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Figure 1: Neural Point-based Volumetric Avatar explores point-based neural representation combined with volume rendering,
achieving high-fidelity facial animations (images and depth maps) while maintaining efficiency comparable to mesh-based
methods (Tab. 1). During training, NPVA can adaptively allocate more points to challenging facial regions, forming a thicker
“shell” (i.e., a higher variance of projected distances onto the face in the normal direction) and increasing capacity as needed. In
the leftmost image, we show our rendering and the ground truth (GT) side-by-side on the right and left parts, respectively.
Observe the close resemblance between our rendering quality and the GT.

ABSTRACT
Rendering photorealistic and dynamically moving human heads is
crucial for ensuring a pleasant and immersive experience in AR/VR
and video conferencing applications. However, existing methods
often struggle to model challenging facial regions (e.g., mouth in-
terior, eyes, and beard), resulting in unrealistic and blurry results.
In this paper, we propose Neural Point-based Volumetric Avatar
(NPVA), a method that adopts the neural point representation as
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well as the neural volume rendering process and discards the pre-
defined connectivity and hard correspondence imposed by mesh-
based approaches. Specifically, the neural points are strategically
constrained around the surface of the target expression via a high-
resolution UV displacement map, achieving increased modeling
capacity and more accurate control. We introduce three technical
innovations to improve the rendering and training efficiency: a
patch-wise depth-guided (shading point) sampling strategy, a light-
weight radiance decoding process, and a Grid-Error-Patch (GEP)
ray sampling strategy during training. By design, our NPVA is bet-
ter equipped to handle topologically changing regions and thin
structures while also ensuring accurate expression control when
animating avatars. Experiments conducted on three subjects from
the Multiface dataset demonstrate the effectiveness of our designs,
outperforming previous state-of-the-art methods, especially in han-
dling challenging facial regions.
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1 INTRODUCTION
Realizing photorealistic rendering of an animatable human head is
a pivotal goal in computer graphics and vision, which has broad
applications such as AR/VR communications [He et al. 2020; Lom-
bardi et al. 2018; Orts-Escolano et al. 2016], gaming [Waggoner
2009], and remote collaboration [Wang et al. 2021a]. However, pro-
viding a satisfying and immersive experience in these applications
remains immensely challenging due to our innate ability to express
and perceive emotions through subtle facial cues [Ekman 1980].
Existing data-driven learning methods often generate noticeable
artifacts in the mouth area and blurry beard textures [Egger et al.
2020; Grassal et al. 2022; Khakhulin et al. 2022; Lombardi et al. 2018;
Ma et al. 2021; Zollhöfer et al. 2018]. This limitation is primarily
attributed to their underlying mesh-based representations, since
the predefined mesh has a fixed topology and limited discretization
resolution.

To illustrate this limitation, consider the Deep AppearanceModel
(DAM) [Lombardi et al. 2018] that decodes a head mesh and the
corresponding view-specific texture UV map. Despite achieving
high-quality rendering results for the skin regions, DAM produces
conspicuous artifacts in the mouth and hair regions due to inaccu-
rate correspondences across frames (e.g., mouth interior) and the
mesh’s inability to model thin structures (e.g., beard). To alleviate
these issues, Pixel Codec Avatar (PiCA) [Ma et al. 2021] proposes
the use of neural textures, allowing the subsequent neural renderer
to address inaccurate shape estimation and topological inconsis-
tencies (e.g., closed/open mouth), attaining moderately improved
facial geometry and renditions for the mouth region. Similarly,
Mixture of Volumetric Primitives (MVP) [Lombardi et al. 2021] at-
taches volumetric primitives (predicted by a CNN) to mesh vertices,
replacing vertex colors with more flexible volumetric primitives.
However, these enhanced “texture”-like representations remain em-
bedded in a predefined topology and tend to produce blurry results
if inaccurate correspondences occur.

Therefore, we propose Neural Point-based Volumetric Avatar
(NPVA) that leverages highly flexible neural points [Aliev et al.
2020] and versatile neural volume rendering, enabling sharper ren-
dering for both topologically changing geometries (e.g., mouth
interior) and translucent thin beard structures.

To create animatable head avatars, another key technical chal-
lenge lies in enhancing the controllability of neural points to gen-
erate accurate target expressions. To address this, we reconstruct
an intermediate coarse geometry (represented as a UV position

map) of the driving signal (i.e., target expression) and constrain the
movable neural points close to its surface. Further, to maximize the
benefits of neural volume rendering, we introduce an additional
displacement map, which allows the points to move to more opti-
mal positions around the surface. For instance, after training, more
points are located inside the mouth, resulting in a thicker “point
shell” and increased modeling capability for volume rendering.

