
LiveNVS: Neural View Synthesis on Live RGB-D Streams
Laura Fink

laura.fink@fau.de

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Fraunhofer IIS

Germany

Darius Rückert

darius.rueckert@fau.de

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Voxray GmbH

Germany

Linus Franke

linus.franke@fau.de

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Germany

Joachim Keinert

joachim.keinert@iis.fraunhofer.de

Fraunhofer IIS

Erlangen, Germany

Marc Stamminger

marc.stamminger@fau.de

Friedrich-Alexander-Universität

Erlangen-Nürnberg

Germany

Surface

Confidence Map Novel View Synthesis

Live Capturing LiveNVS

Real-Time Preview

SLAM

Figure 1: LiveNVS allows real-time novel view synthesis on a live RGB-D stream. The pipeline allows for live scene exploration

during capturing. Additionally, we can display the reconstructed surface and a confidence map of the estimated render quality,

guiding the operator to identify weakly reconstructed parts of the scene.

ABSTRACT

Existing real-time RGB-D reconstruction approaches, like Kinect

Fusion, lack real-time photo-realistic visualization. This is due to

noisy, oversmoothed or incomplete geometry and blurry textures

which are fused from imperfect depth maps and camera poses. Re-

cent neural rendering methods can overcomemany of such artifacts

but are mostly optimized for offline usage, hindering the integration

into a live reconstruction pipeline.

In this paper, we present LiveNVS, a system that allows for neural

novel view synthesis on a live RGB-D input stream with very low

latency and real-time rendering. Based on the RGB-D input stream,

novel views are rendered by projecting neural features into the tar-

get view via a densely fused depth map and aggregating the features

in image-space to a target feature map. A generalizable neural net-

work then translates the target feature map into a high-quality RGB

image. LiveNVS achieves state-of-the-art neural rendering quality

of unknown scenes during capturing, allowing users to virtually

explore the scene and assess reconstruction quality in real-time.

CCS CONCEPTS

• Computing methodologies→ Rendering; Image-based ren-

dering; Reconstruction.

KEYWORDS

Novel view synthesis, Neural rendering, Live preview, RGB-D Stream

This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution. The definitive version of record was published

at SIGGRAPH Asia 2023, http://dx.doi.org/10.1145/3610548.3618213.

You can find the video that was part of the supplemental material here

https://youtu.be/aMbE5WAgD2k. The code is published on https://github.

com/Fraunhofer-IIS/livenvs.

1 INTRODUCTION

Live 3D reconstruction approaches, such as Kinect Fusion [New-

combe et al. 2011], take as input a stream of 3D sensor data plus

an RGB stream, and provide an instant reconstruction of the seen

geometry. They also show colored previews of the reconstruction

during the capturing process. However, for practical application

in VR, AR, telepresence and others, the rendering quality of the

previews is not sufficient, mostly due to lacking texture detail and

resolutions, as well as missing view-dependent effects.

On the other hand, recent improvements in deep neural network

architectures have led to a resurgence of interest in image-based

rendering (IBR) and novel view synthesis (NVS), as common arti-

facts can be rectified effectively by these methods (see Figure 2).

State-of-the-art IBR and NVS approaches [Barron et al. 2022; Riegler

and Koltun 2021] are able to render novel views that are hard to dif-

ferentiate from real photographs. However, these methods are not

ar
X

iv
:2

31
1.

16
66

8v
2

 [
cs

.C
V

]
 2

9
N

ov
 2

02
3

https://orcid.org/0009-0007-8950-1790
https://orcid.org/0000-0001-8593-3974
https://orcid.org/0000-0001-8180-0963
https://orcid.org/0000-0003-1857-3862
https://orcid.org/0000-0001-8699-3442
http://dx.doi.org/10.1145/3610548.3618213
https://youtu.be/aMbE5WAgD2k
https://github.com/Fraunhofer-IIS/livenvs
https://github.com/Fraunhofer-IIS/livenvs

Laura Fink, Darius Rückert, Linus Franke, Joachim Keinert, and Marc Stamminger

Table 1: Applicability of comparable NVS-methods for real-time reconstruction and live preview regarding their ability to (i)

provide interactive reconstruction and (ii) rendering. The method can handle (iii) fast growing datasets and can (iv) instanta-

neously incorporate updates on camera poses from an concurrent calibration process (SLAM). (v) The pipeline implements

mechanisms to be less vulnerable to an imperfect capturing process (hand-held, no studio setup) and camera poses (reliance on

very accurateMVS calibration). (vi) Plausible results even for sparsely captured scene regions (e.g. no cloudy artifacts). Mip-NeRF

360 [Barron et al. 2022], Instant Neural Graphics Primitives [Müller et al. 2022a], Volumetric Bundle Adjustment (VBA) [Clark

2022], NeRF-SLAM [Rosinol et al. 2022], MVS-NeRF [Chen et al. 2021], Stable View Synthesis (SVS) [Riegler and Koltun 2021],

Real-Time Novel View Synthesis With Forward Warping (FWD) [Cao et al. 2022], LiveNVS (ours).

