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Fig. 1. DROP synthesizes dynamic reaction and recovery motion in response to a variety of perturbations. From left to right, responses to projectiles,
two-character collision, tripped by an obstacle, target following, and responses to a tilting platform.

Synthesizing realistic human movements, dynamically responsive to the
environment, is a long-standing objective in character animation, with appli-
cations in computer vision, sports, and healthcare, for motion prediction and
data augmentation. Recent kinematics-based generative motion models offer
impressive scalability in modeling extensive motion data, albeit without an
interface to reason about and interact with physics. While simulator-in-the-
loop learning approaches enable highly physically realistic behaviors, the
challenges in training often affect scalability and adoption. We introduce
DROP, a novel framework for modeling Dynamics Responses of humans us-
ing generative mOtion prior and Projective dynamics. DROP can be viewed
as a highly stable, minimalist physics-based human simulator that interfaces
with a kinematics-based generative motion prior. Utilizing projective dynam-
ics, DROP allows flexible and simple integration of the learned motion prior
as one of the projective energies, seamlessly incorporating control provided
by the motion prior with Newtonian dynamics. Serving as a model-agnostic
plug-in, DROP enables us to fully leverage recent advances in generative
motion models for physics-based motion synthesis. We conduct extensive
evaluations of our model across different motion tasks and various physical
perturbations, demonstrating the scalability and diversity of responses.
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1 INTRODUCTION
Creating virtual humans that can move autonomously and realisti-
cally stands as a key pursuit in character animation. Crucial to this
endeavor is endowing these virtual characters with the ability to
adapt to and dynamically interact with the environment. Characters
imbued with such capabilities can enhance player immersion in
games and AR/VR environments, provide a predictive human model
for computer vision tasks, offer a safe and cost-efficient means to
synthesize or augment data for robotics applications, and support
healthcare and sports applications.

Recent advancements in character animation indicate that gener-
ative models, such as Variational Autoencoders (VAEs) or Diffusion
Models ([Ling et al. 2020; Rempe et al. 2021; Tevet et al. 2023]),
can efficiently learn human motion priors from large-scale mocap
datasets. However, these learned kinematic models (motion priors)
do not incorporate physics thus lack responses to perturbations
in the environment. Previous attempts to incorporate physics to
motion priors require either additional training of control policies
using reinforcement or imitation learning, or re-training of motion
priors with some notion of physics. Both approaches inevitably
increase design and computational complexity, potentially hinder-
ing adoption and scalability of the methods. In contrast, this paper
investigate the possibility to decouple the incorporation of physics
from the training of kinematic models, exploiting scalability and
modularity inherent from pre-trained generative models.
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We introduce DROP, a motion-model-agnostic plug-in human
physics simulator that adds dynamics capability to a pre-trained
kinematic generative model, without the need to retrain the motion
prior model or train another policy to control it. DROP simulates
quasi-physics effects via an optimization-based implicit Euler in-
tegrator with projective dynamics, and incorporates them with an
existing kinematic model (we use HuMoR [Rempe et al. 2021]). Our
insight is that generative kinematic models inherently possess a
capacity to generalize beyond the training distribution, particularly
in recovering from out-of-distribution states, due to their design and
training methodologies. However, unlike the recovery capabilities
of simulator-in-the-loop methods, such as reinforcement learning,
their recovery trajectories are oblivious to physics, making them of-
ten implausible and unreliable. Therefore, we develop a minimalist,
physically plausible human simulator to collaborate with any au-
toregressive motion prior, directing its recovery trajectory towards
physical validity, with no additional training.

Crucially, we employ projective dynamics [Bouaziz et al. 2014], an
optimization-based (variational) simulation framework, to simulate
our character which is modeled as a rigid stick figure aligning with
the state representation of many kinematic models. Because an
autoregressive motion prior provides a state-dependent manifold
that models the probability distribution of the next state, we can
seamlessly integrate the motion prior as one of the energy fields
in the projective dynamics framework. It collaborates with other
physics-based energy terms, such as contact and rigidity, to balance
the equation of motion in the framework of variational integration.
Hence, our work can also be viewed as an extension of example-
based simulation [Jones et al. 2016; Martin et al. 2011], where the
example manifold now represents state transitions instead of poses.

Our method opens avenues for various downstream applications
that utilize motion priors, withminimal modifications and no further
training. Changes to the physical properties of the skeleton, new
environmental constraints, path or target tracking, can each be
formulated as an additional energy term, while preserving existing
projective energies. In our experiments, we present different plug-
and-play examples to showcase the flexibility of our framework.
Furthermore, we demonstrate that our model can generate diverse
responses to environmental forces across various motion categories.
Quantitative measures and ablation studies show that our method
effectively regularizes the recovery of motion from perturbed, out-
of-distribution states.

2 RELATED WORK
We review existing research in motion modeling, dynamic motion
simulation, and hybrid methods that incorporate physics simulation
with motion models.

2.1 Kinematic Motion Generation
Creating fluid and continuous motions for virtual characters is a
core challenge in animation. The seminal work of Motion Graph
[Arikan and Forsyth 2002; Kovar et al. 2002; Lee et al. 2002] arranges
pre-recorded motion segments into a graph that can be traversed
in runtime to produce seamless and extended motions. Although
the results are high quality, the sparse graph connections limit

responsiveness. Subsequent methods such as Motion Fields [Lee
et al. 2010] and Motion Matching [Clavet 2016] instead leverage
k-nearest neighbors to determine the next pose for any given state,
enabling instant adaptation to changes. These search-based algo-
rithms unfortunately face difficulties when scaling to large, diverse,
but unbalanced datasets such as AMASS [Mahmood et al. 2019].
Recent approaches use deep networks to model motion transi-

tions from large datasets. Neural networks can accelerate the mo-
tion matching process [Holden et al. 2020], or automatically learn
the best features for specific downstream tasks through regression
models and supervised learning [Holden et al. 2017; Starke et al.
2022, 2019]. Generative models, such as (Conditional) Variational
Autoencoders (VAE, CVAE) [Ling et al. 2020; Rempe et al. 2021],
Generative Adversarial Networks (GAN) [Barsoum et al. 2018; Men
et al. 2022], or Diffusion Models [Tevet et al. 2023], focus on learn-
ing the distribution of motion transitions to better represent the
inherent variability in human motions. These models can generate
the next state based on the predicted current state through sampling.
In our work, we utilize a pre-trained generative model, HuMoR, but
we enforce physical realism in the generated transitions and use
projective dynamics to minimize deviation from the learned distri-
bution. Our approach can synthesize novel connections amongst
latent states, avoid divergence to unstable states, and guide the re-
covery back to the learned distribution when encountering unseen
perturbations.