Efficient rendering and training are also indispensable for practi-
cal applications. To this end, we propose three technical innovations.
(1) We introduce a novel depth-guided [Lin et al. 2022] sampling
method that incorporates local depth context information (i.e. a
patch), achieving more realistic rendering while reducing the ren-
dering time by ∼ 10× compared to the vanilla NeRF. (2) We develop
a lightweight radiance decoding process that eliminates unneces-
sary per-point processing used in [Bai et al. 2023; Xu et al. 2022],
significantly improving rendering efficiency (∼ 7×) and offering
better generalization in our dynamic modeling task. (3) Lastly, to
speed up training, we propose a novel Grid-Error-Patch (GEP) ray
sampling strategy comprising three stages: a uniform grid-sampling
stage for rapid initialization of a coarse result, an error-based im-
portance sampling that delves into more challenging regions, and
a patch-based stage to impose high-level perceptual image losses.

Our contributions are summarized below:
• We propose a novel volumetric representation based on neu-
ral points that are dynamically allocated around the surface
(i.e., the target expression) for animatable head avatar cre-
ation. This representation is inherently capable of better
handling thin geometry and topological changes.

• We introduce three technical innovations to enable efficient
rendering and training, including a patch-wise depth-guided
shading point sampling method, a lightweight radiance de-
coding process, and a Grid-Error-Patch training strategy.

• Experiments on the Multiface dataset show that our ap-
proach produces higher-quality images for novel expressions
and novel views while being ∼ 70× faster than NeRF.

2 RELATEDWORKS
2.1 Continuous Neural Representations.
Neural implicit representations, such as ONet [Mescheder et al.
2019], DeepSDF [Park et al. 2019], and NeRF [Mildenhall et al.
2020], parameterize a continuous occupancy/SDF/radiance fields
with a network (e.g., a multilayer perceptrons, MLP). The property
(e.g., occupancy, color/density) of any location in the scene could
be queried by feeding its coordinate (optionally along with spec-
ified viewing direction) to the MLP, which is also referred as the
coordinate network.

Rapid progresses have been achieved on shape modeling [Chen
and Zhang 2019; Martel et al. 2021; Tretschk et al. 2020; Wang
et al. 2021b; Wu et al. 2023b] and appearance modeling [Kellnhofer
et al. 2021; Schwarz et al. 2020; Sitzmann et al. 2019; Zheng et al.
2023b]. For example, PVA [Raj et al. 2021] and KeypointNeRF [Mi-
hajlovic et al. 2022] obtain facial neural radiance fields from multi-
view images for high-fidelity static face reconstruction. Later, these
neural implicit representations are further extended to handle dy-
namic scenes (e.g., a talking head) by introducing deformation
techniques [Gafni et al. 2021; Tang et al. 2022; Wu et al. 2023a; Yao
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Figure 2: Overview of Neural Point-based Volumetric Avatar (NPVA). The core of our approach is a neural point-based volumetric
representation (middle), with points distributed around the surface of the target expression. This surface is defined by the
low-resolution position map 𝑮̂𝑜 with intermediate supervision. A high-resolution displacement map 𝑮̂𝑑 allows the points to
adaptively move within a certain range, as needed to provide increased capacity in more challenging regions (e.g., mouth,
hair/beard). The attached point features are obtained from the feature map 𝑭 . 𝑮̂𝑜 , 𝑮̂𝑑 , and 𝑭 are decoded from the latent
code 𝒛 (left), which is trained in a variational auto-encoding style (encoder omitted). In addition, we propose three technical
innovations with the aim of achieving rendering efficiency on par with mesh-based methods (right).

et al. 2022; Yu et al. 2023]. For instance, NerFace [Gafni et al. 2021]
conditions the NeRF on 3DMM coefficients, making a small step to
animatable avatar creation. DFA-NeRF [Yao et al. 2022] further con-
ditions NeRF with disentangled face attribute features and enables
more detailed control over the talking head.

Methods using neural implicit representations assume no fixed
topology and have infinite resolution (in theory), achieving im-
pressive novel view synthesis results for dynamic scenes. However,
they usually suffer from various artifacts (e.g., blur, distortion) and
inaccurate control when rendering novel expressions/poses, which
is critical for creating high-quality animatable avatars. In contrast,
our approach employs an explicit point-based representation driven
by a coarse surface (represented as a UV position map) of the novel
expression, achieving better generalization on novel expression and
precise expression control.

2.2 Discrete Neural Representations.
Common discrete representations in CV/CG includemesh, grid/voxel,
and point cloud. Recently, these representations have been extended
with neural features to not only reconstruct the shape, but also cre-
ate photorealistic image renderings thanks to the rapid progress in
differentiable neural rendering [Cao et al. 2022; Laine et al. 2020;
Lassner and Zollhöfer 2021; Ma et al. 2023; Rakhimov et al. 2022;
Rückert et al. 2022].

For example, neural volumes [Lombardi et al. 2019] learns a
radiance field in the canonical space and introduce another warp
field to handle dynamic scenes. However, regular grid/voxel-based
representations usually suffer from the required cubic memory
footprint and slow rendering speed due to the processing of empty
voxels.