MIP-NeRF Instant VBA NeRF- MVS- SVS FWD LiveNVS

Capability 360 NGP SLAM NeRF (ours)

(i) Live reconstruction - + ++ ++ - - ++ ++

(ii) Real-time rendering - + + + - + + ++

(iii) Growing datasets - + + ++ ++ - ++ ++

(iv) Fast response to pose corrections - + + + ++ - ++ ++

(v) Robust to imperfect capturing or camera poses - - - + - + - +

(vi) Sparse input views - - - - ++ - + +

IBR Neural IBR

Figure 2: Conventional IBR (left) generates sharp results but

introduces artifacts at incorrect or missing geometry. Neural

IBRmethods (like ours) reduce these artifacts without losing

image sharpness (right).

directly applicable to live 3D reconstructions for multiple reasons,

in particular:

• high preprocessing times / scene-specific optimizations

• non-interactive render times

• reliance on dense and/or high-quality input data

• no support of growing datasets and late pose corrections

(e.g. loop closure)

This is not only detrimental for on-site 3D reconstruction, because

a user does not get instantaneous feedback whether they have

captured sufficient images, but also prevents latency critical appli-

cations such as interactive telepresence [Jahromi et al. 2020; Tan

and Sato 2020]. Tab. 1 gives an overview of recent related neural

novel view synthesis approaches and their properties relevant for

real-time reconstruction from a live RGB(-D) stream.

In this work, we close this gap and present an integrated 3D

reconstruction and neural rendering pipeline LiveNVS (see Fig. 1),

that overcomes the above mentioned limitations. LiveNVS is exe-

cuted on live RGB-D streams, and delivers instant renderings of

novel views in a quality that is on par with comparable state-of-

the-art NVS approaches. Our major contribution is an image-space

fusion algorithm that aggregates a varying number of warped neu-

ral features in a novel view. After that, a neural network translates

the feature map of the novel view to a photorealistic RGB image.

Since only a few RGB-D images instead of a global scene represen-

tation are required, our approach can naturally support growing

datasets and is very time and memory efficient. Furthermore, we

support continuous scene and pose updates during the capturing

process, which is relevant for e.g. loop closure.

In short, our contributions are:

• A real-time novel view synthesis pipeline with neural ren-

dering capabilities that runs on a live RGB-D stream as

input

• A novel differentiable image-space forward-warping and

fusion method for neural image features which allows for

camera pose updates like loop closures during capturing

• Multiple other features, such as robust view selections and

motion blur defeating strategies, which greatly improve our

quality and can easily be integrated in common pipelines

• An open source implementation available on https://github.

com/Fraunhofer-IIS/livenvs.

2 RELATEDWORK

Synthesis of novel views from a sequence of input RGB-D input re-

quires to (i) compute the extrinsic and intrinsic camera parameters,

(ii) fuse several or all input frames into a common representation,

and (iii) synthesize an image representing the scene or object from

the desired target camera pose.

Camera parameters. Immediate visual feedback on the current

digitization status of the scene (or the object) requires all the previ-

ous steps to run in real-time with low latency. This excludes many

of the methods typically used for pose estimation. For instance, the

commonly used COLMAP [Schönberger et al. 2016] has no real-

time capabilities and requires all input views before any geometry

reconstruction can be started, thus preventing early user feedback.

In contrast, simultaneous localization and mapping (SLAM) al-

lows for instant feedback about the camera trajectory and recorded

surfaces [Macario Barros et al. 2022; Mur-Artal and Tardos 2017].

Since frames are added sequentially, camera extrinsics can contain

significant errors and even drift, and can be updated in retrospective

by global bundle adjustment or loop closure.

https://github.com/Fraunhofer-IIS/livenvs
https://github.com/Fraunhofer-IIS/livenvs

LiveNVS: Neural View Synthesis on Live RGB-D Streams

Fusion into a common representation. After successful determina-

tion of the camera parameters, the input frames may be combined

into a common representation. Multi-view stereo algorithms [Fu-

rukawa and Hernández 2015; Griwodz et al. 2021; Schönberger

et al. 2016; Wang et al. 2021a; Zhu et al. 2021] combine the input

views into point-clouds or textured meshes that can then be used to

render a novel view. However, those methods are time consuming.

