† Includes 121minutes of capture time and 243minutes of data offload mid-capture.

rendering, including a perceptual color space that enables percep-
tual optimization of high dynamic range images using a simple 𝐿1
loss. We further introduce an efficient and effective level-of-detail
scheme for anti-aliasing using multi-level hash grids. To faithfully
represent unbounded areas, such as views through windows or long
corridors, we adopt a cubic space contraction based on the 𝐿∞ norm
[Wan et al. 2023], which is a good fit for grid-based representations.
We discuss implementation details and additional components that
contribute to the high quality of our view synthesis model in our
supplement.

4.1 Perceptual Modeling of High Dynamic

Range

Our Sony 𝛼1 cameras capture raw images with a dynamic range
of 14 stops (i.e., 14 bits of usable information). The 9-step exposure
bracketing adds a further 8 stops, for a total of 22 stops of dynamic
range (see Figure 2). In other words, the brightest input pixel value
can be up to 4,194,304 times as bright as the darkest non-zero pixel
value. Applying common image losses like 𝐿1 or 𝐿2 directly in linear
color spaces of this range leads to poor results as the losses are
dominated by errors in bright areas. For example, an error of 0.1 is
significantly more noticeable at a base level of 0.1 (+100%) compared
to 10 (only +1%), yet would be penalized the same. The solution is to
either use a more complex loss function, such as RawNeRF’s relative
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Figure 2: Comparison of the dynamic range of a JPEG photo

(range 0~1) with the corresponding raw image (0~2) and the

full HDR image (0~145).
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MSE [Mildenhall et al. 2022], or a carefully designed non-linear
mapping to a perceptually uniform color space.

One such non-linear mapping is the Perceptual Quantizer (PQ)
developed by Dolby [Miller et al. 2013] and standardized by SMPTE
[2014], which is the foundation of many consumer HDR image and
video formats. PQ was designed to optimally encode the large lumi-
nance range from 0 to 10,000 cd/m2 in 10–16 bits while minimizing
visible banding artifacts. This was achieved by approximating the
integral of just noticeable differences based on the contrast sen-
sitivity function of the human visual system [Kunkel 2022]. The
function

PQ(𝑌 ) =
(
𝑐1 + 𝑐2 · 𝑌𝑚1

1 + 𝑐3 · 𝑌𝑚1

)𝑚2
with constants (1)

𝑚1 =
1305
8192 ,𝑚2 =

2523
32 , 𝑐1 =

107
128 , 𝑐2 =

2413
128 , 𝑐3 =

2392
128 (2)

maps the input luminance 𝑌 ∈ [0, 10,000] cd/m2 to the ‘PQ space’
in the unit range. For our experiments, we map linear color values
of 1 to a luminance of 100 cd/m2 in order to allow a conversion to
the PQ space. Operating in the unit range is also a natural fit for
the sigmoid activation function, which eases the learning of model
output distributions. Applying an 𝐿1 or 𝐿2 loss in the PQ space now
penalizes errors according to human visual perception, and is able
to produce colors in full high dynamic range. See Figure 7 for a
sweep of different exposures at rendering time.

4.2 Feature Grid Mip-Mapping for

Level-of-Detail

Level-of-detail (LOD) rendering is desirable for large-scale scenes,
as objects observed at different distances reveal varying levels of
geometric and texture detail. Single-LOD methods like NeRF or
iNGP can cause severe aliasing in highly textured objects seen at a
distance, while details seen in only a few viewsmight be washed out
due to many overlapping distant views. Multiple levels of detail can
reduce aliasing as the LOD level can be dynamically adjusted based
on the distance of objects from the viewer. In computer graphics,
texture LOD is usually implemented using mip-maps [Williams
1983]. Mip-NeRF [Barron et al. 2021] introduced mip-mapping to
NeRFs and Zip-NeRF [Barron et al. 2023] recently extended these
ideas to fast grid-based feature encodings, as used by iNGP. Un-
fortunately, this approach is unsuitable for real-time rendering
(1.1 FPS on 8×V100). Instead, we introduce a simple but effective
mip-mapping scheme for grid-based feature encodings that enables
learning of continuous LOD while actively supporting real-time
rendering.