2.2 Dynamic Motion Simulation
Contrary to motion models that reproduce motions similar to those
in the dataset, physics-based motion control naturally yields realis-
tic dynamics responses to forces and changes in the environment.
Techniques using optimization [da Silva et al. 2008; Muico et al. 2009;
Ye and Liu 2010a] and reinforcement learning [Liu and Hodgins
2017; Peng et al. 2018] have proven effective in simulating a single
example sequence under moderate perturbations. The source of
these examples can be motion capture, hand animation, or outputs
from motion synthesis [Bergamin et al. 2019; Park et al. 2019]. To
expand the controller from a single example to a diverse motion
dataset, methods akin to generative motion models are adopted
in control policies. These include employing Motion Graphs with
mixture-of-expert networks [Won et al. 2020], supervised policy
learning with differentiable simulation [Fussell et al. 2021], using
Conditional Variational Autoencoders (CVAEs) [Won et al. 2022;
Yao et al. 2022], or using Generative Adversarial Networks (GANs)
[Peng et al. 2022, 2021; Xu and Karamouzas 2021]. However, the
complexity of the training process and computation time also scale
with the dataset diversity. Additionally, these control policies tend
to produce stiff physical responses [Xie et al. 2023], and creating
human-like compliance may require tuning simulation parameters
and modifying the training process for each different downstream
task [Lee et al. 2022]. For realistic recovery behavior, specific con-
trollers can be learned from captured recovery motions [Shiratori
et al. 2009]. In contrast, our method serves as a decoupled add-on
module to a generic pre-trained kinematic motion model, and does
not require any task-specific learning of the motion model or a
control policy.
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2.3 Hybrid Simulation and Kinematic Methods
Closest to our method are techniques that enhance kinematic mo-
tions with physical and dynamics responses at the moment of in-
teraction. Zordan and his colleagues [2002; 2005] blend simulated
passive motions with kinematic motions at the onset and offset of
interaction. It produces convincing responses but the transitions
are not always realistic. Ye and Liu [2008] apply passive simulation
in a torque space that does not interfere with the input motion, but
their method cannot handle balance. Example data of people being
pushed can be adapted to runtime perturbations. Arikan et al. [2005]
use simulated motions to retrieve and modify the closest example.
Similarly, Ye and Liu [2010b] learn a latent dynamic model from
perturbation and recovery examples, and apply simulation to search
in the latent space of recovery motions. Motion Field [Lee et al.
2010] also provides an add-on method for perturbation recovery.
While effective, these methods are restricted by situations that can
be captured safely and realistically. They also do not scale well to
diverse dynamic situations. In comparison, our method does not
require the motion dataset to contain examples of people being
pushed or falling over, provided enough diversity in the data and
we can effectively identify and connect relevant spaces within the
data during interactions. Our method also does not switch in and
out of simulation.

3 ALGORITHM OVERVIEW
We introduce a human motion simulator based on projective dy-
namics, an optimization-based (variational) implicit Euler integrator.
Projective dynamics provides a flexible interface to incorporate the
generative motion prior as a projective energy term. Optimization-
based simulation provides stability under large time steps, which
facilitates integrating existing motion priors operating at arbitrary
frequencies. Using this framework, we first create a minimalist un-
controlled ragdoll model, adhering to basic human kinematic and
dynamic invariants, such as contact, rigidity, and range of motion
(RoM), with each invariant represented as an energy for the varia-
tional integrator.

The learnedmotion prior then serves as an additional energy term,
effectively supplying control forces to the character. The choice of
projective dynamics over other optimization integrator variants is
crucial, as it permits the incorporation of any class of autoregressive
generative motion prior, so long as its output can be represented as
a state-dependent manifold. For a more detailed discussion on this
design choice, see Sec. 9.1.

Further, we introduce a simple and effective correction technique
to reduce the use of "magic force" from the motion prior energy
term by regulating the linear and angular momentum of the center-
of-mass (CoM).

4 MINIMAL CHARACTER SIMULATION WITH
PROJECTIVE DYNAMICS

We begin by constructing an uncontrolled ragdoll simulator. As
shown in Fig. 2, our simulation character consists of 𝑁 mass parti-
cles, each positioned at a human joint (excluding hands, toes, and
head) with rest-pose locations provided by the SMPL human model
with an average body shape [Loper et al. 2015]. Massless sticks

connect the joint particles, modeled as strong springs similar to
recent work [Chen et al. 2022] that extends the IPC [Li et al. 2020a]
framework to articulated rigid-bodies. Consequently, the state 𝒙
of our simulated ragdoll can be fully determined by joint particle
locations, with 𝒙 ∈ R3𝑁 and 𝑁 = 22 according to SMPL.

Using an optimization-based (or variational) integrator [Gast et al.
2015; Liu et al. 2013; Martin et al. 2011], we solve for the next state
𝒙𝑡+1, 𝒗𝑡+1 from 𝒙𝑡 , 𝒗𝑡 , and external forces 𝒇𝑡 by:

𝒙𝑡+1 = argmin
𝒙

1
2ℎ2 (𝒙 −𝒚)𝑇𝑴 (𝒙 −𝒚) +

∑︁
𝑖

𝐸𝑖 (𝒙 ; 𝒙𝑡 , 𝒗𝑡 ), (1)

𝒗𝑡+1 = (𝒙𝑡+1 − 𝒙𝑡 )/ℎ, (2)

where 𝒚 = 𝒙𝑡 + ℎ𝒗𝑡 + ℎ2𝑴−1𝒇𝑡 + ℎ2𝒈, 𝒈 represents the gravity
vector, and ℎ is the simulation step length (30Hz in this work to
match the learned kinematics motion prior). The first term in Eq. 1,
𝐸𝑚𝑜𝑚 = 1