Another line ofworks usesmesh-based neural representations [Lom-
bardi et al. 2021; Ma et al. 2021]. For example, PiCA employs a neural
UV texture map to render the head avatar in different expressions

from any given viewpoint. Neural head avatar [Grassal et al. 2022]
introduces additional geometry and texture networks in comple-
mentary to a base FLAME [Li et al. 2017] head model, resulting
in a better shape and texture modeling. However, mesh-based rep-
resentations require accurate surface geometry and semantically
consistent correspondence, which is usually hard to acquire. Al-
ternatively, MVP combines mesh and grid-based representations,
and uses the volume rendering technique to render images. How-
ever, the color and density of MVP’s primitives are decoded from
2D CNNs and further aggregated to obtain the radiance of query
points, which inevitably causes blurry renderings. As a result, we
propose to explore a more flexible neural point-based representa-
tion. Concurrent with our work, PointAvatar [Zheng et al. 2023a]
also uses a point-based representation. Different from ours, their
points only store color information and use splatting for rendering.
We utilize powerful volume rendering, which has the potential to
render higher-quality hairs and beards.

2.3 Differentiable Neural Rendering.
Rapid progress in differentiable neural rendering [Jiang et al. 2020;
Liu et al. 2019, 2020; Müller et al. 2022] makes analysis-by-synthesis
pipeline more powerful than before and enables avatar creation
from even a short monocular video [Grassal et al. 2022; Zheng et al.
2023a]. For example, deferred neural rendering [Thies et al. 2019]
proposes a neural texture map, which is decoded by a neural ren-
derer into high quality renderings from any viewpoint. Recently,
neural volume rendering [Mildenhall et al. 2020] achieves impres-
sive high-quality renderings by introducing volume rendering to
neural implicit fields. What’s more, volume rendering can naturally
model translucent objects (e.g., hair, smoke) in very high fidelity,
which is very suitable for head modeling. However, a major draw-
back of neural volume rendering is low rendering efficiency. Our
approach employs volume rendering to ensure high-fidelity visual
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results, and proposes a series of acceleration methods to achieve
rendering speed matching neural texture rendering.

3 METHODS
An overview of our Neural Point-based Volumetric Avatar (NPVA)
is shown in Fig. 2. Given a latent code corresponding to the target
facial state, we employ three decoders to generate a position map
𝑮̂𝑜 , a displacement map 𝑮̂𝑑 , and a feature map 𝑭 , respectively. Our
NPVA representation is constructed from these maps, followed
by a point-based neural volume rendering to efficiently produce
high-fidelity images and detailed depth maps from any viewpoint.

In Sec. 3.1, we introduce our NPVA representation that leverages
flexible point clouds for improved modeling of topological changes
and thin structures, and utilizes volume rendering to produce high-
fidelity images. In Sec. 3.2, we present our efficient rendering and
training strategies, enabling NPVA to render photorealistic images
comparable to NeRF while being ∼ 70× faster. Sec. 3.3 details our
training losses. Sec. 3.4 describes our implementation details.

3.1 Neural Point-based Volumetric Avatar
3.1.1 Neural Radiance Field. NeRF [Mildenhall et al. 2020] effec-
tively encodes a static scene using a Multi-Layer Perceptron net-
work (MLP), achieving unprecedented high-quality novel view syn-
thesis results. During rendering, the trained MLP takes the scene
coordinates 𝒙 ∈ R3 and viewing direction (𝜃, 𝜙) as input and pro-
duces the corresponding density 𝜎𝑥 and view-dependent color 𝒄𝒙 .
The final color of an image pixel is obtained via volume rendering
(Eq. (1)), which integrates all shading points on the ray that passes
through this image pixel. Mathematically, NeRF uses piece-wise
constant density and color as an approximation:

𝑐 =

𝑁∑︁
𝑖=1

𝑇𝑖 (1 − exp(−𝜎𝑖𝛿𝑖 ))𝑐𝑖 , 𝑇𝑖 = exp(−
𝑖−1∑︁
𝑗=1

𝜎 𝑗𝛿 𝑗 ) (1)

where 𝜎𝑖 and 𝒄𝑖 denote density and color, respectively, and 𝛿𝑖 is the
distance between two adjacent shading points.

3.1.2 Animatable Neural Points. We employ explicit neural points
in our NPVA to achieve more controllable deformation of the under-
lying implicit neural radiance field. Leveraging this geometry proxy
can also significantly enhance the rendering efficiency (Sec. 3.2).

Inspired by Point-NeRF [Xu et al. 2022], our representation con-
sists of a set of neural points, denoted asA = {(𝒑𝑖 ,𝒇𝑖 ) |𝑖 = 1, . . . , 𝑁 },
where 𝒑𝑖 ∈ R3 denotes the location of point 𝑖 , and 𝒇𝑖 represents its
associated feature. In our network, these features are learned in a
variational auto-encoding style, similar to DAM [Lombardi et al.
2018] and PiCA [Ma et al. 2021], to create an animatable avatar.
Specifically, the geometry sub-network in the decoder predicts a
UV position map 𝑮̂𝑜 and a UV displacement map 𝑮̂𝑑 . 𝑮̂𝑜 stores
the vertex positions of a coarse head mesh. We apply additional
intermediate supervision on the 2562 position map 𝑮̂𝑜 to obtain
better expression control. To achieve better expressiveness of the
point-based neural radiance field, we upsample the position map
𝑮̂𝑜 to 10242 and incorporate the high-resolution displacement map
𝑮̂𝑑 to compensate for inaccuracy contained in the coarse geome-
try. By compositing the upsampled 𝑮̂𝑜 and 𝑮̂𝑑 , we determine the
positions of the neural points. The final neural points can adjust
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Figure 3: Lightweight Radiance Decoding. Given a query
point, we find its 𝐾 nearest neighboring neural points. We
weighted sum these points to obtain an “average” feature for
the subsequent radiance decoding. Note that we removed the
per-point processing MLP used in Point-NeRF. This light-
weight decoding process runs faster and obtains better gen-
eralization on novel expressions for our dynamic modeling
task.