4.2.1 Feature Grid Mip-Mapping. Multi-resolution feature grids
are a natural fit for LOD rendering as they already represent features
across multiple scales. By considering a ray as a cone as in Mip-
NeRF, and by comparing its cross section with the size of grid
features at each level, we can efficiently determine which feature
grid levels are theoretically resolvable at the ray level, and can down-
weight or even ignore finer levels that would introduce aliasing.

For a specific ray, we start by calculating its base radius 𝑟 at unit
distance along the ray. At a sample location, the pixel footprint is
then determined by multiplying the base radius with the metric
distance 𝑡 along the ray as 𝑟 = 𝑡 ·𝑟 . For contracted spaces, Barron

L=k+1

L=k

Multi-level Hash Grids Masked features

…

k

k+1

0

1

15

14

…
…

…

r1

r2

Figure 3: LOD Masking. Smaller sample footprints like 𝑟1
return more features from the multi-level hash grid than

larger, more distant samples (𝑟2).

et al. [2022, 2023] andWang et al. [2023] consider the Jacobian JC of
the contraction function C(·) at the sample location x to calculate
the scale factor for variance or step size estimation. Similarly, we
could derive the contracted pixel radius via C(𝑟 ) = 𝑟 · 3

√︁
det(JC (x)).

In practice, we compute the contracted pixel radius directly from
corresponding sample points on adjacent rays in the contracted
space. The optimal LOD level can then be calculated from the con-
figuration of the multi-resolution feature grid as follows. Suppose
the base resolution is 𝑠 and the scale factor between levels is 𝑓 . For
the 𝐿th level (with 𝐿 = 0 being the base), each level has a grid voxel
size of (𝑠 𝑓 𝐿)−1. Based on the Nyquist–Shannon sampling theorem,
we dampen features whose size is less than twice the footprint 𝑟
in the contracted coordinate space (see diagram in Figure 3). The
optimal LOD level for a sample is therefore 𝐿∗ = − log𝑓 (2𝑠𝑟 ). For a
piecewise linear LOD transition, we use these per-level weights:

𝑤𝐿 =


1 𝐿 ≤ ⌊𝐿∗⌋
𝐿∗ − ⌊𝐿∗⌋ ⌊𝐿∗⌋ < 𝐿 ≤ ⌈𝐿∗⌉
0 ⌈𝐿∗⌉ < 𝐿

(3)

For distant points, we only need to sample the features of the lowest
few grid levels, which reduces rendering time, while gradually re-
vealing high-frequency features for closer points. Feature sampling
of the finest hash grid layers is particularly expensive due to the
highly incoherent memory access patterns. Skipping these features
results in substantially faster rendering (Section 5).

4.2.2 LOD Bias. Similar to standard mip-mapping, we can option-
ally add an LOD bias Δ𝐿 to the LOD 𝐿∗ used for querying and
weighting the grid features. This continuously adjusts the sharp-
ness of details to balance between blurred and aliased rendering.
In fact, the LOD bias can be viewed as a unifying framework that
encompasses coarse-to-fine training strategies [Lin et al. 2021; Park
et al. 2021; Yang et al. 2023]. Such progressive training approaches
start with low-frequency models and gradually increase the number
of feature scales to improve details. This is equivalent to starting
with a large negative LOD bias, such that only low-frequency fea-
tures are used, and annealing it towards zero during training. See
Figure 8 for the visualized LOD bias sweep on the apartment
scene.

4.2.3 Distance-aware Features. By mip-mapping grid features, we
are effectively making the features used for radiance computation
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distance-aware, as different features are used at different viewing
distances. This offers an additional degree of freedom to handle
inconsistent data during the capture process, such as the distance-
dependent shadows cast by the camera rig. Rig shadows are most
prominent when the rig approaches walls or corners. With limited
training views in these ambiguously captured locations, the model
is likely to fake the shadows with incorrect geometry and/or appear-
ance. On the other hand, distance-aware features allow our model
to learn distance-dependent appearance, which reduces visual arti-
facts. We further noticed that the mip-mapped features encourage
the model to better allocate model capacity for fine-grained details.