2ℎ2 (𝒙 − 𝒚)𝑇𝑴 (𝒙 − 𝒚), arises from integrating backward
(implicit) Euler discretization over 𝒙 . This "momentum" energy term
holds second order (Newtonian) dynamics, allowing environment
to change the system states through forces 𝒇𝑡 . The {𝐸𝑖 } comprise
energy terms for contact, RoM, and rigidity constraints, representing
invariants we want to adhere to regardless of whether our character
is controlled.
The projective dynamics method alternates between slack vari-

able projection and solving steps at each optimization iteration. The
projection step independently constructs a slack variable for each
𝐸𝑖 in Eq. 1 (termed "local" step), while the solving step considers all
{𝐸𝑖 } collectively (termed "global" step). In practice, the local projec-
tion step can employ any routine, even non-differentiable ones like
sampling, which provides flexibility for our framework.
In the local step, we independently construct a manifold C𝑖 for

each 𝐸𝑖 and define 𝐸𝑖 as [Bouaziz et al. 2014]:

𝐸𝑖 (𝒙) =
𝑤𝑖

2
min
𝒑𝑖 ∈C𝑖

∥𝑨𝑖𝑥 − 𝒑𝑖 ∥2 , (3)

where C𝑖 is the manifold when 𝑨𝑖𝑥 ∈ C𝑖 we have 𝐸𝑖 (𝒙) = 0. Eq.
(3) requires solving the slack variable 𝒑𝑖 by projecting 𝑨𝑖𝑥 onto C𝑖 .
For example, consider the case where 𝑨𝑖 = 𝐼 , and C𝑖 contains only
one constant point 𝒙 . In this case, we can easily obtain the slack
variable 𝒑𝑖 to always be 𝒑𝑖 = 𝒙 . Consequently, 𝐸𝑖 (𝒙) = ∥𝒙 − 𝒙 ∥2

essentially creates a spring force (∇𝐸) that continually attracts the
optimization variable 𝒙 to the single-point manifold 𝒙 .
In the global step, treating all solved 𝒑𝑖 ’s as constants,

∑
𝑖 𝐸𝑖

becomes a quadratic function. Finding the minimizer 𝒙∗ = argmin
(𝐸𝑚𝑜𝑚 +∑

𝑖 𝐸𝑖 ) requires solving the linear system of equations:

(𝑴/ℎ2 +
∑︁
𝑖

𝑤𝑖𝑨
𝑇
𝑖 𝑨𝑖 )𝑥 = 𝑴𝒚/ℎ2 +

∑︁
𝑖

𝑤𝑖𝑨
𝑇
𝑖 𝒑𝑖 (4)

obtained from ∇𝐸 = 0.

4.1 The Energy Terms
Rigidity. Following previous works, we approximate rigid bones

[Chen et al. 2022] with strong springs [Liu et al. 2013]:

𝐸1 =
𝑤1
2

min
𝒅∈C1

(𝒙𝑇 𝑳𝒙 − 𝒙𝑇 𝑱 𝒅), (5)
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where C1 is the manifold of rest-length spring directions, and 𝒅
is the vectors of springs projected back to their rest length. For a
detailed derivation of 𝑳 and 𝑱 , we direct readers to [Liu et al. 2013].

Contact. To mitigate penetration, we utilize a simplistic contact
model:

𝐸2 =
𝑤2
2

min
𝒙𝒄 ∈C2

(𝒙𝑇 𝑺𝒙 − 𝒙𝑇 𝑺𝒙𝑐 ), (6)

where 𝑺 ∈ R3𝑁×3𝑁 is a diagonal selector matrix. Joint particles
𝑥 𝑗 , 𝑗 = 1, · · · , 𝑁 that will be in collision with the environment
trigger corresponding entries in 𝑺 to 1. 𝒙𝑐 is the projection of the
current configuration 𝒙𝑡 , along contact normal directions, back to
the nearest penetration-free configuration. Consequently, 𝐸2 effec-
tively prompts all particles that are on the verge of penetration to
exit the collision boundary in the normal direction, yet remain static
in the tangential direction. There is a static friction assumption
commonly seen in human motion synthesis. While integrating a
more advanced IPC-style penetration-free contact model [Lan et al.
2022] should improve our framework, we leave that for future work.

Range of Motion (RoM). We introduce another energy term to
regulate the full body pose to remain within the joint ranges of
motion:

𝐸3 =
𝑤3
2

min
𝒙𝒓 ∈C3

∥𝒙 − 𝒙𝑟 ∥2 , (7)

Here, 𝒙𝑟 is the projection of the current pose back to the nearest
pose within joint limits, with the routine involving a neural-net
model, VPoser [Pavlakos et al. 2019]. We provide further details in
Sec. 7.

5 CASTING MOTION PRIOR AS PROJECTIVE ENERGY
The kinematic motion prior serves as the "control" of the human
character. The straightforward alternative for incorporating a mo-
tion prior is to train a model from massive motion data in the
form of 𝐸𝑘𝑖𝑛 (𝒙̃𝑡+1, 𝒙𝑡 , 𝒙𝑡−1) ∈ R (or equivalently 𝐸𝑘𝑖𝑛 (𝒙̃𝑡+1, 𝒙𝑡 , 𝒗𝑡 )),
where a realistic transition result in a low energy value and high
energy vice versa, attracting the system state 𝒙𝑡+1 back to the natu-
ral motion manifold. Training such differentiable energy functions
as Energy-Based Models (EBM) [LeCun et al. 2006] is possible, but
we opt for projective dynamics which allows us to directly take
an existing motion prior not necessarily in the form of an EBM,
without the need for retraining.

A general motion prior model typically takes the following form:

𝒙̃𝑡+1 = M(𝒙𝑡 , 𝒙𝑡−1, ..., 𝒛). (8)

This model aims to generate the next motion frame given the current
state, an optional short motion history, and a noise vector 𝒛 sampled
from a predefined prior distribution (e.g., Gaussian).M is often a
deep neural network. The model is considered "generative" since
different sequences of 𝒛 vectors would, over time steps, produce
various motions, capturing the variability in natural human motion.
We only consider autoregressive motion models, which predict one
frame at a time, as we build online dynamic simulation and response,
where changes in the environment (e.g., force perturbation) are
unknown beforehand.
A generative model in such a form provides a straightforward

way to approximate its transition manifold: if we sample a set of

Fig. 2. DROP: casting motion prior as one of the projective energies. Physics-
based energies {𝐸𝑖 } drive the simulated character with projective dynamics.
Given a motion prior (e.g. conditional VAE decoder), an additional data-
driven energy 𝐸𝑘𝑖𝑛 is incorporated with the slack variable 𝑥𝑘𝑖𝑛 being the
projection of the solver state 𝒙 onto the motion prior manifold.