their positions adaptively around the surface, as we only apply a
regularization term to penalize unreasonably large displacements.

3.1.3 Lightweight Radiance Decoding. The radiance (i.e., color 𝒄𝒙
and density 𝜎𝒙 ) at position 𝒙 ∈ R3 is extracted based on (up to)
its 𝐾 nearest neighboring points and a neural decoding MLP (see
Fig. 3), inspired by prior methods [Xu et al. 2022; Zimny et al. 2022].
To increase efficiency and ensure better generalization on novel ex-
pressions, we design a novel lightweight radiance decoding process
that directly aggregates the neural points and passes this “average”
feature to a lightweight neural decoding network, achieving ∼ 7×
speedup (compared to Point-NeRF) and better renderings. Specifi-
cally, for a given shading point, we compute a weighted average of
the features and relative positions of (up to) its 𝐾 nearest neural
points inside a sphere of radius 𝑅 as in Point-NeRF:

𝒇𝒙 =
∑︁
𝑖

𝑤𝑖∑
𝑤𝑖

𝒇𝑖 , 𝒗𝒙 =
∑︁
𝑖

𝑤𝑖∑
𝑤𝑖

𝒗𝑖 (2)

where 𝒗𝑖 ∈ R6 is the position encoding of the displacement vector
between neural point 𝒑𝑖 and the shading point 𝒙 ,𝑤𝑖 =

1
| |𝒑𝒊−𝒙 | |2 is

the weight that is inversely proportional to the Euclidean distance
between 𝒙 and 𝒑𝑖 . Then, two shallow MLPs are applied to decode
this average feature to density 𝜎𝒙 and view-dependent color 𝒄𝒙 :

F𝑑 : (𝒇𝒙 , 𝒗𝒙 ) → 𝜎𝑥 , F𝑐 : (𝒇𝒙 , 𝒗𝒙 , 𝒅) → 𝒄𝒙 (3)
Positional encoding [Mildenhall et al. 2020] is applied to every
dimension of the input vector in F𝑑 and F𝑐 . Finally, a pixel color is
obtained via the integration in Eq. (1).

The primary difference between our radiance decoding and pre-
vious methods [Bai et al. 2023; Xu et al. 2022] is that we omit the
per-point feature processing MLP before the feature aggregation in
Eq. (2). This modification provides two benefits: it results in ∼ 7×
speedup and improved generalization to unseen expressions in our
dynamic modeling task (Fig. 5).
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Figure 4: Qualitative Comparisons with State-of-the-Art Methods. Our NPVA produces more photorealistic facial renditions on
held-out test expressions compared to previous state-of-the-art methods, particularly in challenging facial regions (i.e., eyes,
beard, and mouth interior). The normal expression is presented in Row 1, while the extreme expressions are shown in Row 2.
The bottom left corners of the leftmost images show the shell thickness of our NPVA. The thickness for a specified face is the
variance of point-to-surface distance for the points corresponding to it. Red (blue) indicates larger (smaller) variance. During
learning, our NPVA automatically increases capacity (i.e., thicker shell) to better model the more challenging facial regions
(e.g., hair and mouth interior).

3.2 Efficient Rendering and Training
3.2.1 Patch-wise Depth-guided Volume Rendering. Since we have
some prior knowledge about the scene (i.e., a head and its coarse
shape), we can focus on sampling the shading points around the
surface, significantly improving the rendering efficiency compared
to the original NeRF.

We propose a patch-wise depth-guided sampling strategy, taking
into account that the envelope of a head mesh is often not very
accurate and the visible facial parts could appear on different depth
levels (e.g., jaw and neck). Specifically, we define a fixed connectivity
on the 2562 position map 𝑮̂𝑜 so that we can easily rasterize a depth
map 𝑫rast. For a ray passing through [𝑝𝑥 , 𝑝𝑦], we consider a local
depth patch centered on it and obtain the minimum and maximum
depth values 𝐷min and 𝐷max. In our implementation, we consider
only nine pixels, i.e., {𝑫rast (𝑝𝑥 + 𝑖, 𝑝𝑦 + 𝑗) | 𝑖, 𝑗 ∈ {−𝑠, 0, 𝑠}}, where
𝑠 is a hyper-parameter set to 16 on 1024 × 667 images.