(Truncated) signed distance fields [Dai et al. 2017b; Koestler et al.

2022; Newcombe et al. 2011] and methods based on surface ele-

ments (surfels) [Rückert et al. 2019; Schöps et al. 2020; Whelan et al.

2016] can be implemented in real-time, but they lack photorealistic

rendering.

View synthesis based on scene dependent optimization. Use of

neural rendering methods [Tewari et al. 2020] can boost rendering

quality. Thies et al. [2019] optimize an object-specific neural texture

for a surface mesh thus being able to reproduce view-dependent

effects and fixing erroneous silhouettes in image space. Aliev et al.

[2020], Kopanas et al. [2021] as well as Rückert et al. [2022] use

point clouds as proxy and optimize a descriptor per point.

Alternatively, discrete voxel grids can be used [Clark 2022;Müller

et al. 2022a; Sun et al. 2021]. Rendering can be fast [Esposito et al.

2022; Li et al. 2022a; Lin et al. 2022; Reiser et al. 2023] to even

work on mobile devices [Cao et al. 2023]. While real-time recon-

struction is significantly more difficult, careful optimization and

camera parameter refinement permits fast capture and view syn-

thesis [Clark 2022; Haitz et al. 2023; Jiang et al. 2023; Müller et al.

2022b; Rosinol et al. 2022]. Other approaches demonstrate their

application on video data with dynamic content [Li et al. 2022b,

2023; Song et al. 2022]. Nevertheless, many explicit approaches are

computation intensive andmemory-hungry if they store voxel grids

of complexity 𝑂 (𝑛3). While some lower memory demands using

hash grids (𝑂 (𝑛2) [Müller et al. 2022a], implicit representations

like Neural Radiance Fields (NeRFs) [Barron et al. 2022; Mildenhall

et al. 2020] can reduce the required memory even further, albeit

at the expense of huge training times. Xie et al. [2022] provide an

extensive overview on this topic.

As all above methods come at the cost of scene specific optimiza-

tion or heavy pre-preprocessing (camera calibration, proxy geome-

try computation), many only support limited resolution [Rosinol

et al. 2022] or need massive hardware requirements [Clark 2022].

Generalizing neural networks for view synthesis. Scene specific
optimization can be avoided by using generalizing neural networks

trained only once. Consequently, novel view synthesis promises to

take less time from capturing to the first available frame.

Hedman et al. [2019] acquire pixel-wise blending weights for

image-based rendering. Riegler and Koltun [2020] add an addi-

tional CNN that encodes source views into neural feature maps

prior to warping, then use a decoder to ouput images and blending

weights. Similarly, there exist several other approaches that inte-

grate encoding networks to the pipeline [Jain et al. 2023; Rakhimov

et al. 2022; Riegler and Koltun 2021; Wang et al. 2021b], yielding

an encoding-warping-aggregation-decoding or encoding-warping-

decoding-aggregation procedure. These encoders predict feature

maps for source images, thus allowing to acquire neural descriptors

in a generative fashion. When trained on sufficiently big datasets,

such pipelines can be scene-agnostic and generalize well also for

unseen objects. These principles are applied to point-based render-

ing [Rakhimov et al. 2022], signed distance functions [Bergman

et al. 2021] and proxy meshes [Jain et al. 2023; Riegler and Koltun

2021]. Chen et al. [2021] alternatively predict NeRFs. Wang et al.

[2021b] predict densities along rays of the target image using a ray

transformer that is given features from encoded source images.

However, despite avoiding scene specific training, none of those

methods work in real-time on a continuous stream of input frames

due to heavy pre-processing, complex network architectures or slow

rendering. Following these observations, we identify a significant

gap regarding interactivity within the state of the art.

Real-time neural scene reconstruction and view synthesis. To cope

with those limitations, several works specifically address the chal-

lenge of an end-to-end real-time pipeline. This can be achieved

using global neural fields [Lionar et al. 2021; Ortiz et al. 2022; Sucar

et al. 2021; Zhu et al. 2022] or separate neural representations for

depth map fusion [Choe et al. 2021; Weder et al. 2021].

However, all of these methods focus on geometry reconstruction

and struggle in creating photo-realistic high quality renderings

due to memory intensive data structures or long rendering times.