𝒛̂, we can estimate the transition manifold of X𝑡+1 conditioned on
known history frames with the set of 𝒙̂𝑡+1 samples:

X̂𝑡+1 := {𝒙̂𝑡+1 |𝒙̂𝑡+1 = M(𝒙𝑡 , 𝒙𝑡−1, ..., 𝒛̂) and 𝒛̂ ∼ N0}, (9)

where N0 is the prior distribution (we denote 𝝁0 as its mode). This
then naturally fits into the projective dynamics framework with
𝐸𝑘𝑖𝑛 defined as:

𝐸𝑘𝑖𝑛 =
𝑤𝑘𝑖𝑛

2
min

𝒙𝑘𝑖𝑛∈X𝑡+1
| |𝒙 − 𝒙𝑘𝑖𝑛 | |2, (10)

where we obtain 𝒙𝑘𝑖𝑛 in the local step by simply searching in X̂𝑡+1
the nearest point to the current solver state 𝒙 .
In conjunction with the other physics-based energy terms, we

present the main simulation loop (Algorithm 1, Fig. 2). At each sim-
ulation time step, we first batch-sample the motion prior to estimate
X̂𝑡+1. Subsequently, we execute a few (3, in our implementation)
projective dynamics iterations, where we alternate between solv-
ing for the projection slack variables 𝒑𝑖 for each physics-based 𝐸𝑖 ,
searching for 𝒙𝑘𝑖𝑛 for 𝐸𝑘𝑖𝑛 , and then finding the minimizer of (now
quadratic) 𝐸𝑚𝑜𝑚 +𝐸𝑘𝑖𝑛 +

∑
𝑖 𝐸𝑖 with the solved 𝒑𝑖 ’s and 𝒙𝑘𝑖𝑛 treated

as known constants.
The success of our method depends on two hypotheses on the

motion prior. First, 𝐸𝑘𝑖𝑛 from the motion prior should roughly agree
with other energies {𝐸𝑖 } when the transitions are in distribution of
the training data. That is, they should all be small when simulating
an in-distribution, unperturbed motion. This assumption is reason-
able if we design the {𝐸𝑖 } according to real-world physics and the
motion prior is learned from real-world data.
Second, the motion prior has certain level of inherent ability to

return to training distribution from a state that is out-of-distribution,
albeit via nonphysical paths due to no data coverage. This assump-
tion can be achieved because most autoregressive motion priors
are trained by methods that enhance robustness, preventing error
accumulation from causing significant drifts over long-sequence
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generation. For instance, MotionVAE [Ling et al. 2020] demonstrated
that scheduled sampling [Bengio et al. 2015] during training allows
the model to recover to the training distribution over time. Likewise,
robustness is inherent in Diffusion Models due to the large noise
added during training.
Under these two assumptions, the main task of physics-based

energies {𝐸𝑖 } would be regulating the recovery path to be more
physically valid. This is achieved by directing the solved state 𝒙
to compromise between 𝐸𝑘𝑖𝑛 and {𝐸𝑖 }, as well as the momentum
correction method introduced in the next section.

ALGORITHM 1: DROP Simulation Step
Input: Motion Prior M, Current State 𝒙𝑡 , 𝒙𝑡−1
Ẑ ∼ N0
X̂𝑡+1 = M(𝒙𝑡 , 𝒙𝑡−1, Ẑ) , 𝒙𝑡+1 = M(𝒙𝑡 , 𝒙𝑡−1, 𝜇0 )
for 𝑙 = 0, 1, · · · , numProjectiveDynamicsIter do

𝒙𝑘𝑖𝑛 = argmin𝒙∈X̂𝑡+1
| |𝒙 − 𝒙𝑡+1 | |2

𝐸𝑘𝑖𝑛 =
𝑤𝑘𝑖𝑛

2 | |𝒙𝑡+1 − 𝒙𝑘𝑖𝑛 | |2 // Note, 𝐸𝑘𝑖𝑛 = 0 when 𝑙 = 0
Routines to calculate other projection variables 𝒅 , 𝒙𝑐 , 𝒙𝑟
Solve 𝒙𝑡+1 = argmin𝐸 = argmin[𝐸𝑚𝑜𝑚 + 𝐸𝑘𝑖𝑛 +∑

𝑖 𝐸𝑖 ]
end
𝒙𝑡+1 = SoftCorrection(𝒙𝑡+1, 𝒙𝑡 , 𝒙𝑡−1 )

6 ROOT WRENCH METRIC AND SOFT CORRECTION
While a passive ragdoll simulated in maximum coordinates with
"𝐸𝑚𝑜𝑚 +∑𝑖 𝐸𝑖 " adheres to physical validity, the introduction of 𝐸𝑘𝑖𝑛
can introduce non-physical forces into the system. One non-physical
behavior of our controlled character that cannot be regulated by
{𝐸𝑖 }, is the fictitious "puppet-like" root force and torque (wrench) to
unrealistically regain balance, ignoring the under-actuated nature
of human movement.
Before we can attempt to minimize the use of such "magical

forces", we need to develop a metric capable of quantifying them.
To reduce unnatural balancing, this metric should ensure that the
movement of the center of mass (CoM) is feasible via contact forces
with the ground. Given that 𝐸𝑘𝑖𝑛 can generate large non-physical
forces and our contact model is very simplified, we cannot obtain
meaningful contact forces directly from the simulation. Rather, we
shall solve another optimization problem to find any contact force
that can explain, to the greatest extent possible, the current changes
in CoM momentum. It is important to note that these contact forces
are not simulated within the system but are used solely as slack
variables in this metric. We borrow such a metric from previous
works [Zhang et al. 2021; Zheng and Yamane 2013]:

min
𝒄

∥𝑭 𝒄 − 𝒃 ∥2 , subject to 𝒄 ⪰ 0, (11)

Here, 𝑭 is the contact force basis constructed from the Coulomb
friction cone assumption, 𝒄 are the unilateral contact force coef-
ficients for each basis, and 𝒃 = ( ¤𝑷 , ¤𝑳) is the change in linear and
angularmomentum around CoM, estimated using finite-differencing
and subtracting the effect from gravity and external environmental
forces. The minimization is solved with non-negative least squares
(NNLS). We direct readers to [Zhang et al. 2021] for technical details.