If 𝐷max −𝐷min < 𝛿𝑑 (smaller than a threshold), there is only one
depth level (e.g., no sudden depth changes like jaw and neck), and
we use 𝑑𝑐 = (𝐷max + 𝐷min)/2 as our sampling center. If 𝐷max −
𝐷min ≥ 𝛿𝑑 , there are likely two depth levels, and we split our budget
equally between them and sample shading points around 𝐷min and
𝐷max separately. For every depth level 𝑑𝑐 , we uniformly randomly
sample points 𝒑(𝑡𝑖 ) within evenly spaced bins 𝑡𝑖 centered at 𝑑𝑐 as
follows:

𝒑(𝑡𝑖 ) = 𝒐 + 𝑡𝑖
−→
𝒅 , 𝑡𝑖 ∼ U[𝑑𝑐 + ( 2(𝑖 − 1)

𝑁
− 1)𝑟, 𝑑𝑐 + ( 2𝑖

𝑁
− 1)𝑟 ] (4)

where 𝒐 is the optical center,
−→
𝒅 indicates the view direction, U

represents uniform distribution, 𝑟 is the sampling radius and equals
20 in our experiments, and 𝑁 is the number of sampling points.

Discussion: E-NeRF [Lin et al. 2022] proposes a similar pixel-
wise depth-guided sampling method, reducing the required shading
points for volume rendering. However, this sampling method only
considers the depth of the current pixel and cannot properly han-
dle facial parts that appear on different depth levels (e.g., beard),
yielding suboptimal results like mesh-based methods (see Fig. 6).

3.2.2 GEP Training Strategy. For head image rendering, artifacts
usually appear on several difficult but small regions (i.e., mouth,
eyes); therefore, uniformly sampling rays covering the entire head
region is inefficient. To address this issue, we propose a three-
stage ray sampling strategy that consists of a Grid-based uniform
sampling stage to initiate the training, an Error-based importance
sampling stage to refine the challenging regions, and a Patch-based
sampling stage to improve perceptual quality.

Grid-Sample Stage (G-Stage). In this stage, we prioritize full cov-
erage of the images. The image is split into equal-sized grids without
overlap, and we randomly sample one ray per grid G-Stage ensures
uniform sampling across all regions and generates an initial model
that produces reasonable results for all regions of the image. More-
over, we keep track of the error for each grid, obtaining an error
map 𝑬 (8 × 8) for later error-based importance sampling.

Error-Sample Stage (E-Stage). During this E-Stage, we adjust the
sampling probabilities of the grids based on the grid error map
initialized in the previous G-Stage. Specifically, the sampling prob-
ability of a grid region is proportional to its grid error, resulting in
an error-based importance sampling similar to [Sucar et al. 2021;
Zhu et al. 2022]. As a result, we allocate more computing budget to
difficult facial regions (e.g., mouth interior, hair, and eyes in "Error
Sample" of Fig. 2), significantly improving image quality within the
same number of training epochs (see Fig.8a). Note that we maintain
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an error map of a smaller size in this stage and dynamically update
the sampling probability.

Patch-Sample Stage (P-Stage). In this stage, we sample rays be-
longing to an image patch (instead of individual pixels) so that we
can apply patch-based perceptual loss [Zhang et al. 2018]. Using
a perceptual loss along with per-pixel losses (e.g., 𝐿2) can help re-
duce image blur, resulting in sharper images and visually better
results [Luo et al. 2021; Menon et al. 2020].

3.3 Training Losses
We have a set of images {𝐼 (𝑖 ) }, 𝑖 ∈ {1, 2, ..., 𝑁 }, their corresponding
tracked meshes {M (𝑖 ) } , UV position maps {𝑮 (𝑖 )

𝑜 } converted from
{M (𝑖 ) }, and reconstructed depth maps {𝑫 (𝑖 ) } using Metashape
software [Over et al. 2021]. Our training losses include per-pixel
photometric loss Lpho, patch-based perceptual loss Lper [Zhang
et al. 2018], coarse mesh loss L𝑚 , two depth losses L𝑑 and Lrd,
and three regularization losses L𝑠 , Ldisp and Lkl.

The appearance losses are defined as:

L𝑝ℎ𝑜 =
∑︁
𝑝∈P

| |𝐼 (𝑖 )𝑝 − 𝐼 (𝑖 )𝑝 | |2, L𝑝𝑒𝑟 = LPIPS(𝐼 (𝑖 )P , 𝐼
(𝑖 )
P ) (5)

where, 𝐼 is our rendering image, and P is a set of image coordinates
used to train our networks. Note that Lper is only used in the last
P-stage due to its patch-based property.

The geometric losses, which help generate more controllable
head avatars, are defined as:

L𝑚 = | |𝐺𝑜 −𝐺𝑜 | |2,

Lrd = | | (𝐷 (𝑖 ) − 𝐷rast
(𝑖 ) ) ⊙ 𝑀𝐷rast | |1,

L𝑑 =
∑︁
𝑝∈P

| | (𝐷 (𝑖 )
𝑝 − 𝐷̂ (𝑖 )

𝑝 ) ⊙ 𝑀𝐷 | |1
(6)

where 𝐺𝑜 is the decoded 2562 position map, and 𝐷rast is a coarse
depth map rasterized using 𝐺𝑜 , 𝐷̂ is our fine depth map obtained
using volume rendering. Note that depth masks𝑀𝐷 and𝑀𝐷rast are
used to penalize only those pixels whose depth errors are less than
a depth threshold 𝛿𝐷 (set to 10mm) to handle outliers.