Cao et al. [2022] tries to overcome these difficulties by proposing

an encoding-warping-aggregation-decoding scheme for real-time

novel view synthesis. The individually warped views are merged

by a transformer network. By these means, it is the closest method

to our approach. However, due to the transformer complexity, the

supported image resolutions are small. Moreover, the evaluation

is restricted to DTU [Jensen et al. 2014] and ShapeNet [Chang

et al. 2015] datasets, excluding many real-world challenges such as

imperfect camera parameters.

Our contributions. We combine photo-realistic neural rendering

with real-time 3D reconstruction. To avoid a lack of memory for

large-scale scenes, we resign to any global data structure and rely

on the principles of (depth) image-based rendering ((D)IBR). We

augment the fusion algorithm by Rückert et al. [2019] with a refined

neural weighting scheme to be robust against noisy depth maps

and inaccurate lens undistortions. A light-weight implementation

achieves interactive results using a fast and screen-space neural

descriptor fusion algorithm. Thus, we allow for free view point

synthesis already during capturing, which is a feature underrepre-

sented in the field of NVS.

3 METHOD

Fig. 3 shows an overview of our neural rendering pipeline. The

input is a set of RGB-D images and the corresponding camera

poses, for example, from a real-time SLAM system (Sec. 3.1). We

carefully select suitable images as keyframes (Sec. 3.2) considering

overlap between keyframes and motion blur. To synthesize a novel

view, several nearby keyframes are selected (Sec. 3.3), encoded to

latent space by a neural network (Sec. 3.4), and warped to the target

image (Sec. 3.5). The warped feature vectors are then fused by our

novel screen-space feature fusion function (Sec. 3.6) using tailored

feature weighting in order to achieve stable results. We also present

a deferred warping mode that further increases stability (Sec. 3.8).

Finally, a decoder network reconstructs the final RGB image of

Laura Fink, Darius Rückert, Linus Franke, Joachim Keinert, and Marc Stamminger

Input RGB + Depth

Encoder Decoder

Warping Screen-Space Fusion

Output Synthesized View

Figure 3: Overview of our Pipeline. The input is a stream of RGB-D images, which are encoded by a neural network. After

that, the features are warped to a target frame and fused in screen-space. Finally, a lightweight decoder network translates the

features to a photo-realistic color image.

the novel view (Sec. 3.9), where temporal stability is improved by

including information from prior frames.

3.1 SLAM

The first step in our pipeline is a simultaneous localization and

mapping (SLAM) system that computes a 6-DoF pose of each input

image. We are using Snake-SLAM [2021] due to its high efficiency

and accurate pose estimates. In the SLAM-system previous key

frames are continuously optimized by local bundle adjustment and

global loop closure operations. Our surface fusion (see Sec. 3.6) can

handle such late updates, because we have no global model and the

3D information is stored in the local space of the key frames, and

thus does not change when the key frame’s pose is modified.

3.2 Key Frame Selection from Input Stream

To make the input video stream more manageable for rendering,

we derive a set of keyframes. Our keyframe selection mechanism

is similar to that of other SLAM-systems such as ORB-SLAM [Mur-

Artal and Tardos 2017] but we select frames based on a motion score.

The score is based on the observation that effects like motion blur or

rolling shutter distortions degrade input data. It is calculated from

the per-pixel motion vector using consecutive poses and depthmaps.

The average of the length of the motion vectors across the image

constitutes the score per frame. We evaluate this score over a 1 s

window, selecting the optimal frame. Despite neglecting shutter

speed, our approach’s efficacy is validated in Sec. 4.

3.3 View Selection for Rendering

To achieve real-time frame rates and counteract over-smoothing

the final result, we select the𝑁 (in our examples𝑁 = 15 if not noted

otherwise) best nearby key frames for the target image. A careful

selection is essential to avoid large holes and blurry edges. To that

end, we follow the idea of Hedman et al. [2019] by computing

the coverage of a source frame in the target view but extend it

in two ways. First, our coverage is calculated on a per-tile basis,

which guarantees that each tile of the target is seen at least once.

Second, the candidate views of each tile are sorted by the projected

weighting scheme (see Sec. 3.7) to prefer candidates with good

warping properties. Hence, the algorithmic complexity depends on

the number of available source views.