Once 𝒄 is solved, we can interpret ∥𝒃 − 𝑭 𝒄 ∥2 as another quadratic
energy term where 𝑭 𝒄 is constant (𝑭 can be assumed to only depend
on 𝒙𝑡 and not the 𝒙 to be solved). Specifically, 𝒃 is an affine function
of 𝒙 , given that:

¤𝑷 =
∑︁
𝑗

𝑚 𝑗𝒂 𝑗 =
1
ℎ

∑︁
𝑗

𝑚 𝑗 (
𝒙 𝑗 − 𝒙 𝑗

𝑡

ℎ
− 𝒗 𝑗𝑡 ), (12)

¤𝑳 =
∑︁
𝑗

𝑚 𝑗 𝒓 𝑗 × 𝒂 𝑗 =
1
ℎ

∑︁
𝑘

𝑚 𝑗 [𝒓 𝑗 ]× (
𝒙 𝑗 − 𝒙 𝑗

𝑡

ℎ
− 𝒗 𝑗𝑡 ) . (13)

In these equations,𝑚 𝑗 represents the mass of the 𝑗-th joint parti-
cle, 𝒂 𝑗 denotes its acceleration, and 𝒓 𝑗 is its distance to the center of
mass (CoM) location (moment arm), which remains constant if eval-
uated, similarly to 𝑭 , at the previous step 𝒙𝑡 . The skew-symmetric
matrix is denoted by [𝒓 𝑗 ]× . Here, central difference method is used
for approximating 𝒂 𝑗 . These equations enable us to write ∥𝒃 − 𝑭 𝒄 ∥2

succinctly as ∥𝑩𝒙 − 𝒂 − 𝑭 𝒄 ∥2, where 𝑩 ∈ R6×3𝑁 and 𝒂 ∈ R6 can be
determined through manipulation of the equations above.

One might be inclined to directly incorporate ∥𝑩𝒙 − 𝒂 − 𝑭 𝒄 ∥2 as
an extra energy term in 𝐸 during projective dynamics iterations,
where solving 𝒄 using non-negative least squares (NNLS) would
serve as the projection step. However, we found this approach to be
unstable in practice. In early (e.g. first) projective dynamics itera-
tions, the solved 𝒄 can be significantly off when 𝒙 is still far from the
final solution. This could occasionally lead to an excessively large
update in 𝒙 , given that there are infinitely many 𝒙 that can mini-
mize ∥𝑩𝒙 − 𝒂 − 𝑭 𝒄 ∥2. Instead, we choose to apply a post-processing
correction, so we only evaluate 𝒄 when 𝒙 has stabilized to solution
once all iterations are complete. Specifically, we solve for:

𝒙𝑡+1, · = argmin
𝒙,𝝐



𝒙 − 𝒙𝑝𝑑


2 +𝑤𝑝 ∥𝝐 ∥2 , subject to 𝑩𝒙 − 𝒂 − 𝑭 𝒄 = 𝝐,

(14)
where 𝒙𝑝𝑑 represents the solution 𝒙 obtained after all projective
dynamics iterations, 𝑤𝑝 stands for the strength of the correction,
and 𝝐 is the slack variable for correction tolerance. 𝒄 here is first
solved from Eq. 11 by evaluating 𝒃 on 𝒙𝑝𝑑 (i.e., 𝒃 = 𝑩𝒙𝑝𝑑 − 𝒂).
Eq. 14 can be solved precisely by writing out the KKT matrix. We
found that this approach is more stable than directly solving the un-
constrained problem min𝒙



𝒙 − 𝒙𝑝𝑑


2 +𝑤𝑝 ∥𝑩𝒙 − 𝒂 − 𝑭 𝒄 ∥2, which

requires adding the low-rank 𝑩𝑇𝑩 to the system matrix.
It is crucial for such a correction to be gentle, since the root

wrench metric ∥𝒃 − 𝑭 𝒄 ∥ involves finite differencing for the sec-
ond derivative and can be fairly imprecise, particularly for highly
dynamic motions. We adjust𝑤𝑝 to prevent an excessively large cor-
rection



𝒙 − 𝒙𝑝𝑑


. Conversely, to prevent minor corrections from

accumulating over time and degrading the naturalness of themotion,
we skip the post-correction when ∥𝒃 − 𝑭 𝒄 ∥ is already small.

7 IMPLEMENTATIONS
In our algorithm, the kinematic energy term, 𝐸𝑘𝑖𝑛 , is based on a
recent autoregressive generative model, HuMoR [Rempe et al. 2021].
HuMoR is trained on the large-scale AMASS dataset [Mahmood
et al. 2019], excluding motions involving terrains. When the next
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step joint positions 𝒙𝑡+1 have been solved, the input to HuMoR is
replaced with this solved position before querying HuMoR again
for sampling the transition manifold at the next time step. HuMoR,
along with many kinematic models, also considers joint rotations 𝒒
as input, in addition to joint positions. Therefore, before querying
HuMoR again, we need to determine joint rotations 𝒒𝑡+1 from the
solved joint positions 𝒙𝑡+1. In this work, we adopt a swing-twist
decomposition strategy [Li et al. 2021], where the swing compo-
nents of the joint rotations are completely determined by the bone
vectors calculated from 𝒙 . As for the twist component, during the
construction of the approximate manifold, the collection of samples
X̂𝑡+1 are paired with corresponding Q̂𝑡+1 samples also predicted by
the HuMoR model. We adopt the twist given by 𝒒𝑘𝑖𝑛 , which is the
corresponding 𝒒 paired with the selected sample 𝒙𝑘𝑖𝑛 in the final
projective dynamics iteration. For the leaf body nodes (head, hands,
toes), whose rotations 𝒙 does not inform, we directly prompt Hu-
MoR to predict (so they might appear weird in out-of-distribution
cases). We add a kinematic spring to damp leaf node rotations to-
ward the identity (rest pose). Finally, although the HuMoR model
also redundantly predicts joint Cartesian velocities 𝒗 and autore-
gressively uses them, different from 𝒙 , we choose not to overwrite
𝒗 using solved 𝒙 with finite-differencing, as we found overwriting
𝒗 can destabilize HuMoR’s output.