We also include three regularization losses to improve ourmodel’s
generalization ability.Ldisp = | |𝐺𝑑⊙𝑀𝐺𝑑

| |2 is a regularization term
on the displacement map to constrain the final points close to the
surface and prevent overfitting, where𝑀𝐺𝑑

is a mask to only penal-
ize the points whose displacement values are larger than 𝛿disp (set
to 10mm). L𝑠 is a Total Variation (TV) loss applied on the 2562 UV
position map𝐺𝑜 to encourage a smooth surface. Lkl is the common
Kullback-Leibler (KL) divergence prior applied on the latent space
in VAE training.

In summary, the complete training loss is the weighted sum of
these loss terms:

L = 𝜆phoLpho + 𝜆perLper + 𝜆𝑑L𝑑 + 𝜆rdLrd

+ 𝜆𝑚L𝑚 + 𝜆𝑠L𝑠 + 𝜆dispLdisp + 𝜆klLkl
(7)

3.4 Network Structures & Implementation
Details

Our network is trained in a variational auto-encoding fashion [Kingma
and Ba 2015] following DAM and PiCA [Lombardi et al. 2018, 2021;

Ma et al. 2021]. The encoder comprises 5 and 7 convolution layers
(with the last 5 layers shared) respectively and encodes a UV po-
sition map, which is converted from a coarse tracked mesh (∼ 5K
vertices) and an average texture map into a latent code 𝒛 ∈ R8×8×4
as in PiCA [Ma et al. 2021]. The average texture map is obtained
from an open-mouth expression by averaging the unwrapped tex-
tures of all camera views. Note that the tracked mesh does not
contain vertices for the tongue and teeth.

The decoder contains 5/7/7 convolution layers and predicts a
position map, a displacement map, and a feature map, all of which
are used for later radiance decoding. The position map 𝑮𝑝 at 10242
represents a coarse (i.e., less detailed) surface as it is upsampled from
𝑮𝑜 at 2562, which is supervised by the input coarse meshM. The
displacement map 𝑮𝒅 at 10242 increases details to compensate for
lost geometric details of the coarse meshM during estimation. The
32−𝐷 feature map 𝐹 at 10242 contains local appearance information
around the point for radiance decoding.

We set loss weights of {𝜆pho, 𝜆per, 𝜆𝑑 , 𝜆rd, 𝜆𝑚, 𝜆𝑠 , 𝜆disp, 𝜆kl} in
Eq. (7) as {5, 0.1, 0.1, 0.2, 0.2, 1, 0.1, 0.001} respectively. And theG/E/P-
stages take 10/15/5 epochs, respectively.

4 EXPERIMENTS
We test on the Multiface dataset [Wuu et al. 2022]. It is an open-
sourced multi-view human face dataset that captures high-quality
facial details from a camera array. Processed data include calibrated
camera parameters, tracked meshes, and unwrapped UV texture
maps (1024 × 1024). We obtain a depth map for each frame indi-
vidually using Metashape [Over et al. 2021] based on the provided
camera parameters.

Following MVP [Lombardi et al. 2021], we use downsampled
images (1024×667) during training. Unless stated otherwise, all our
experiments are trained on a subset of expressions and tested on
held-out expressions (15 randomly chosen expressions and fixed),
resulting in ∼11K frames for training and ∼1K frames for testing.
Following PiCA [Ma et al. 2021], MSE and LPIPS are calculated
based on image pixels under the rasterized mask for evaluation.

4.1 Comparisons with State-of-the-Art Methods
We compare with DAM, PiCA, and MVP to demonstrate the su-
periority of our approach via the rendered images under novel
expressions. In Tab. 1, NPVA achieves the best MSE (up to 5.37
lower than the 2nd best). Fig. 4 and Fig. 10 demonstrate that NPVA
produces more realistic facial renditions, especially in challenging
facial regions (e.g., eyes, beard, mouth interior). Refer to our Supp.
Mat. for video comparisons.

4.2 Ablation Studies
In this section, we present a series of ablation studies to verify the
effectiveness of our major design choices.

Effect of using different numbers of points. We investigate the im-
pact of using different numbers of points on the rendering quality
and inference time in Tab. 2 (a.1)-(a.3). The visual results are shown
in Fig. 9. When the point number is small (i.e., NPVA-256), NPVA
generates poor results (46.45 MSE) and contains holes due to insuf-
ficient point resolution. With increased point number (NPVA-1k),
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Table 1: Comparisons with State-of-the-Art Methods. Compared to state-of-the-art methods, NPVA achieves great improvements
on LPIPS and MSE (up to 5.37 lower than the 2nd best) with slightly slower rendering speed. We bold (underline) the best (2nd
best) results.

