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Figure 1: We propose an optimization framework to obtain perceptually pleasing error distribution in Monte Carlo animation
rendering. The output of our algorithm is a sample set spanning multiple image pixels and frames. Here we show an image of a
30-frame sequence rendered with 1 sample/pixel per frame. We display a version of the animation filtered temporally using
the kernel of Mantiuk et al. [2021], to mimic its perception at one time instant. On the right we a show spatial (XY) crop and a
spatio-temporal (XT) slice, along with the power spectra (DFT) of their corresponding error images. Our error distribution
exhibits better blue-noise properties than that of previous work [Wolfe et al. 2022], also reflected in the perceptual error metric
reported on the left (see Section 5). To fully appreciate these results, please refer to the supplemental video and HTML viewer.

ABSTRACT
Independently estimating pixel values in Monte Carlo rendering re-
sults in a perceptually sub-optimal white-noise distribution of error
in image space. Recent works have shown that perceptual fidelity
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can be improved significantly by distributing pixel error as blue
noise instead. Most such works have focused on static images, ignor-
ing the temporal perceptual effects of animation display. We extend
prior formulations to simultaneously consider the spatial and tem-
poral domains, and perform an analysis to motivate a perceptually
better spatio-temporal error distribution. We then propose a practi-
cal error optimization algorithm for spatio-temporal rendering and
demonstrate its effectiveness in various configurations.
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1 INTRODUCTION
Monte Carlo rendering numerically estimates light-transport in-
tegrals via random sampling which causes visible noise in the re-
sulting image. Much work has focused on combating this noise by
reducing the error in each pixel individually, e.g., via blue-noise
or low-discrepancy sampling [Singh et al. 2019]. Applying such a
pattern independently within each pixel improves the convergence
rate towards a noise-free result. However, the resulting white-noise
distribution of error over the image is visually sub-optimal.

It is well understood in digital half-toning literature that the
human visual system (HVS) is less sensitive to image error that
has high-frequency, i.e., blue-noise, distribution. Georgiev and Fa-
jardo [2016] achieved such distribution in Monte Carlo rendering
by carefully optimizing a global sample pattern across image pix-
els. This pattern yields higher perceptual fidelity by making the
pixel estimates as different from each other as possible. This im-
provement occurs because the HVS applies a low-pass filter to
the image [Chizhov et al. 2022], and the negative pixel correlation
effectively stratifies the input to the low-pass convolution.

Following the work of Georgiev and Fajardo [2016], several
practical methods have been devised to achieve high-quality blue-
noise distribution for static-image rendering [Ahmed and Wonka
2020; Belcour and Heitz 2021; Heitz and Belcour 2019]. These are
mostly heuristically derived. An exception is the method of Salaün
et al. [2022] which leverages the perceptual framework of Chizhov
et al. [2022] to precompute a small sample set that is tiled over the
rendered image.

Reusing the same blue-noise sample set across the frames of an
animation would maintain good blue-noise distribution, but the
noise pattern would remain static over the image. This so-called
shower-door effect [Kass and Pesare 2011] degrades visual quality
and disrupts the perception of motion. To address this problem,
Wolfe et al. [2022] made a first attempt at obtaining an error dis-
tribution for animation rendering that is blue-noise in both image
space and time. Lacking firm perceptual grounding, they extend
existing blue-noise-mask algorithms to optimize separately across
screen-space and time, which leads to visually suboptimal results.

In this paper, we combine the image-space model of Chizhov
et al. [2022] with a temporal perception model [Mantiuk et al. 2021]
to quantify perceptual error in animation rendering and motivate
the need for its high-frequency distribution in both space and time.
We also incorporate explicit temporal filtering such as temporal
anti-aliasing (TAA). Based on this spatio-temporal model, we adapt
the optimization method of Salaün et al. [2022] to obtain scene-
independent, precomputed sample sets. The resulting sample sets
allow for low-sample animation rendering with higher perceptual

fidelity than prior state of the art, thanks to the blue-noise distribu-
tion of error in both space and time. Figure 1 shows one frame of
an animation rendered with our optimization algorithm.

2 RELATEDWORK
Our goal is to optimize Monte Carlo rendering error across pixels
as blue noise, in both image space and time. The survey of Singh
et al. [2019] discusses methods for achieving blue noise on one
integration domain (e.g., within a single pixel).