For range-of-motion energy 𝐸3, the VPoser model operates on
𝒒 instead of 𝒙 , so we adopt the same swing-twist decomposition
inverse kinematics. The VPoser model is a VAE with encoder rep-
resented as 𝒛 = 𝑬 (𝒒) and decoder 𝒒 = 𝑫 (𝒛). Following previous
works [Rempe et al. 2021; Weng et al. 2023], ∥𝒛∥ can be considered
as the validity of the pose, and we heuristically define ∥𝒛∥ < 6.0 as
the range of motion boundary. Thus, the projection 𝒒𝑟 of a pose 𝒒
back to the range of motion is as follows:

𝒒𝑟 =

{
𝑫 ( 𝑬 (𝒒)/∥𝑬 (𝒒)∥ · 6.0 ), if ∥𝑬 (𝒒)∥ > 6.0,
𝒒, otherwise,

(15)

after which we obtain 𝒙𝑟 for Eq. 7 through forward kinematics.
Our current prototype does not utilize the detailed skinned geom-

etry of SMPL for collision detection and contact resolution. Instead,
we simply position manually-scaled spheres at the joints to approx-
imate the collision shape. The weights for the energy terms do not
have a significant impact on the overall quality of the motion. We
set 𝑤1,𝑤2,𝑤3,𝑤𝑘𝑖𝑛 to 1.0, 3.0, 3.0, 3.0 respectively. We solve pro-
jective dynamics for three iterations at each simulation step. We
simply set 𝑴 to 𝑰 , assuming all joint mass particles have unit mass.
While we can craft a more realistic 𝑴 , note that it will not affect
the data-driven control term 𝐸𝑘𝑖𝑛 since it operates on positions.

Our current unoptimized Python implementation of the method
operates at 10 FPS, which is thrice slower than real-time, given
that the system simulates with a time step of 1/30 second. The
performance bottleneck arises from the swing-twist IK (at each
projective dynamics iteration for the RoM energy) and data transfer
betweenCPU andGPU (for the neural-nets). Since our systemmatrix
is small (3𝑁 = 66), optimized full-GPU code should most likely bring
the performance beyond real-time. Notably, the sampling process
for the kinematic energy can be easily batched on the GPU. Our
code will be open-sourced upon publication.

8 EVALUATIONS
Our experiments are designed to demonstrate three main objectives:
(1) Our system’s capability to generate a diverse array of responses
to dynamic changes in a variety of motion categories; (2) The ease
of motion editing and a variety of downstream applications enabled
by our system; (3) The importance of the components proposed in
our method.

All demonstrations in the supplementary video are generated by
the existing HuMoR model combined with our human simulator.
No additional motion control or planning are used, except for the
modifications on energy terms and forces as detailed below. As
such, the character’s responses and recovery motions to unexpected
events are stochastically created due to the generative nature of the
HuMoR model.

8.1 Diverse Responses Across Various Motion Categories
In the basic setting, the only environmental variation comes from
an external perturbation force 𝒇 (Eq. 1), which is applied either
to the torso, foot, or the hand (Fig. 3). Our supplementary video
illustrates the varied responses of our simulated human to both
smaller (Video 1’01) and larger (Video 1’33) forces. We randomly
initialize our system from poses within the CMU dataset [cmu 2003]
to encompass a broad range of motion categories.
Our method can also model responses to perturbations when

performing highly dynamic tasks, such as back flips (Video 5’15). In
this specific demo, the system is asked to initially track a specific
CMU motion until just before the perturbation occurs. In other
words, initially, the system follows a mock motion prior that is
deterministic and consistently transitions to the next frame in the
MoCap database, only starting to track the actual motion prior
(HuMoR) immediately after the onset of the external force. We
employ this workaround since if we let HuMoR progresses randomly
on its own without guidance, it tends to quickly converge to the
motion categories that comprise the majority of its unstructured
and unbalanced training data, i.e. locomotion.

8.2 Downstream Motion Editing
In our supplementary video, we showcase an array of downstream
tasks that can be accomplished by our system in a straightforward
manner.

Projectiles. We can enable our character to physically respond
to projectile balls thrown at it by setting the external forces to be
proportional to the depth of penetration between the projectiles and
the collision spheres (Sec. 7) on the character body. This means that
𝒇 = −∑

𝑗 𝑘𝒅 𝑗 , where 𝒅 𝑗 is the penetration vector between the pro-
jectile sphere and the joint collision sphere, with this summed over
all joints. The projectiles are then simulated according to Newton’s
second law with −𝒇 (Video 0’29, 2’19).

Two-character collision. While it is possible to solve for two char-
acters in one system, for ease of prototyping, we can also simu-
late each character independently, treating the other character’s
body-collision spheres as if they were collidable objects in the en-
vironment. Since both characters are based off stochastic motion
priors, a variety of interesting behaviors arise when two characters
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Fig. 3. Our method can model responses to perturbations at different body
parts. Red lines are pushing forces and blue lines represent contact forces
calculated during root wrench correction.

come closer to each other (Video 4’12). When approaching with a
low speed, the characters try to dodge each other upon collision or
attempt to taunt the other character out of way. When running fast
into each other, we observe in one case where one character falls
due to collision, but the other character regain balance and quickly
runs away, leaving the first character struggling on the ground.

Direction following. Since the rollout of a motion prior will only
generate randommovements, previous generative kinematic models
[Ling et al. 2020] have shown that a high-level DRL policy can be
trained to guide the kinematic generative model to follow a specific
path or direction. With our framework, basic and greedy direction
tracking can be achieved zero-shot by adding a center-of-mass-
velocity energy, without the need for training an additional model.
Specifically, we add the following energy to 𝐸:

𝐸𝑐𝑜𝑚 (𝒙) =







∑︁𝑗 𝑚 𝑗
𝒙 𝑗 − 𝒙 𝑗

𝑡

ℎ
− 𝒗𝑡𝑎𝑟

∑︁
𝑗

𝑚 𝑗








2

, (16)

where 𝒗𝑡𝑎𝑟 is the target velocity,𝑚 𝑗 and 𝒙 𝑗 are 𝑗-th joint’s mass
and position, same as in Eq. 12. 𝐸𝑐𝑜𝑚 can also be considered as an
additional soft physical constraint, that encourages 𝐸𝑘𝑖𝑛 to project
to poses in the transition manifold that align more closely with 𝒗𝑡𝑎𝑟 .
In the supplementary video (3’28), we make the character follow a
moving red dot that changes the moving direction every 4 seconds.
When the red dot moves at a slow speed (∥𝒗𝑡𝑎𝑟 ∥ = 1.2 m/s), the
character walks and turns accordingly. When we speed up the red
dot (∥𝒗𝑡𝑎𝑟 ∥ = 2.5 m/s), the character switches to running so it can
catch up the target. Using the same technique, in the projectile
demos (Video 0’29, 2’19), we also ask the character to attempt to

dodge the projectile balls thrown at it by setting the direction of
𝒗𝑡𝑎𝑟 to be maximally distant to the directions of the balls.