Methods Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Inference
MSE ↓ LPIPS ↓ MSE ↓ LPIPS ↓ MSE ↓ LPIPS ↓ MSE ↓ LPIPS ↓ MSE ↓ LPIPS ↓ Time (ms)

PiCA 34.50 0.232 28.83 0.108 25.49 0.239 30.22 0.285 21.32 0.224 73
DAM 28.40 0.208 23.53 0.088 23.18 0.183 24.38 0.248 20.21 0.185 107
MVP 48.59 0.242 28.25 0.102 38.82 0.262 36.23 0.268 25.46 0.230 144
NPVA (Ours) 23.70 0.160 18.16 0.075 21.95 0.183 21.88 0.180 17.13 0.141 482

Table 2: Ablation Studies. We demonstrate the impact of different components on the results of our NPVA method (evaluated
using MSE). The first row shows our full method as reference. (a) shows the importance of using an extra displacement map,
which cannot be replaced by simply increasing point numbers. (b) shows that our lightweight radiance decoding can produce
better rendering results on held-out expressions with a faster rendering speed (∼ 7×). (c) shows the superiority of our patch-wise
depth-guided sampling method. (d) shows that our GEP ray sampling strategy achieves great performance improvements by
properly allocating the computation budget and introducing perceptual loss.

Label Name Point Num. Disp. Map KNN Search Radiance GEP Sampling MSE ↓ Inference
Radius - R (mm) Decoding strategy Method Time (ms)

NPVA-full (Ours) 1024×1024 ✓ R=3 lightweight ✓ Patch-Depth 23.70 482

(a.1) NPVA-256 256×256 ✗ R=3 lightweight ✓ Patch-Depth 46.45 397
(a.2) NPVA-1k 1024×1024 ✗ R=3 lightweight ✓ Patch-Depth 26.36 423
(a.3) NPVA-2k 2048×2048 ✗ R=3 lightweight ✓ Patch-Depth 27.36 506

(b) NPVA-heavy 1024×1024 ✓ R=3 Point-NeRF ✓ Patch-Depth 24.51 3129

(c.1) NPVA-noDepth 1024×1024 ✓ R=3 lightweight ✓ NeRF 406.49 406
(c.2) NPVA-PixDepth 1024×1024 ✓ R=3 lightweight ✓ Pixel-Depth 24.92 413

(d) NPVA-R4 1024×1024 ✓ R=4 lightweight ✓ Patch-Depth 23.54 563

(e) NPVA-noGEP 1024×1024 ✓ R=3 lightweight ✗ Patch-Depth 30.08 472

Table 3: Comparison with NeRF. Our NPVA produces high-
fidelity rendering results comparable to NeRF with a rather
faster rendering speed (∼ 70×), when trained both on a single
frame and multiple frames.

Methods Training MSE ↓ PSNR ↑ Inference
Data Time (ms)

NeRF single frame 13.63 36.79 38392
NPVA (Ours) single frame 17.22 35.77 524
NPVA (Ours) 49 frames 18.75 35.54 531

we notice obvious improvement (from 46.45 to 26.36 MSE) and do
not see holes, indicating the point resolution is sufficient. Further
increasing the point number (NPVA-2k) results in perceptually very
similar results and slightly worse MSE (27.36 vs. 26.36).

Importance of using an extra displacement map. Introducing an
extra displacement map reduces MSE from 26.36 to 23.70 (Tab. 2
(a.2)). A visual comparison is provided in Fig. 9. We can also see
using a displacement map is much more effective than using more
points. This is because using a displacement map enables a more
flexible arrangement of the neural points so that they can not only
move on the surface (i.e., along the tangent plane) but also move
along the normal direction, forming a thicker shell with increased
capacity (see Fig. 4 and Fig. 10).

Influence of the lightweight radiance decoding process. Using the
proposed lightweight radiance decoding in Sec. 3.1.3 not only greatly

Lightweight Radiance Decoding (Ours)Point-NeRF’s Radiance Decoding

Figure 5: Effect of lightweight radiance decoding. Our light-
weight radiance decoding not only gains ∼ 7× speedup over
Point-NeRF’s radiance decoding, but also produces better
facial renditions for unseen expressions.

reduces the inference time (3129 vs. 482 ms), but also improves the
quality (23.70 vs. 24.51 MSE). A visual comparison is provided in
Fig. 5. A possible explanation is that using networks with too much
capacity may cause overfitting and hinder the generalization of
novel expressions for dynamic scene modeling tasks.

Different shading point sampling methods. We investigate the
impact of different shading point sampling methods on a given
ray. Tab. 2 (c.1, c.2) present results obtained using different sam-
pling methods. Our patch-wise depth-guided sampling method
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Pixel-Wise Depth Sampling Patch-Wise Depth Sampling (Ours)

Figure 6: Effect of different depth-guided shading point sam-
pling strategies. There are two depth levels around the orange
mark. With pixel-wise depth sampling [Lin et al. 2022], the
model generates “mesh-like” artifacts. In contrast, our patch-
wise depth sampling samples around both the front and back
depth levels, leading to more realistic results.

reduces MSE from 24.92 to 23.70 compared to pixel-wise depth-
guided proposed in [Lin et al. 2022]. Using “Pixel-Depth” easily
causes inaccuracies, especially for the jaw region with two different
depth levels, resulting in a mesh-like beard rendering (see Fig. 6).
Training with a naive sampling strategy is slower and could not
give a similar result (406.49 MSE) compared to the depth-guided
sampling methods when using only 20 sample points per ray (∼200
in NeRF).