4.3 Optimizing the Quality–Speed Trade-off

Our goal of high-fidelity real-time NeRF rendering requires some
challenging trade-offs between visual quality and rendering speed.
For example, while conditional latent codes and wider and deeper
networks can improve rendering quality [Barron et al. 2023; Müller
et al. 2022], they come at a significant run-time cost. Similarly, using
a proposal network for sampling adds overhead at render time as
multiple networks need to be evaluated sequentially. To maximize
rendering speed without model baking, we implement an explicit
binary occupancy grid for efficiently skipping free space and mini-
mizing the number of sample points for which hash grid features
need to be queried and MLPs evaluated. An example grid is shown
in Figure 9, along with the corresponding image results. While
occupancy grids are widely-adopted acceleration structures [Chen
et al. 2022; Liu et al. 2020; Müller et al. 2022; Sun et al. 2022], we
propose two novel extensions that help us prune more accurately.

4.3.1 Cylinder Pruning. We initialize
our binary occupancy grid based on the
known rig capture positions to carve
out as much free space in the scene as
possible. For this, we first approximate
the geometry of our Eyeful Tower cap-
ture rig as a cylinder. We then mark
all occupancy grid voxels that are com-
pletely inside any such cylinder as free
space. This type of pruning has two key benefits: (1) it prevents
the model from cheating using floaters in front of cameras, which
leads to more view-consistent models, and (2) it speeds up the early
stages of training and thus helps improve convergence speed.

4.3.2 Joint History- and Grid-based Pruning. We explore a more
conservative pruning strategy that combines pruning based on
training history with dense grid sampling. History pruning keeps
track of the maximum density observed for each voxel in the occu-
pancy grid during the training process. This only considers rays
seen during training, so some parts of the scene may not be ob-
served. Grid-based pruning makes up for this by evaluating a dense
cubic grid inside each voxel of the occupancy grid to estimate the
maximum density for each voxel. As the density depends on the
step size used in training, we use a worst-case estimate for this,
i.e., the minimum step size possible inside each voxel based on the
ray from the closest camera. For our datasets, we start the pruning
process after 100K iterations, when a relatively clean scene geom-
etry is obtained. Every thousand iterations, we prune grid voxels

for which both maximum densities fall below the current pruning
threshold (which we anneal linearly from zero to 𝛼 =0.2). We start
with a coarse occupancy grid of 1283 resolution, and upsample the
occupancy grid at predefined iteration milestones to prune scenes
more accurately over time.

5 VR NERF RENDERING

Rendering a room-scale NeRF model in VR requires high resolution,
high frame rates and low latency. Our target is native rendering
on a Meta Quest Pro VR headset, ideally dual 2K×2K eyebuffers at
72 FPS. We approach this task with a combination of hardware, soft-
ware, and model optimizations. Specifically, we present a custom
multi-GPU CUDA renderer with efficient in-register MLP evalu-
ation and automatic work distribution, a compute-efficient LOD
technique (see Section 4.2), and a 20-GPU workstation for peak VR
performance.

MLP evaluation is the most computationally expensive portion of
model inference, and thus a prime candidate for optimization. Our
MLP implementation is specialized for small iNGP-style networks
by taking advantage of Nvidia’s Tensor Cores and evaluating all
layers within registers. Inputs and outputs of the MLP are stored in
shared memory while per-layer activations are stored in register-
backed arrays, with outputs from one layer being shuffled in an
architecture-dependent way to become the inputs to the next layer.
This limits memory traffic to just the input and output features,
which are typically small (32 inputs, 16 bottleneck features, 3 output
colors) compared to the hidden layers (64 nodes), and the network
weights, which are shared across the kernel and typically cached.
This structure also allows the MLP evaluation to be interleaved with
raymarching and hash grid sampling in a single kernel. This enables
the neural features to be passed to the networks without staging
through global memory (which can suffer from capacity problems
with a large number of samples per ray) or across multiple kernels
(which would incur extra launch and synchronization overhead).