Force-based constraints. One way to set positional constraints,
such as a target in space for the right hand, is to add an external
force 𝒇 to the target joint (e.g., right hand), proportional to the
constraint violation vector, pulling the target joint towards the
position constraint. In the previous direction following demo (Video
3’28), when the character is asked to walk or run along a square
trajectory (CoM tracking), we also add such a force-based constraint
to its right hand, mimicking the character being led to walk or run.
As shown in the video, this positional constraint is more closely
satisfied at a lower center-of-mass speed (walking) and is violated
more at a high speed (running).

Energy-based constraints. We also experimented with setting po-
sitional constraints by adding a local energy term that penalizes

the distance 𝐸𝑐𝑜𝑛𝑠𝑡𝑟 =




𝒙 𝑗 − 𝒙 𝑗
𝑡𝑎𝑟




2
between the joint and its target

position. In our video (1’58), we emulate a character getting tripped
by immovable obstacles on the ground by fixing the heel joint for 1
second when it is about to touch an obstacle on the ground.

Tilting platform. Tilting the ground plane does not necessitate
the addition of energy terms to the system. The character’s changes
in its behaviors are automatic due to unexpected collision with the
ground. As the ground tilts, the character stops walking, crouches
down, and sticks its arms out for balance (Video 2’41). This emergent
behavior is entirely generated by the generative model, showcasing
HuMoR’s inherent generalization ability as its training data only
contains motions on a flat ground.

Stiff knee. Our method is also capable of modeling dynamics
variations intrinsic to the character’s skeleton model. By adding a
strong spring between the left hip joint and the left heel joint, similar
to the ones we used to model bones, we can simulate a walking
motion with a stiff knee (Video 4’03).

8.3 Ablation Study
To demonstrate the significance of the components proposed in our
method for generating realistic response motions, we performed the
following ablation studies (Video 4’41). Without HuMoR, the char-
acter would behave like a passive rag doll without control. Without
the range of motion energy 𝐸3, the system is prone to generating un-
natural poses that fall outside of the typical human range of motion.
Without the collision energy term 𝐸2, the character might interpene-
trate with the ground during perturbations and recoveries. Without
the soft correction for root wrench, the character uses puppet-like
ghost force to recover from large perturbations without utilizing
contact.

8.4 Analysis on the Energy Trajectory
Fig. 6 displays a synthesized motion wherein during normal walk-
ing, the character is perturbed by an external force at the pelvis
(represented by the red line in the rendering), takes a few recovery
steps, and returns to normal walking. During this trajectory, we
note that at the onset of perturbation, the RoM and Momentum
energies experience increased violation, making the solved motion
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Fig. 4. Median trajectory of different energy terms in our method, across
250 random motions all being perturbed from steps (frames) 63 to 78. Our
method guides the motions to return to training data distribution over time,
as evidenced by decreasing motion prior energy.

to deviate from the distribution of motion prior and driving 𝐸𝑘𝑖𝑛
to increase as well. Subsequently, during the recovery steps, 𝐸𝑘𝑖𝑛
remains relatively high, suggesting that the motion prior has not yet
returned to the AMASS training distribution. The Contact energy is
high here to prevent the recovery steps from appearing implausible
(i.e., penetrating the floor too much).

To illustrate that our system can guide themotion prior’s recovery
back towards the original training data distribution, we extend Fig.
6 to analyzing 250 random motions, all perturbed at the same point
of time in the trajectory (Fig. 4). A logarithmic y-scale is used for
visual clarity, and the medians per frame across the 250 motions are
plotted. Similar to Fig. 6, Fig. 4 shows that during the unperturbed
stage, the kinematic energy largely aligns with physics-based energy
terms, and hence all energy levels are low. Both kinematic and other
energy terms increase at the point of perturbation, causing the
motion to deviate from the motion prior as a compromise between
the energies. The median energies gradually decrease, reflecting that
it takes time for motions to recover to training distribution (e.g. get
up and resume normal walking). We also plot a hypothetical energy
term, "motion prior mean" (green line in Fig. 4), which represents the
kinematic energy level if 𝐸𝑘𝑖𝑛 was calculated from a single-point
manifold, as given by the mean/mode of the HuMoR’s decoder,
instead of having access to a full manifold. The results demonstrate
that, especially during recovery (around frames 100 to 150), using
the full manifold reduces 𝐸𝑘𝑖𝑛 by at least 30% (note the logarithmic
scale), indicating that the system prefers having the flexibility of
choosing from a manifold over a single point.
Finally, for an ablation system without the Contact and RoM

energy terms (we retain the Rigidity energy, effectively allowing
the generalized coordinate representation to always hold), Fig. 5
shows that both kinematic and physics-based energies are at least 5

Fig. 5. Median trajectory of different energy terms in an ablation method
without RoM and contact energies being used in simulation, across 250
random motions all being perturbed from steps (frames) 63 to 78. Final
energies of both motion prior term and the physics terms are at least 5x
higher than our full method, and show no signs of further decrease.

times higher at the end of the trajectory and do not demonstrate a
trend towards final recovery.

8.5 Analysis on Root Wrench Metric and Correction
In Sec. 6, we introduced a soft correction mechanism to regulate
the usage of the "root magic force". Given that the measurement of
this metric involves twice finite differencing, it can be numerically
sensitive. Fig. 7 Top provides evidence that even for ground-truth
mocap motions, such as jumping and running, the root wrench
metric can have a non-negligible value. Intuitively, even a small
inaccuracy in MoCap data can have a substantial impact on the
metric, because finite differencing involves multiplying by 1/ℎ2.