Blue-noise error distribution. Blue-noise distributions of image
error appear frequently in dithering or stippling applications [Ulich-
ney 1988]. The reason for their use is the lower sensitivity of the
HVS to high-frequency noise (“blue noise”), resulting in a less per-
ceptible error. High-frequency noise distribution corresponds to
negative correlation between pixel values in a neighbourhood. For
Monte Carlo rendering, Georgiev and Fajardo [2016] proposed a first
practical approach that optimizes a blue-noise sample mask via sim-
ulated annealing. Their approach is limited to low-dimensional inte-
gration with few samples. Heitz et al. [2019] addressed these limita-
tions by optimizing the scrambling keys of a Sobol sequence [Sobol’
1967]. Belcour and Heitz [2021] extended this optimization to a
rank-1 lattice sampler. The method of Ahmed and Wonka [2020]
scrambles an image-space Sobol sequence according to a z-code
ordering of pixels to achieve an approximate blue-noise distribu-
tion. Salaün et al. [2022] employed sliced optimal transport [Paulin
et al. 2020] to obtain a sample set optimized according to the per-
ceptual model of Chizhov et al. [2022]. Recently, Wolfe et al. [2022]
proposed extensions to the void-and-cluster [Ulichney 1988] and
Georgiev and Fajardo’s [2016] algorithms to generate blue-noise
sample masks for animation rendering. All the aforementioned
methods are a priori, i.e., they compute scene-agnostic sample pat-
terns. Such precomputation is beneficial for practical application,
though superior quality can be achieved by tailoring the distribu-
tion to the specific image being rendered. This can be done through
a posteriori adaptation of sample distributions, once the pixels have
been sampled [Chizhov et al. 2022; Heitz and Belcour 2019]. We
extend the image-space model of Chizhov et al. [2022] to the tempo-
ral domain and apply the a priori optimization approach of Salaün
et al. [2022] to acquire a sample pattern for each animation frame.

Perceptual modeling and rendering. The contrast sensitivity func-
tion (CSF) is an important characteristic of the HVS that deter-
mines the threshold contrast that is perceivable in spatio-temporal
signals. A vast majority of CSF measurements focus on spatial
patterns [Barten 1999; Daly 1993; Wuerger et al. 2020], and the
resulting CSFs are modeled by a family of band-pass filters whose
parameters change with luminance, color, and retinal eccentricity.
Spatio-temporal CSFs have also been derived [Daly 1998; Kelly
1979; Mantiuk et al. 2022; Robson 1966], where temporal sensitivity
[de Lange 1958] can be explained by sustained and transient tempo-
ral channels dedicated to processing slowly and quickly changing
signals [Burbeck and Kelly 1980; Hammett and Smith 1992; Mantiuk
et al. 2021]. The so-called window of visibility [Watson 2013; Wat-
son and Ahumada 2016; Watson et al. 1986] is an example of such
spatio-temporal CSF modeling. The window of visibility approach
accounts for spatio-temporal signal processing and sampling that
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Table 1: Commonly usednotations throughout the document.

Notation Description

𝑆𝑖 , S = {𝑆𝑖 } Sample set for frame 𝑖, sample set for entire frame sequence
𝑅𝑖 , R = {𝑅𝑖 } Raw render result at frame 𝑖, sequence of all raw results
𝑄𝑖 , Q = {𝑄𝑖 } Displayed image at frame 𝑖, sequence of all displayed images
𝐼𝑖 , I = {𝐼𝑖 } Ground-truth image at frame 𝑖, sequence of all ground truths
𝜖𝑖 , 𝜖 = {𝜖𝑖 } Perceptual-error image at frame 𝑖, perceptual-error sequence
𝑔s, 𝑔t Spatial perceptual kernel, temporal perceptual kernel
𝑔a Explicit temporal accumulation (TAA) kernel
𝜇 Sample distribution (typically uniform)

are inherent to any imaging pipeline. In rendering applications,
such spatio-temporal CSFs have been used to focus expensive com-
putation on the most visible regions only [Myszkowski et al. 1999;
Yee et al. 2001]. In this work, we reduce perceived rendering er-
ror by employing a spatio-temporal CSF to optimize space-time
sampling patterns.

Temporal anti-aliasing. Temporal anti-aliasing (TAA) combines
pixel values across multiple frames to reduce noise [Schied et al.
2017, 2018; Shinya 1993]. Such temporal filtering is simple and
cheap, though ghosting artifacts can arise if the scene changes too
rapidly. These artifacts can be reduced via the use of motion vectors
or other means of temporal reprojection [Hanika et al. 2021]. Our
method can be used to optimize the perceived screen-space error
distribution of a TAA-filtered animation.

Bounding integration error. Quasi-Monte Carlo (QMC) integra-
tion methods use deterministic sample sequences. These sequences
are carefully designed to minimize discrepancy which is a quality
metric used to bound integration error [Ermakov and Leora 2019].
Recent work [Paulin et al. 2020] has shown an analogous error
bound based on the Wasserstein distance instead [Kantorovich and
Rubinstein 1958; Villani 2008]. This bound has been extended by
Salaün et al. [2022] to perceptual error in single-image rendering.
We further extend their bound to our spatio-temporal setting.