We further adopt a dynamic work distribution strategy for im-
proving the utilization of multiple GPUs compared to a static work
split that would often be suboptimal as some rays take longer to
compute than others due to differences in pruning in different parts
of the scene, as well as GPU caching and overhead effects. For every
frame, we measure the throughput per GPU in rays per second, and
assign contiguous rows to each GPU based on its ratio of the total
throughput. We use dampening for smoother convergence to an
optimal distribution. Figure 4 demonstrates a 49% increase in FPS.
Each GPU stores a separate copy of each scene (~700 MB VRAM).

We also built a custom 20-GPU renderingworkstation to evaluate
our walkable spaces at the highest possible fidelity in virtual reality.
This machine comprises a Dell R7515 server with an AMD Epyc
7313P CPU and 256GB of RAM, and is connected to 20 Nvidia A40
GPUs via a PCIe switching solution from Liqid Inc., all in a 24U
server rack. We detail our design considerations in the supplement.

6 RESULTS AND EVALUATION

For our room-scale scenes, we use hash grid configurations with
𝐿=16 levels of two features, with a base resolution of 128 and scaling
factor of 1.4. Following iNGP, we use a 1-hidden-layer density MLP
and a 2-hidden-layer color MLP, both 64 neurons wide. For each ray,



VR-NeRF: High-Fidelity Virtualized Walkable Spaces SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

(a) Color image (b) Static split: 49.3 FPS (c) Dynamic split: 73.6 FPS

Figure 4: (a) In this example, we render a novel view using 3

GPUs. (b) A static split distributes work equally (indicated

by colors; brightness is proportional to #MLP evaluations).

(c) Our dynamic work split achieves 49% higher FPS.

we sample 1024 points using exponential distances for integration.
We use the Adam optimizer [Kingma and Ba 2015] with 𝛽1 = 0.9,
𝛽2 = 0.99, 𝜖 = 10−15, and a batch size 12,800 rays (256 random rays
from 50 random images) for all our experiments. We use far-field
contraction for the subset of unbounded scenes. We use learning
rate 0.01 for the hash grids and 0.005 for the remaining modules.
We discuss a series of additional techniques for per-scene quality
improvements in the supplement.

For fair evaluation, we hold out a fixed camera from the training
set, which has the same number of frames as all other cameras. For
ablation experiments, we show results trained for 110K iterations on
1K resolution Eyeful Tower datasets. The demo videos are produced
by models trained on 2K resolution images and longer than 200K
iterations. In the supplement, we include additional results on the
Inria [Philip et al. 2021] and mip-NeRF360 datasets [Barron et al.
2022], as well as ablations on pruning strategies.

6.1 Comparative Evaluation

To model HDR images, iNGP [Müller et al. 2022] suggests using
an exponential color activation for linear RGB space. RawNeRF
[Mildenhall et al. 2022] further suggests using a weighted loss
to prevent extremely bright areas from dominating. Table 2 and
Figure 6 show the comparisons of our designed modules with iNGP
baselines: (1) the effectiveness of using PQ color space for HDR
modeling, and (2) the use of the LOD feature grid.

We choose the baseline of using iNGP with linear color space
with truncated exponential activation for the color network to
avoid the issue of exploding values weighted by the predicted color
value, as practiced by Mildenhall et al. [2022]. “iNGP with PQ color
space” reflects our modification of directly training in the PQ color
space, and replaces the original exponential color activation with a
sigmoid function. “iNGP with PQ color space and LOD” represents
our core model of adopting mip-mapped grid features based on
the estimated LOD level for each queried sample point on the ray.
We report the standard PSNR/SSIM/LPIPS metrics in tonemapped
sRGB space, and additionally report versions of these metrics in PQ
color space for better evaluation on extremely bright and dark areas.
More results and analysis with supporting plots and visualizations
on each ablated module can be found in our supplement.