Different KNN search radius. Increasing the KNN search radius
from 3mm to 4mm improves rendering results (23.54 vs. 23.70 MSE)
with longer processing time (563 vs. 482 ms). As shown in Fig.
8b, a larger search radius can eliminate holes in some extreme
expressions.

GEP training strategy. We compare our GEP ray sampling strat-
egy (Sec. 3.2.2) with a naive alternative that always uses uniformly
sampled rays. GEP achieves lower MSE (23.70 vs. 30.08) in Tab. 2
(d). The training loss curves and visual comparisons are shown in
Fig. 8a. The model trained with the naive strategy converges to a
sub-optimal solution. Although achieving satisfactory renderings in
smooth facial regions (e.g., skins), it struggles to handle challenging
facial regions (e.g., eyes and mouth interior). In contrast, the model
trained with our GEP strategy allocates more computing budget to
these difficult regions and obtains more realistic facial renditions.

4.3 Analysis on Volumetric Methods
We compare with single-frame NeRF fitting [Mildenhall et al. 2020],
which can be viewed as the upper limit of different volumetric
avatars. The results are shown in Tab. 3 and Fig. 7. On single-frame
fitting, our NPVA generates high-fidelity results comparable to
NeRF while being ∼ 70× faster (524 vs. 38392 ms) during inference.
What’s more, our NPVA can handle dynamic scenes (a 49-frame
sequence) effectively with minor performance drops. In Fig. 7, we
notice NPVA also generates visually better results (e.g., sharper and
more realistic reflection effects) than NeRF, possibly due to the help
of coarse geometry prior and the perceptual loss.

5 CONCLUSION & DISCUSSION
In this paper, we present a novel volumetric representation based on
movable neural points for animatable avatar creation, focusing on
both high-quality rendering and time efficiency. To ensure control-
lability and accurate expression control, we guide point locations

with decoded coarse meshes of target expressions and constrain
the points around the surface, which is supervised with the driving
signal. To further enhance rendering quality, we increase the point
number and incorporate an additional displacement map that adap-
tively adjusts after training. Moreover, our approach features three
technical innovations tailored to improve training and rendering
efficiency: lightweight radiance decoding, patch-wise depth-guided
sampling, and a GEP training strategy.

Limitation. We rely on coarse mesh tracking for modeling and
optimization, which generally works well but does not account for
very long hair or diverse hairstyles, such as those not present in
tested female subjects. When relaxing the regularization on the
displacement map for these cases, our method tends to produce
blurry results for novel expressions (Fig. 7b).
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(a) Comparison with NeRF (b) Failure Case
Input Mesh Rendered Image

Figure 7: Qualitative comparison with NeRF and our failure case. (a) shows our qualitative comparison with NeRF. When
trained on one single frame, our NPVA achieves results even visually better than NeRF (i.e., sharper andmore realistic reflection
effects), particularly in challenging facial regions (i.e., eyes and mouth interior) possibly due to the help of coarse geometry
prior and the perceptual loss. (b) is one failure example, in which the regions far outside the rasterized mask contain obvious
artifacts. This result is obtained by relaxing the constraint applied on the displacement map during training. Since no prior
knowledge about the hair is provided in the coarse mesh, we replace our depth-guided shading point sampling strategy with
the NeRF sampling strategy.

GEP Training Naive Training

G-Stage E-Stage P-Stage

G-Stage

E-Stage

P-Stage

(a)  Different Training Strategies (b) Different KNN search radius

Figure 8: Comparisons on different training strategies (a) and different KNN search radius (b). The left part of (a) shows the
photometric losses and validation MSE during training with different training strategies, while the right part of (a) shows
qualitative rendering results. The model using our GEP training strategy converges to a lower photometric loss and achieves
lower validation MSE, thereby producing more realistic facial reditions. As expected, the model using our GEP training strategy
achieves a significant reduction of validation MSE during the E-stage. (b) shows that a larger search radius can eliminate holes
in some extreme expressions with longer processing time.
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Figure 9: Ablation Study on Different Point Number and Displacements. When the number of points is low (i.e., 256 × 256), the
model produces unsatisfactory results, even with holes present. As the point number grows to 1024 × 1024, the model obtains
sufficient points and fills holes, generating improved visual results. Increasing the point number to 2048 × 2048 results in
perceptually similar facial renditions. At this time, introducing our displacements can further improve the model performance,
generating more realistic results, particularly in challenging facial regions (i.e., eyes and mouth interior).
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Figure 10: Qualitative Comparisons with State-of-the-Art Methods.
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