3 SPATIO-TEMPORAL PERCEPTUAL MODEL
Our method builds on the perceptual model of Chizhov et al. [2022],
which we extend to include the temporal model of Mantiuk et al.
[2021] as well as explicit filtering via temporal anti-aliasing (TAA).

Notation. Given a sequence Q = {𝑄𝑖 } of rendered images, we
aim to minimize their perceived error compared to the sequence of
corresponding references I = {𝐼𝑖 }. Each image is a function 𝑄𝑖 (𝑆𝑖 )
of the sample pattern 𝑆𝑖 that is used to render the 𝑖th frame of an
animation. We concisely express the sequence of rendered images
Q(S) as a function of the sequence of sample patterns. Table 1 lists
the most commonly used symbols throughout the paper.

Spatial perceptual error. We follow Chizhov et al. [2022] and
model spatial perceptual response as a convolution. Hence the
perceived error of the 𝑖th frame viewed individually,

𝜖𝑖 (𝑆𝑖 ) = 𝑔s ∗𝑄𝑖 (𝑆𝑖 ) − 𝑔s ∗ 𝐼𝑖 = 𝑔s ∗ (𝑄𝑖 (𝑆𝑖 ) − 𝐼𝑖 ), (1)

can be quantified by comparing the perceived image 𝑔s ∗𝑄𝑖 to the
perceived reference 𝑔s ∗ 𝐼𝑖 . Here, 𝑔s is an image-space Gaussian
kernel that approximates the human visual system’s (HVS) point

spread function (PSF) [Chizhov et al. 2022]. The error image 𝜖𝑖 (𝑆𝑖 )
then measures the error for each pixel in the 𝑖th frame.

Spatio-temporal perceptual error. The human visual system (HVS)
does not perceive each animation frame in isolation. Rather, it has
been observed that temporal perception can be also modelled as
a low-pass filter [Burbeck and Kelly 1980; Hammett and Smith
1992; Mantiuk et al. 2021]. We incorporate temporal filtering with
a kernel 𝑔t into the spatial model (1):

𝜖 (S) = 𝑔t ∗ 𝑔s ∗ (Q(S) − I) . (2)

Since both reference and rendered images are subject to temporal
perception, the convolution with this kernel is applied to both. Here,
𝜖 (S) denotes the sequence of per-frame error images.
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𝑔t = 𝑔sustained + 𝑔transient

In our experiments, we em-
ploy the kernel proposed by
Mantiuk et al. [2021]. It is a
sum of two components, a sus-
tained kernel and a transient
kernel, plotted on the right.
The sustained kernel encodes
the response to slow temporal
changes, and the transient kernel to fast changes [Burbeck and
Kelly 1980; Hammett and Smith 1992]. Note that in Eq. (2) the filter
𝑔t is applied as a sliding window over the frames.

Temporal anti-aliasing. TAA methods [Yang et al. 2020] compute
pixel values as the weighted average of the current and previous
frames. Such explicit filtering can be included in our model by
expressing the image 𝑄𝑖 displayed at each frame as a convolution
of the raw rendering results 𝑅 𝑗 at all (past) frames: 𝑄𝑖 = [𝑔a ∗ R]𝑖 .
Substituting into Eq. (2), the error-image sequence becomes

𝜖 (S) = 𝑔t ∗ 𝑔s ∗ (𝑔a ∗ R(S) − I). (3)

In our experiments, we use an exponential moving average (EMA)
kernel𝑔a, withweights𝑔a ( 𝑗) = 𝛼 (1−𝛼) 𝑗 , for 𝑗 ≥ 0, where𝛼 ∈ [0, 1)
is a smoothing parameter (we use 𝛼 = 0.2). Note here that the
perceptual kernels 𝑔s and 𝑔t are applied to both the image estimates
and the reference image, but the TAA kernel 𝑔a is applied only to
the raw image estimates.

Optimization objective. Our objective is then to find the sample
sequence S that minimizes the norm of the error-image sequence (3):

S′ = argmin
S

∥𝜖 (S)∥ . (4)

In our optimization algorithm, presented in the following section,
we use the 𝐿1 norm, i.e., we find the sample sequence that minimizes
the sum of absolute values of all error-image pixels over all frames.