3.4 Encoding

After view selection, the 𝑁 best RGB-D source images are trans-

formed to latent space by a deep neural network. The used architec-

ture is based on an adapted ResUNet with the encoder part being

pre-trained on the Image-Net dataset [Riegler and Koltun 2021]. It

receives the linear depth as extra auxiliary input. The main output

is a 4D feature vector for each pixel, and additionally a confidence

value that self masks the prediction, e.g. if depth and color informa-

tion do not match. We concatenate the RGB-D input with the 4D

output to generate the 8D feature vector used for warping. Since the

encoded views are usually required multiple times, they get cached

in a least-recently-used buffer. To limit the variance in rendering

time, we set a fixed number of encoding passes per frame resulting

in a temporal build-up of the target view.

3.5 Warping

To warp the latent space features maps from the source to the

target view, we follow a forward warping approach that requires

no global scene model. The forward warping is implemented by

triangulating the depth maps (with occlusion edges removed) and

rendering them to the target view using the standard rasterization

pipeline. The warped triangles are then immediately blended in the

target view, as described in the next section. This implementation

is computationally very efficient and does not require dynamic

memory allocation during rasterization.

3.6 Screen-Space Surface Fusion

From the warping stage, we obtain triangles textured with features

from the input images, which are rasterized into the target view.

Our fusion algorithm, which is inspired by the work of Rückert

et al. [2019], incrementally combines these fragments to obtain a

final single neural color vector.

For each output pixel, we keep track of the current linear depth 𝑑 ,

weight𝑤 , and the neural feature 𝑓 . We take into account that depth

accuracy of 3D sensors decreases with distance, which we describe

using a depth error function Δ(𝑑), which is modelled as inversely

proportional to a quadratic polynomial [Mallick et al. 2014]:

Δ(𝑑) = 1

𝑎𝑑2 + 𝑏𝑑 + 𝑐
, (1)

where weights 𝑎, 𝑏, 𝑐 have to be selected according to Mallick et

al. [2014].

LiveNVS: Neural View Synthesis on Live RGB-D Streams

If a new fragment with 𝑑𝑓 ,𝑤 𝑓 , and 𝑓𝑓 is rendered to the screen

the per pixel values are updated based on one of the following cases:

(1) If 𝑑𝑓 < 𝑑 − Δ(𝑑)
→ New fragment belongs to a new surface in front of the

current surface.

→ Overwrite current pixel values

(2) If 𝑑𝑓 > 𝑑 + Δ(𝑑)
→ New fragment is behind the current surface

→ Discard fragment

(3) Else

→ New fragment is near the current surface

→ Fuse fragment values into pixel

In the third case, the fragment is fused into the pixel updating

the current pixel values using an incremental averaging scheme:

𝛼 ← 𝑤/(𝑤 +𝑤 𝑓)
𝑤 ← 𝑤 +𝑤 𝑓

𝑑 ← 𝛼𝑑 + (1 − 𝛼)𝑑𝑓
𝑓 ← 𝛼 𝑓 + (1 − 𝛼) 𝑓𝑓

3.7 Feature Weighting

The final feature descriptor of each pixel is a weighted sum of the

contributing source features. The weight for each source feature

should closely match the image quality at that 3D point, less reliable

and biased input should be weighted lower. For example, if the

source view is close to the surface and its incident angle is similar

to the target angle, a large weight should be used. If the source

view is far away or observes the surface from a different angle, a

small weight should reduce the influence because we expect an

erroneous and blurry warping procedure. To that end, we apply a

weighting consisting of three parts:

𝑤 𝑓 = (𝑤𝑑𝑤𝑣𝑤𝑖)5, (2)

where𝑤𝑑 is the depth accuracy,𝑤𝑣 the view direction weight,

and𝑤𝑖 a vignetting coefficient. To compute depth accuracy, we use

the previously defined depth error function:

𝑤𝑑 = Δ(𝑑𝑓). (3)

The viewing direction weight𝑤𝑣 depends on the angle between

the fragment’s target 𝑣𝑡 and source view direction 𝑣𝑠 . Using the dot

product, the weight can then be defined as:

𝑤𝑣 = max(0, 𝑣𝑠 · 𝑣𝑡). (4)

Finally, the vignetting coefficient𝑤𝑖 downweights pixels with

their distance 𝑐 to the image center:

𝑤𝑖 = 1 − 𝑐

𝑐max

. (5)

This weight has multiple purposes: accounting for imperfect lens

undistortion and degrading depth accuracy with distance to the

center. Additionally, sharp transitions at boundaries of the blended

input images are smoothed out.

Reconstruction Guidance. The average of the per-pixel weight𝑤
can in addition be beneficial as guidance for the expected image

quality. When overlayed on the rendering (see Fig. 4), the operator

can be guided to undersampled regions of the scan.