We also demonstrate that our simple inertia approximation using
mass points at joints does not significantly affect the estimation
of the root wrench metric. This can be observed by comparing it
with a more detailed inertia approximation that treats all body parts
as manually-scaled cylinders (scaled to roughly match the skinned
SMPL body shape [Loper et al. 2015]). As can be seen in Fig. 7 Top-
left and Top-right, the cylindrical approximation yields similar root
wrench metric for ground-truth motions.

In Fig. 7 Bottom, we present an illustrative example of how our
soft correction method reduces the root wrench metric for a syn-
thesized motion of perturbed running. During this motion, the red
line represents what the root metric would have been without our
correction mechanism, while the blue line shows the actual value
for this motion, post-correction. Our method only brings down the
metric to a similar range as seen in ground-truth motions, instead
of completely eliminating it, as the metric is not exact. As such,
some motions that visually use non-physical root forces, but has
the metric in range, will not be corrected (Sec. 9.2).
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Fig. 6. Contributions of each energy term during synthesizing a motion of perturbed walking. External force happens at frame 63. At each step, the solve state
compromises between motion prior and other energies, regulating the recovery of motion prior back to training data distribution to be physically valid.

Fig. 7. Up: Root wrench usage metric is non-negligible even during ground-truth MoCap trajectories, shown running (left) and jumping (right) motions.
Bottom: Our soft correction technique aims to bring the metric down to a similar range as ground-truth motions.
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8.6 Comparisons with Reinforcement-Learning-Based
Methods

We explore an alternative framework to generate physics-based
human motion without using deep reinforcement learning (DRL).
By decoupling the training to be only kinematics, our method scales
to large datasets much more easily and with less compute. In the
accompanying video (0’48, 1’20), we present a few non-rigorous
qualitative comparisons to the state-of-the-art DRL method ASE
[Peng et al. 2022]. We focus on the responses of the two methods
to small and large external forces, since when without perturba-
tion our method generates motions with quality on-par to HuMoR.
Though ASE is trained on a much smaller dataset which specifi-
cally contains perturb and get-up motions, our method can generate
more compliant and realistic (in terms of physical capabilities of
real humans) responses. Our method also generates more diverse re-
sponses thanks to being trained on the large-scale AMASS data. On
the other hand, motions from ASE can sometimes be more physical
than ours since it is trained in a full-blown physics engine.

8.7 Failure Cases
It is challenging to define failure quantitatively for this work, as the
kinematic model will continue to drive the character towards ran-
dom poses even if it enters a unstable state. Also, with our physics-
based energies in similar forms with common physicality metrics,
quantitative physical metrics could appear valid even in obvious
failure cases from visual inspection. Our video (5’43) showcases
several such qualitative failure cases, where the most common issue
can be characterized as "super-human behavior". For example, the
character could quickly spin near the floor while lying. In such cases,
the motion prior clearly enters a disastrous state from which it can-
not recover even with guidance of the system. However, since the
character still makes intermittent contact with the floor, the motion
would be deemed valid by the soft correction routine. This behavior
suggests that additional physical constraints, such as torque limits,
may need to be added to the system, since such fast spinning indi-
cates an effectively huge amount of control torque being added to
the system. We provide more discussion on current limitations in
Sec. 9.2.

9 DISCUSSION
This paper introduces a minimal human physics simulator based on
projective dynamics, that can be plugged into a learned generative
kinematics motion prior to augment it with dynamic capabilities,
without any further training beyond the pretrained motion prior.
Thanks to the motion diversity inherited from the motion prior, sim-
ulating various dynamics responses to physical and environmental
changes is surprisingly easy.

9.1 Alternative Formulations
Our current framework poses no constraint on the type of genera-
tive motion models, as long as they can be sampled to generate a
set of next states for manifold approximation. We note that Eq. (10)
cannot be used in vanilla optimization-based simulators as an en-
ergy term, due to construction of X𝑡+1 involving non-differentiable

sampling. On the other hand, projective dynamics does not require
an analytical or differentiable expression of Eq. (10).

It’s technically also feasible to train an Energy-Based Model [Le-
Cun et al. 2006], explicitly predicting the scalar distance (score) to
training data distribution, given any motion transition as input. An
EBM, being a closed-form differentiable neural network, can theo-
retically work with any energy-based simulation framework. In fact,
that is precisely what we experimented with early on in this work
before deciding to switch to projective dynamics - despite recent
advances in training EBMs, we found they can still be unstable to
train and hard to scale to a large dataset. In contrast, projective
dynamics frees us to use any motion prior that scales well, such as
VAEs [Rempe et al. 2021], discretized token-based Transformers [Li
et al. 2020b], or more recent Diffusion Models [Tevet et al. 2023].

9.2 Limitations
Due to the sensitivity of the root wrench metric (Sec. 8.4), we choose
to allow a small amount of root wrench, which may occasionally
lead to puppet-like motions. Further research is required to base
this metric on a time window rather than a single step, which may
potentially mitigate its sensitivity resulted from finite differencing.
The root wrench correction should also ideally be incorporated
into the projective dynamics solver rather than as post-processing.
Particularly at states where data coverage is poor, the motion prior
could mandate a very unrealistic transition causing the root cor-
rection to solve for a very large correction step in response, which
might violate previously solved energy terms causing artifacts such
as foot sliding.

We note that our foot sliding or penetration metric (equivalently
to the level of contact energy, Fig. 4 and 6) and physicality metric
(equivalent to root wrench, Fig. 7) should be at least as good as
HuMoR on unperturbed AMASS training motions, in which case
our method degenerates to physics-based post-processing on top
of kinematic models. During perturbation recoveries, our physics-
based energy values become higher, which equivalently indicates
quantitative physics-based metrics becoming worse.
As our method involves no dependency on existing physics en-

gines or libraries, our current implementation from scratch involves
several simplifications. Our method does not simulate toes, hands,
or head, and only uses spheres at each joint as collision geome-
tries. As result, our visualization (using fully skinned SMPL model)
inevitably sees occasional foot and hand penetration, as well as
self-penetration between body parts, even though our RoM energy
provides some implicit mitigation to self-penetration. We also use a
maximal-coordinate stick figure to ease the incorporation of pro-
jective dynamics, with the twist motion excluded in the projective
dynamics solver and fully predicted kinematically from HuMoR.
Extending the framework to articulated rigid bodies would provide
a better representation.
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