Discussion. We illustrate the impact of spatio-temporal kernel
filtering in Fig. 2, which provides a visual representation of the
error image for three different methods, i.e., sample sequences S
(rows). The first column shows temporal slices of the raw error, i.e.,
𝑞 = Q(S) − I, and the second column shows the power spectra of the
discrete Fourier transform (DFT) of those raw-error slices. The last
column shows the DFT spectra of the convolution of the error im-
ages with our spatio-temporal perceptual kernel 𝑔 = 𝑔t ∗𝑔s (plotted
in the second last column). Assuming that the viewing conditions
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Figure 2: Spatio-temporal (𝑋𝑇 ) slices of the error-image se-
quence (leftmost column) for white-noise (Uncorrelated),
spatial-only blue-noise [Salaün et al. 2022] (2D blue noise),
and spatio-temporal blue-noise (Ours) sample sets. The cen-
ter two columns show the Fourier spectra of the error images
(center left) and our perceptual kernel (center right). The
rightmost column shows the product of these two (a.k.a. the
perceptual error), i.e., the Fourier spectrumof the error image
convolved with the kernel. Our optimization minimizes the
error spectrum 𝜖 (bottom row) and pushes the error outside
of perceptible spatio-temporal frequency range (the window
of visibility [Watson et al. 1986]; more details in Section 3).

and frame rate correspond to the kernels 𝑔s and 𝑔t, our spatio-
temporal kernel 𝑔 approximates the window of visibility [Watson
et al. 1986]. This window is defined in the frequency domain and
its size is determined by the cut-off spatio-temporal frequencies.
Signal outside the window is considered invisible (imperceptible).
By optimizing the sample sequence S to solve Eq. (4), we not only
reduce the magnitude of the spectrum, but also push the energy out-
side the window of visibility as much as possible. This reduces the
residual perceived error for all visible spatio-temporal frequencies.

In summary, in this section we have presented a perception-
driven model (3) to assess the spatio-temporal quality of a sample
sequence. We model human perception by a series of convolutions,
and (optionally) include explicit temporal filtering (TAA). In our
main results we use this objective for a priori sample optimization,
as discussed in the next section. Figure 5 shows that a posteriori
optimization can benefit from this formulation, too.

Similarly to prior work on spatial-only error optimization
[Chizhov et al. 2022; Heitz and Belcour 2019; Heitz et al. 2019],
we assume integrated (radiance) function to be locally smooth (Lip-
schitz continuous) in space and time. This smoothness assumption
is essential for achieving a desirable outcome in the optimization
process. The spatio-temporal CSF [Daly 1998; Kelly 1979; Mantiuk
et al. 2022] further supports our assumption since the HVS is mostly
sensitive towards low- to mid-frequency signals. In practice, this

implies that the sampling quality is less relevant in regions where
the smoothness assumption is not met.

4 A PRIORI OPTIMIZATION
Our optimization problem (4) is similar in structure to that of
Chizhov et al. [2022] who consider single-image optimization. This
problem can be tackled in a priori or a posteriori manner (see Sec-
tion 2). We focus on a priori optimization due to its higher practical
value of computing a sample set once that can be used on any scene.
To that end, we extend the method of Salaün et al. [2022] to our
spatio-temporal setting.

A priori methods assume that the ground-truth image is con-
stant [Belcour and Heitz 2021; Georgiev and Fajardo 2016; Heitz and
Belcour 2019]. We extend this assumption to the temporal domain.
Convolving I with the TAA kernel 𝑔a thus becomes a no-op that
allows us to simplify our objective function (3): we combine all
kernels into a single spatio-temporal kernel 𝑔:

𝜖 (S) = 𝑔s ∗ 𝑔t ∗ 𝑔a ∗ (R(S) − I) = 𝑔 ∗ (R(S) − I) . (5)

In the a priori setting, both the raw sequence R(S) and reference
sequence I are unknown, preventing the exact minimization of the
error (5). Instead, we aim to minimize an upper bound of that error.

Perceptual-error bound. Under our perceptual model, the value of
the 𝑗 th pixel in the 𝑖th frame of the perceived raw sequence 𝑔 ∗R(S)
is an average of the responses of all samples, weighted by the
kernel 𝑔 centered at (𝑖, 𝑗). Salaün et al. [2022, Appendix D] derived
a bound for the absolute error of weighted integral estimates, based
on filtered optimal transport. In our case their bound reads

|𝜖𝑖, 𝑗 (S) | ≤ 𝐿

∫
R
𝑊

(
S𝑔𝑖,𝑗>𝑧 , 𝜇𝑔𝑖,𝑗>𝑧

)
d𝑧. (6)

The bound assumes a smooth rendering function, i.e., the incident
radiance on the continuous image plane, with Lipschitz constant 𝐿.
It is an integral over Wasserstein distances𝑊 between the opti-
mized sample distribution S and the target (uniform) distribution 𝜇;
these distributions are filtered to only include the mass at locations
where the kernel value exceeds the threshold 𝑧 [Salaün et al. 2022]:

S𝑔𝑖,𝑗>𝑧 = {𝑢 ∈ S | 𝑔𝑖, 𝑗 (𝑢) > 𝑧}. (7)

We use the 2-Wasserstein distance which is defined as

𝑊 (S, 𝜇) =
(

inf
𝛾 ∈Γ (S,𝜇 )

∫
Ω2

∥𝑥 − 𝑦∥2 d𝛾 (𝑥,𝑦)
)1/2

. (8)

Here Γ(S, 𝜇) is the set of all possible transport plans between the
two distributions [Bonnotte 2013]. Since the regular Wasserstein
distance is difficult to compute, we further bound it via its sliced
variant which involves only easy-to-compute 1D Wasserstein dis-
tances [Pitié et al. 2005]:

𝑊 (S, 𝜇) ≤ 𝑆𝑊 (S, 𝜇) =
∫
S𝑑−1

𝑊

(
S𝜃 , 𝜇𝜃

)
d𝜃, (9)

where S𝜃 and 𝜇𝜃 are the projection of the sample set and the uni-
form density along the 1D line 𝜃 . We provide more details on the
Wasserstein error bound in Section 1 of the supplemental document.
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Figure 3: Visualization of how the gradients are estimated for
our optimization. Given the spatio-temporal (𝑋𝑇 ) space and
the kernels (a,b), we randomly threshold their convolution to
select a subset of samples (c). The filtered sample set is then
projected to a random1D slice to compute the 1D-Wasserstein
gradient (d). The process is repeated multiple times to obtain
a sufficiently low-noise gradient estimate.

To bound the 1-norm of our objective function (5), we sum the
error bounds Section 4 of all pixels 𝑗 in all frames 𝑖:

∥𝜖 (S)∥ =
∑︁
𝑖, 𝑗

|𝜖𝑖, 𝑗 (S) | ≤ 𝐿
∑︁
𝑖, 𝑗

∫
R

∫
S𝑑−1
𝑊

(
S𝜃𝑔𝑖,𝑗>𝑧 , 𝜇

𝜃
𝑔𝑖,𝑗>𝑧

)
d𝜃d𝑧. (10)

Gradient-descent optimization. We minimize Eq. (10) via stochas-
tic gradient descent, using Monte Carlo integration to estimate
the involved integrals. We found that the Adam optimizer works
best for our case, due to the sparse support of the kernels and the
rather high noise of the gradient estimates. Details on the gradient
computation can be found in supplemental Section 2.

The process is illustrated in Fig. 3. At each optimization step,
we first randomly select a kernel 𝑔𝑖, 𝑗 (Fig. 3b). We then sample a
filtering threshold 𝑧 which yields a sample subset S𝑔𝑖,𝑗>𝑧 (Fig. 3c).
Finally, a random slice 𝜃 is sampled to estimate the gradient of
the sliced Wasserstein distance (Fig. 3d). This process is repeated
multiple times to reduce the variance. The resulting multi-sample
gradient estimate is then used to perform one gradient-descent
update step. Algorithm 1 summarizes these optimization steps.

5 RESULTS
We evaluate the rendering performance of our method by comput-
ing ray-traced direct illumination with PBRTv3 [Pharr et al. 2016].
We compare the results to the previous approach of Wolfe et al.
[2022], independent per-frame spatial-only blue noise [Salaün et al.
2022], and the baseline of independent, white-noise sampling. Ani-
mations were rendered at 60Hz. Rendering is done using 1 sample
per pixel unless stated otherwise.

We compute fixed-resolution spatio-temporal sample tiles, by
toroidally wrapping the kernels during the optimization to ensure
that they can be seamlessly tiled in space and time during rendering.
If a spatial or temporal kernel has theoretically infinite support,
we truncate it at the point where its values become negligible. We
observe that a tile needs to be at least an order of magnitude larger
than the truncated kernel to avoid tiling artifacts (supplemental,
Fig. 1). In our experiments, the kernel size is 7×7 pixels and 8 frames
wide (i.e., 7×7×8 pixels). We found that a tile size of 128×128×30
pixels achieves the best trade-off between optimization cost and
tiling artifacts. We use the same tile size for all methods.

We computed the blue-noise tiles ofWolfe et al. [2022] using their
public code. We slightly increased their spatial Gaussian kernel to a
standard deviation of 2.1 (from 1.9), to match the spatial kernel used
for all other methods. We used the public code of Salaün et al. [2022]
to generate 30 independently optimized 2D blue-noise sample sets.