Ground Truth Our Rendering Confidence Map

Figure 4: Ground truth, our neural rendering, and our pre-

dicted reconstruction confidence map. Quality ranging from

green (good) over white (normal) to red (bad).

3.8 Deferred Warping Mode

We have observed that the fused depth images are strongly in-

fluenced by the selection of source views, resulting in temporal

instability in the output. To address this issue, we introduce a two-

stage deferred warping mode in our pipeline to separate the surface

and feature fusion processes. In the first stage, the depth map of

the target view is computed as described earlier. Following that,

the features are aggregated by sampling from the source views

using the estimated reprojected depth value. Since the depth of the

surface is already known during the reprojection, we update 𝑤𝑑

to reflect the distance between the estimated and projected depth

values:

𝑤𝑑 = 1 − (|𝑑 − 𝑑𝑓 |/Δ(𝑑))2, (6)

The deferred warping mode of our pipeline offers a notable

advantage: it allows us to leverage a larger number of contributing

depth maps for surface fusion, while at the same time reducing the

number of input images for feature aggregation. This approach thus

enhances the temporal stability of renderings while having minimal

impact on performance, because the time required for depth map

fusion is negligible compared to feature encoding and caching.

3.9 Decoding with Temporal Feedback Loop

In the final stage of our pipeline, we convert the fused feature map

into an RGB image, as shown in Fig. 3. To do so, we employ a

decoder that builds upon the well-established UNet architecture,

extended by a feedback loop to improve temporal stability. For

each resolution level, the previous frame’s intermediate features

are linearly blended with the intermediate features of the current

frame.

Since some of our training datasets do not include video data, we

mimic previous frames by applying minor spatial transformations

to the current frame during training. This approach enables us

Laura Fink, Darius Rückert, Linus Franke, Joachim Keinert, and Marc Stamminger

Ground Truth

0.254 0.040

0.654 0.084

0.730 2.849

Ours

FWD

INGP

Ground Truth

Ours

FWD

INGP

0s 43s

41s1s

0.282 0.040

0.581 0.084

0.554 2.332

Live RGB-D Stream

Ground Truth

0.198 0.040

0.289 0.084

0.403 2.873

Ours

FWD

INGP

Ground Truth

Ours

FWD

INGP

0s 25s

21s1s

0.126 0.040

0.285 0.084

0.285 1.948

Live RGB-D Stream

Figure 5: Live novel view synthesis results shown on an outdoor and indoor scene. Ours and FWD output novel views using

up to 6 source views. Values on the lower left corner indicate LPIPS↓ score and values on the right the render times in ms

measured on a Nvidia RTX 2080Ti at a resolution of 1280×720 (*FWD only renders at resolution 400×300.) INGP was optimized

for the time span from capturing start up to the last source view previous to the novel view using the full trajectory. Our system

outperformed FWD and INGP in regards of LPIPS and render times in this scenario.

to train a temporally stable decoder network even when we only

have a limited number of images with significant differences. Note

that we do not reproject the previous frame’s features, instead the

decoder network is trained to account for this.

4 RESULTS

In this section, we show results produced by our method. Our ex-

perimental setup and procedure is described in Sec. 4.1 and the

supplemental material. Our results are compared to other methods

with respect to quality and view synthesis time. We provide exten-

sive ablation studies on key frame selection, view extrapolation,

late pose updates, source of depth maps and our view selection.

4.1 Datasets & Training Procedure

We conducted extensive evaluation utilizing a combination of pub-

licly available datasets, namely the Scannet [Dai et al. 2017a],

Redwood [Choi et al. 2016] (Motorcycle and Sofa) and Tanks

and Temples dataset [Knapitsch et al. 2017], along with our own

custom data captured using the Zed 2i camera. The Zed 2i employed

is a stereo camera equipped with a resolution up to 2K. Notably, the

depth estimation process relies on a state-of-the-art deep learning

algorithm [Stereolabs 2023].

We have trained the involved networks end-to-end in deferred

warping mode (see Sec. 3.8) on a combination of Scannet and

Tanks and Temples scenes. Remarkably, all experiments in the fol-

lowing sections, as well as the supplemental video, were generated

using identical network weights. This shows that our method can

generalize well to unseen scenes and even to new modalities like

the Zed camera, which was not included in the training dataset.

For more details on training and dataset preparation, we refer to

the supplemental material.

4.2 Live RGB-D Stream Novel View Synthesis

To evaluate the quality of novel view synthesis during capturing in

relation to previous work, we have extended the FWD [Cao et al.