PQ color space. Table 2 shows that the PQ color space consis-
tently outperforms the linear color space for all test scenes and all
metrics. We noticed that during training, color predictions using

Table 2: Quantitative comparison results on the Eyeful Tower

test set. All results are trained on 1K resolution images for

110K iterations with 1024 samples per ray. We report the

average PSNR/SSIM/LPIPS both in sRGB and PQ color spaces.

The best results are highlighted. See the supplemental docu-

ment for the breakdown by individual dataset.

Methods PSNR ↑ SSIM ↑ LPIPS ↓ PQ-PSNR↑ PQ-SSIM↑ PQ-LPIPS↓

iNGP (our implementation) 31.93 0.918 0.183 37.39 0.957 0.133
with PQ color space 32.47 0.926 0.170 38.15 0.962 0.122
with PQ color space and LOD 33.30 0.930 0.146 38.95 0.964 0.108

the exponential activation baseline continue to grow to excessively
large values. This poses an ambiguity for predicting correct density
values and their derived weights, which are multiplied with the
point color to obtain sample colors. Directly modeling colors in
linear RGB space poses additional challenges in regressing and in-
terpolating accurate color values, especially when a large range of
radiance is present. As shown in the second example in Figure 6, the
base model fails to model the color on the checkerboard correctly.

Mip-mapped features. The combination of LOD and PQ color
space further improves the rendering quality and leads to cleaner
geometries, as seen in Table 2 and Figure 6. This is critical for prun-
ing and VR rendering, where a good geometry is desired. Figure 6
shows four scenarios where the mip-mapped features can help.
The first scene shows an annoying dark appearance baked into the
rendered scene due to dynamic shadows from the rig in the training
data. These are modeled by the high-frequency levels and well ad-
dressed by the distance-aware features. The second example shows
both cleaner geometry and appearance in the ambiguous space
near the whiteboard. The third example shows how LOD helps
eliminate aliasing for distant areas, especially when observing the
scene from a wide angle. The last example shows how LOD can also
reveal more detail compared to non-mip-mapped features, not just
a cleaner appearance. This is expected as the features correspond-
ing to high-resolution hash grids are specifically allocated to areas
rich in fine details in the training views, which allows the model
to automatically allocate more capacity for these parts. Note that
while the quantitative metrics are similar to the baselines, the visual
improvements are easier to spot and critical to the high-fidelity
rendering results that contribute to a pleasant VR experience.

6.2 Performance Evaluation

Figure 5 plots the rendering frame rate when using a varying num-
ber of A40 GPUs. Native VR rendering for a Meta Quest Pro headset
requires rendering two 2064×2096 eyebuffers at 72 FPS. However,
Asynchronous Spacewarp (ASW) [Beeler et al. 2016] can help close
this gap by reprojecting frames when they are rendered at least at
half the native FPS, i.e., 36 (dashed line) instead of 72 (solid line). But
even ASW fails if rendering is slower than that critical threshold.
Thus, we found the ‘p99’ metric (the 99th percentile of FPS) to be a
better proxy for the quality of VR experience than mean FPS — as
long as the application is typically (i.e. 99%+ of the time) above 36
FPS, ASW can deliver a smooth experience. Any slower, and the
user may notice stuttering frames, and experience motion sickness.
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Figure 5: Runtime performance at half (top) and full (bottom)

VR resolution (for a Meta Quest Pro) over a prerecorded cam-

era trajectory. Left: Mean and standard deviation of frame
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percentile frame time (expressed as

FPS) is indicative of the worst-case frame rate.