To mimic temporal perception in a static image, the renderings
presented in the following are temporally pre-filtered with the
kernel of Mantiuk et al. [2021] (see Section 3). The visual quality
of the results is best appreciated by referring to the supplemental
video and HTML viewer.

For quantitative comparison, we compute the perceptual relative
mean squared error (pRelMSE), 𝜖2

𝑖
(𝑆𝑖 )/(𝐼2𝑖 + 0.01), at the 𝑖th frame.

That is, we filter the rendered image and the reference according
to our model (3) and compute the relative MSE of the result for
the desired frame. If not stated, results were computed for the 16th
frame.

We apply our method to animation rendering with and with-
out temporal anti-aliasing (TAA). For our method we optimize on
sample set for each variant, tailored to the filter. Table 2 summa-
rizes our quantitative results across a diverse set of test scenes. It
shows the pRelMSE of our method and previous works [Salaün
et al. 2022; Wolfe et al. 2022] relative to uncorrelated (i.e., white-
noise) spatio-temporal sampling. Across all scenes, our method
consistently achieves better results, both with and without TAA.

Direct viewing. Figures 1 and 6 show results for animations with-
out TAA using 1 sample per pixel. To aid interpretation of the
results, the figures display the discrete Fourier transform (DFT) of
different zoom-ins. Especially on the temporal slice in the bottom
right of Fig. 1, these show clearly where the improvements of our
method stem from: While the previous approach of Wolfe et al.
[2022] explicitly optimizes for 2D blue noise in image space and
1D blue noise along the temporal domain, our method optimizes
samples for an exact kernel, dictated by a perception model. Conse-
quently, the frequency distribution of the error with our method
better matches the filter, resulting in a lower perceived error.

Our algorithm can be used to optimize sample sets for any num-
ber of samples per pixel. Figure 7 shows an example using four
samples. Compared to previous work, our approach achieves a
better blue-noise distribution also at higher sample counts.
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Table 2: Perceptual error (pRelMSE) across different scenes.
The numbers are the ratio of the pRelMSE of the different
methods compared to the baseline of uncorrelated sampling;
lower is better. Raw error values can be found in the sup-
plemental document. We compare the methods with and
without TAA. In both cases, and on every tested scene, our
method achieves the lowest perceptual error. We set the stan-
dard deviation of Gaussian kernels to 𝜎 = 2.1; for Wolfe et al.
[2022] we also report results with 𝜎 = 1.9 as used by them.

Scene Salaün et al. [2022] Wolfe et al. [2022] Ours
TAA no TAA TAA no TAA TAA no TAA

Chopper 0.61× 0.62× 0.69× (0.66×) 0.72× (0.69×) 0.48× 0.55×
Teapot 0.65× 0.63× 0.80× (0.63×) 0.78× (0.65×) 0.56× 0.58×
Modern Hall 0.90× 0.85× 0.98× (0.95×) 0.94× (0.91×) 0.87× 0.83×
Living room 0.87× 0.82× 0.89× (0.86×) 0.86× (0.82×) 0.84× 0.80×
Dragon 0.54× 0.52× 0.66× (0.62×) 0.67× (0.63×) 0.48× 0.51×
Veach MIS 0.87× 0.83× 0.99× (0.97×) 0.92× (0.90×) 0.72× 0.69×

Temporal anti-aliasing. The behavior with explicit TAA filtering
is similar to that under direct viewing. Again, our method is con-
sistently better than uncorrelated sampling, previous work [Wolfe
et al. 2022], and independent 2D blue noise [Salaün et al. 2022]
across all test scenes (Table 2). Figure 9 shows the TAA (and percep-
tion) filtered frames of two scenes. For our method, we compare two
different optimization objectives: our full model and a simplified
version where we left out the perception filter and only optimized
for TAA. Optimizing only for TAA still outperforms previous work,
but yields 5-10% higher perceived error than utilizing the full model.
This supports our hypothesis that optimizing for a more accurate
kernel yields best results.

6 DISCUSSION
Impact of kernel shape. Our method differs from that of Wolfe

et al. [2022] in two main aspects: the model and the optimization
process. The approach of Wolfe et al. [2022] does not directly trans-
late to a kernel in our optimization framework, since they separate
the spatial and temporal dimensions. Therefore, to better under-
stand how much of our improvements are due to the model, and
how much due to the optimization itself, we performed an ablation
where we optimized sample sets for kernels different from the one
used for final filtering.

Table 3 summarizes the results. We report the error values for
three different kernels: a symmetric Gaussian (standard deviation
2.1), the TAA kernel, and the full TAA and temporal perception
kernel [Mantiuk et al. 2021]. As expected, the best result is achieved
when optimizing for the full model. Since the TAA and Gaussian
kernels have similar shape, their results only differ by a few percent.
These results indicate that, while matching the overall shape of the
final kernel is important, exact match is not critical.