2022] and Instant-NGP (INGP) [Müller et al. 2022b] pipeline to run

on growing datasets from our Zed camera. For a fair comparison,

we ran the INGP optimization for the amount of time up to the cap-

tured frame. Our method and FWD do not require a scene specific

optimization. The results are shown in Fig. 5. The neural rendering

results show that our method is able to produce the sharpest results

with the least amount of artifacts. For example, the colorful wall

painting (left) and the world map (right) is clearly recognizable in

our approach and heavily blurred for FWD and INGP.

4.3 Novel View Synthesis on Full Datasets

We compare the rendering quality of our approach to state-of-the-

art methods that also do not require a scene-specific optimization

procedure. These methods are Stable View Synthesis (SVS) [Riegler

and Koltun 2021], IBRNet [Wang et al. 2021b], NPBG++ [Rakhimov

et al. 2022], FWD [Cao et al. 2022], and DIBR (a depth image-based

rendering method similar to FragmentFusion [Rückert et al. 2019]).

Fig. 11 shows some exemplary results. In Tab. 7, we summarize the

measured image quality of the produced unseen views evaluated

LiveNVS: Neural View Synthesis on Live RGB-D Streams

Table 2: Quantitative comparison

given as LPIPS↓ score. The best

two methods are printed in bold.

Scannet

Motor-

cycle
Sofa

Ours 0.274 0.303 0.234

FWD 0.428 0.451 0.295

SVS 0.316 0.247 0.237

IBRNet 0.248 0.179 0.149

NPBG++ 0.396 0.500 0.366

DIBR 0.325 0.290 0.313

Table 3: Time consumption for different methods. Prepro-

cessing includes training time and the time to generate the

proxy geometry. (*FWD only renders at resolution 400×300.)

Method Proxy Geometry Preprocessing Rendering Time

Ours depth maps < 1 s ∼ 46ms

FWD depth maps < 50 s ∼ 84ms*

SVS mesh ∼ 4 h ∼ 3 s

IBRNet — < 1min ∼ 2min

NPBG++ point cloud ∼ 1 h ∼ 100ms

DIBR depth maps < 1min ∼ 5ms

ADOP point cloud ∼ 8 h ∼ 15ms

Instant-NGP volumetric hash ∼ 2min ∼ 2 s

Table 4: Keyframe selection

results on Scannet using

frames that passed our selec-

tion (s) or using every 20th

view (mod20) during training.

Training Views LPIPS ↓
Ourss 0.2705

Oursmod20 0.3401

SVSs 0.2673

SVSmod20 0.3162

Table 5: Benchmarks of our pipeline (1296×968px , Nvidia

RTX 2080Ti, averaged over 256 frames for a moving camera).

The average total frame time includes view selection (if used),

encoding of uncached views, (a separate warping pass of all

depth maps for the deferred mode), warping of (selected)

feature maps, and decoding.

Total Number of Source Views Available 50 Views 207 Views

Inference Encoder 35ms 35ms

Inference Decoder 12ms 12ms

Avg Total Time: Forward

15 selected Views for Features & 15 for Depth
46ms 67ms

Avg Total Time: Deferred

15 selected Views for Features & all for Depth
82ms 160ms

Including View Selection 7ms 26ms

Avg Total Time: Forward

all Views for Features & all for Depth
66ms 131ms

Avg Total Time: Deferred

all Views for Features& all for Depth
83ms 168ms

Without View Selection - -

using the LPIPS [Zhang et al. 2018] perceptual loss. Our approach

reaches a similar LPIPS score compared to the state-of-the-art, while

being significantly more efficient without any preprocessing re-

quired.

4.4 Preprocessing and Render Time

In Tab. 3, we provide an overview of preprocessing and render-

ing time for ours and related work for medium-sized scenes, e.g.

rooms or buildings. SVS and NPBG++ require an initial point cloud

or mesh as a geometric proxy. Using COLMAP, this takes 2 - 6

hours. Additionally, several preprocessing steps have to be con-

ducted before rendering can take place. For example, INGP needs

a training stage to optimize the hash grid. Our approach, requires

only minimal preprocessing and can be operated on live RGB-D

streams. Rendering a 1296× 968 image takes around 46ms with our

method. The other systems require seconds to minutes. A detailed

benchmark for differently sized scenes is presented in Tab. 5. Note

that the high inference time of the encoder is hidden in the average

total render time as our caching reduces the number of encodings

drastically. Even though render times seem competitive, note that

warping all available feature maps per frame relies on an exces-

sively sized cache that can store the feature maps of all available

source view.