An off-the-shelf 3-GPU workstation is sufficient for reliable half-
resolution VR rendering of half the scenes at 36 FPS (see Figure 5,
top right), which demonstrates the practicality of our method. For
maximum rendering speed and fidelity, we use our custom 20-
GPU rendering workstation. All scenes but one achieve a p99 of 72
FPS at half-resolution, and thus provide a smooth VR experience
even without ASW. At full resolution (top row in Figure 5), 4 of
the 6 scenes shown in Figure 5 (bottom right) exceed the critical
ASW threshold of 36 FPS for a smooth, high-fidelity VR experience.
Interestingly, halving the resolution only approximately doubles
the FPS, even though only 1/4 as many pixels are being rendered.
This may indicate a substantial amount of per-frame overhead (e.g.
due to kernel launches, the VR compositor, or OpenGL display
pipeline) or insufficient parallelism available at lower resolutions.

7 DISCUSSION

Aggressive pruning. Like most pruning approaches, we threshold
density for determining if a voxel is occupied or not. For bounded
scenes with mostly solid surfaces, more aggressive pruning can be
appliedwith a larger threshold (e.g.,𝛼 =0.3) and finer grid resolution
(e.g., 10243), which results in significantly faster rendering (see
‘office_view1’ in Figure 5). However, aggressive pruning does not
work well for complex real-world scenes, such as reflective surfaces,
transparent objects or unbounded scenes. This becomes particularly
apparent in VR, where over-pruned areas show box-like artifacts
that may not be easily seen in rendered 2D images or videos.

Distance-aware features. Our level-of-detail feature weighting
provides our model the flexibility to reproduce distance-dependent

appearance such as varying level of detail, or rig shadows. At the
same time, we observed that this reduces our model’s ability to ex-
trapolate to unseen viewpoints or viewing distances, as feature vec-
tors with unseenweightingmay be used at render time. In particular,
density can vary depending on distance, which is undesirable. We
work around this by pruning as much free-space as possible, so that
density cannot suddenly appear when moving through free-space.

8 CONCLUSION

We presented VR-NeRF, the first holistic approach for capture, re-
construction and rendering of high-fidelity walkable spaces in vir-
tual reality. We made several key contributions across all stages of
the pipeline to achieve the significantly higher resolution, frame
rate and visual fidelity required for comfortable VR viewing of
neural radiance fields. We built a one-of-a-kind multi-camera rig
that captures thousands of uniformly distributed HDR photos of
a scene, integrated a novel perceptual color space for HDR model
optimization, devised an efficient feature mip-mapping scheme for
level-of-detail rendering, and implemented a multi-GPU renderer
that achieves comfortable VR viewing on our demo machine.
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Ground Truth iNGP with PQ with PQ + LOD Selected Patch
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Figure 6: Qualitative comparisons between (1) iNGP, (2) iNGP with PQ color space, and (3) iNGP with PQ color space and LOD.

The four selected examples show the improvements over the baselines by adding PQ color space and LOD in combination, which

leads to cleaner appearance and geometry finer details. The use of PQ color space stablizes the learning of correct radiance

values, while the inclusion of LOD helps to learn a cleaner appearance and geometry that is robust to distance-dependent

appearance variations. By dynamically allocating model capacity to the sampled points based on the needed level of detail, it

further reveals more details over the ablated counterparts. (Images are white-balanced and tonemapped for better visualization.)
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Figure 7: Sweep of exposure values. For scenes with high dynamic range (e.g., bright outdoor views in the riverview scene),

one can freely adjust the exposure setting at render time by manipulating the tonemapping from PQ color space to sRGB space.

LOD bias  –5 LOD bias  –3 LOD bias  +1LOD bias  –1 LOD bias  0 LOD bias  +3

Figure 8: Sweep of LOD bias. We interpolate between a negative LOD bias of –5 and a positive LOD bias of +3 applied on top of

the original estimated LOD value for each sample point on the apartment scene. A negative LOD bias blurs the rendering by

masking out grid features representing high-frequency details, while a positive LOD bias helps reveal sharper details.
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Figure 9: office2 results rendered at 4K resolution, trainedwith 400K iterations. Top row: from left to right, we show (1) rendered

RGB image, (2) estimated depth map, (3) estimated normals, and (4) the occupancy grid. Bottom row: The highlighted patches

reveal sufficient fine details.
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