Note that all models in Table 3 yield lower error than the ap-
proach of Wolfe et al. [2022]. This indicates that their separation
into spatial and temporal components, while helpful for conver-
gence in their optimizer, hampers the attainable quality.

Table 3: Ablation test for different optimization objectives.
On an animation with TAA we test sample sets optimized
for three temporal kernels: a symmetric Gaussian (standard
deviation 2.1), an EMA TAA kernel, and our full model in-
corporating the TAA kernel and the perception kernel of
Mantiuk et al. [2021]. The numbers are the relative reduc-
tion in perceived noise (pRelMSE) compared to the method
of Wolfe et al. [2022]; lower is better. Raw error values can
be found in the supplemental document. Lowest error is
achieved when the optimization is tailored to the full filter.

Scene Gaussian TAA Perception +TAA

Chopper 0.75× 0.75× 0.70×
Teapot 0.78× 0.76× 0.70×
Modern Hall 0.92× 0.90× 0.89×
Living room 0.97× 0.96× 0.95×
Dragon 0.79× 0.77× 0.72×
Veach MIS 0.77× 0.78× 0.74×

Figure 4: Comparison between independent spatial-only opti-
mization [Salaün et al. 2022] and ourmethod on an animation
with TAA. The image on the left is the 20th frame, the zoom-
ins show the state at the 1st and 20th frame, along with the
DFT spectra of their error images. Spatial-only optimization
is much better in the first frame, where no temporal filtering
occurs. Our method shows better blue-noise quality once the
steady state is reached.

Performance on the first frames. Our optimization assumes that
a sufficient number of past frames are available to apply the full
temporal kernel. This is not the case early in an animation, as
shown in Fig. 4. The figure compares our result with spatial-only
blue noise [Salaün et al. 2022] under environment-map illumination
with TAA filtering. In the first frame, spatial-only optimization
yields higher quality, since no temporal filtering can yet occur.
In subsequent frames, our method performs better. This is also
visible in the DFT spectra (insets) where our method has fewer low-
frequency error components, i.e., a better blue-noise distribution.

We extend this analysis by comparing the evolution of perceptual
error with the number of frames. Figure 8 shows this evolution on
the Chopper, Dragon and Teapot scenes. The methods compared
are uncorrelated sampling, Salaün et al. [2022], Wolfe et al. [2022]
and ours. The results show that at the start of each curve, when
few frames are accumulated, spatial-only optimization performs
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Figure 5: Our theory can be used to extend a posteriori percep-
tual error optimization [Chizhov et al. 2022]. Here we show
improvement in direct-illumination (2D sampling) on the
top and path tracing rendering (10D sampling) in the bottom.
Unlike a priori methods, a posteriori optimization is not sen-
sitive to sampling dimensionality and achieves higher quality
thanks to image-based optimization. All images show the
16th animation frame filtered with the temporal perception
kernel of Mantiuk et al. [2021], along with the corresponding
pRelMSE values.

best. This confirms the results presented above. However, as the
frames accumulate and the equilibrium state is reached, our method
obtains the lowest perceptual error.

A posteriori optimization. A priori optimization is inherently lim-
ited in the achievable quality because the optimized sample set
must generalize to arbitrary scenes and importance-sampling trans-
formations. A posteriori optimization can achieve better results, but
a truly practical method has yet to be found. To explore the quality
achievable by an a posteriori approach using our objective, we ex-
tended the method of Chizhov et al. [2022] to the temporal domain,
using our model. Specifically, we employ their “vertical” optimiza-
tion which selects one out of 15 candidate samples for each pixel, to
solve Eq. (4). We compare the result to our a priori optimization for
the same kernel on the Chopper scene in Fig. 5. Here, a posteriori
optimization yields an notable improvement of 60%. These results
indicate that further research on (practical) a posteriori methods is
worthwhile and can benefit from our formulation.

Optimization cost. Our sample sets need only be computed once
per filter kernel, number of integration dimensions, sample count,
and frame rate. Nevertheless, when multiple variations of these pa-
rameters are desired, computation cost may become a concern. Our
CPU implementation takes about 1–2 days to optimize one sample
set using 10k SGD steps with a mini-batch size of 4k. The theo-
retical bottleneck is the computation of the 1D optimal transport,
which relies on an 𝑛 log(𝑛) sorting operation per gradient-descent
iteration. In practice, computation speed is significantly affected
by accessing sample subsets that are scattered in memory. Further-
more, the use of a small subset of samples with non-zero gradients
per step necessitates the use of large batch sizes, resulting in higher
computation costs. Despite these challenges, parallelism can be
harnessed within the algorithm: across different projections of the
mini-batch on the CPU, also for sorting on the GPU. We believe
that, with further performance improvements, e.g., using a pre-
optimized set as initialization, computation time can be reduced to
at most a few hours per sample set.

Limitations. The signal-constancy assumptions made by a priori
perceptual error optimization hold only locally and approximately.
In regions of large signal variation, e.g., thin shadow penumbrae
(spatially) or fast-moving objects (temporally), perceptual error
increases. Temporal variations could be addressed via the use of
motion vectors, which we leave for future work.

A significant limitation of a priori optimization methods lies in
their applicability to more complex rendering algorithms, such as
path tracing. This is due to the increased sampling dimensionality
and the variation of the rendering function with longer paths. A
priori optimization is not sensitive to dimensionality and can tailor
the sampling to the rendered image.

The capacity of the error distribution to influence perceptual
quality is also contingent upon the noise level present in the scene.
When the noise level is low, the impact of the error distribution on
perceptual quality diminishes.

Future work. In this work we use a basic spatio-temporal CSF
model [Chizhov et al. 2022; Mantiuk et al. 2021], but our framework
(Section 3) supports arbitrary filters. Exploring more advanced CSF
models [Mantiuk et al. 2022] that account for display luminance
(e.g., darker displays increase the HVS tolerance for contrast errors
and flickering, while saving energy) and foveation (sparser sam-
pling with increasing retinal eccentricity) could be a way to further
improve visual quality. A hold-type blur of moving objects that
arises in the HVS as a function of display persistence and refresh
rate [Jindal et al. 2021] can also lead to increasing the HVS toler-
ance to rendering error. One could specifically optimize sampling
by considering content-dependent visual masking [Mantiuk et al.
2021], e.g., by precomputing a texture-specific sample set.

Another promising future direction would be to find a practical
approach for a posteriori optimization of sample patterns. Ideally,
such a method would work in real-time applications and complex
light-transport algorithms.

The relationship between sample optimization and denoising
is another interesting topic. As noted by Heitz and Belcour [2019]
and Chizhov et al. [2022], high-frequency error distributions can
afford higher fidelity when denoising via low-pass filtering; existing
denoisers may need adjustment or retraining to optimally handle
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such input. We believe that our high-frequency spatio-temporal
distribution paves theway for devising improved, correlation-aware
interactive denoising methods.

7 CONCLUSION
We have introduced a general model and a practical method for
spatio-temporal sample optimization for Monte Carlo animation
rendering. Our method accounts for both perceptual and explicit
temporal filtering. To achieve practicality, we extend an existing a
priori optimization method to support our spatio-temporal model.
As a result, we can precompute scene-agnostic sample sets that
yield considerable improvements over previous work in terms of
perceived noise quality.
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Figure 6: Comparison of the 16th animation frame, without TAA. To mimic human perception, for display we apply the
temporal filter of Mantiuk et al. [2021]. We compare our method to uncorrelated sampling and the methods of Salaün et al.
[2022] and Wolfe et al. [2022]. The insets in each crop show the DFT of the error image, and the numbers on the left are the
pRelMSE of each method (lower is better). We achieve visible improvements over previous work on all scenes, and a more
pronounced blue-noise distribution in the DFT spectrum. Please refer to the supplemental HTML viewer to better appreciate
the differences.

Figure 7: Rendering comparison on the 10th animation frame, rendered with 4 samples per pixel. To mimic human perception,
for display we apply the temporal filter of Mantiuk et al. [2021]. We compare our method to uncorrelated sampling and the
method of Wolfe et al. [2022]. The insets in each crop show the DFT of the error image, and the numbers on the left are the
pRelMSE of each method (lower is better). Our method preserves the desirable blue-noise error distribution also at higher
sample counts.
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Figure 8: Perceptual error across the first 30 animation frames (without motion) for three scenes rendered with TAA. The error
initially reduces for all methods, as more frames start to be included in the temporal filter; until frame 15, where the full
support of the kernel is reached. Spatial-only blue noise [Salaün et al. 2022] performs best for the first few frames, where not
much temporal filtering yet occurs. Our optimization achieves the lowest perceptual error at the steady state.

Figure 9: Rendered images with temporal anti-aliasing (TAA). We mimic human perception by applying the temporal filter of
Mantiuk et al. [2021]. As an ablation, we compare our method optimized only for the TAA kernel (center) and the full result
(right) to previous work. We provide 2 crops for each scene associated with the DFT of the error in the region. The numbers at
the bottom are the pRelMSE for 16th frame for each method, lower is better. Optimizing only for TAA already performs well,
but optimizing for both TAA and perception yields best results.
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