Default Keyframe Selection Keyframe Selection with Motionblur

Figure 6: Left: neural rendering with default keyframe selec-

tion. Right: our improved keyframe selection.

4.5 Ablation Studies

4.5.1 Keyframe Selection. We incorporate an effective motion-blur

detection and compensation scheme by removing blurry frames

from the input stream (see Sec. 3.2). In Tab. 4, we evaluate our im-

proved keyframe selection on the Scannet dataset for our approach

and SVS [Riegler and Koltun 2021]. Both methods profit from our

keyframe selection and show a significantly improved LPIPS score,

thus, indicating that also methods with extensive preprocessing

and rendering (see Tab. 3) can benefit from our selection. A visual

comparison on two indoor scenes is presented in Figure 6.

4.5.2 View Extrapolation. Figure 7 shows a synthesized novel view
for a virtual camera that is far away from the input trajectory.

Volumetric-based methods like INGP introduce cloud-like artifacts

in this case. Our approach is able to render a clean image with only

few noticeable inaccuracies.

4.5.3 Loop Closure. An advantage of LiveNVS is that the poses of

previous keyframes can be updated at any time. Thus, our render-

ings can immediately mirror detected loops of the tracking system.

Fig. 8 shows our rendering right before and after a loop closure.

The ghosting artifacts due to miss-aligned poses before the loop

closure are removed on the right.

4.5.4 Source of depth maps. Alternatively to depth maps from ac-

tive sensors, we can also use depth maps rendered from offline

reconstructed meshes. This allows us to profit from subsequent

post-processing of the original depth maps or other offline meth-

ods delivering high quality 3D reconstructions. Especially, in areas

Laura Fink, Darius Rückert, Linus Franke, Joachim Keinert, and Marc Stamminger

Instant NGP Ours Reference

Figure 7: View extrapolation results for INGP (left) and our

method (center). Note that there are severe cloud-like arte-

facts in the INGP rendering, while ours gets close to the

reference (right).

Before Loop Closure After Loop Closure Reference

Ghosting

Figure 8: Tracking a loop can cause ghosting artifacts in

the rendering due to accumulated drift (see left image). The

SLAM system automatically detects and closes these loops.

Our rendering immediately reflects these changes, since no

global model is optimized (center image).

Figure 9: Crops of renderings using depth maps from active

sensor (left) vs. mesh (center). Groundtruth(right).

Figure 10: Renderings using untiled (left) and tiled (right)

view selection.

where depth maps from active sensors are prone to be noisy or

erroneous, visual fidelity can be improved, as shown in Fig. 9. How-

ever, on the Scannet dataset a quantitative evaluation shows only

a minor improvement of the LPIPS score from 0.271 to 0.269.

4.5.5 View Selection. As described in Sec. 3.3, we do a coverage-

based view selection where we tile the target image frame. Fig. 10

visualizes the benefit of such a selection scheme as big holes in the

background are avoided effectively in this view.

5 LIMITATIONS AND FUTUREWORK

During our evaluation, we found a few limitations of our work.

The major limitation becomes visible if the pose estimates are ex-

tremely inaccurate or the depth maps are too noisy. In this case,

our rendering network gets inconsistent feature descriptors and

outputs a blurred image of the scene. Our surface fusion algorithm

might fail if the noise of the depth values exceeds the threshold (see

Δ(𝑑) in Eq. 3). Other approaches, which rely on inverse rendering

optimization, can correct such input errors and output sharper ren-

derings. However, this optimization step is often time consuming,

while ours can be directly applied to live video stream.

The second limitation is a potential temporal instability when

the view selection swaps out an input image for another, resulting

in flickering. This flickering is especially visible if exposure time or

white balance vary throughout the stream. The temporal feedback

loop incorporated in our decoder alleviates this issue to a certain

extent but a too high contribution of previous frames to counter

extreme flickering may lead to ghosting. In such cases, we see the

warping of the previous feature maps as a promising extension.

Since both limitations are a result of imperfect input data, a

combination of our approach with an inverse rendering back-end

might solve these issues. The idea would be to run the inverse

optimization in a secondary thread on the previous keyframes to

refine the pose, depth map, exposure time and white balance. Our

pipeline can then use the optimized keyframes to synthesize high-

quality real-time rendering of the scene.

6 CONCLUSION

In this work, we have proposed a novel pipeline for real-time novel

view synthesis on RGB-D video streams. The core of our pipeline

is the flexible neural fusion function, which amalgamates the color

and depth data of nearby keyframes in image space of the target

view on-the-fly. The major advantage of our approach is that it

requires zero preprocessing or training time on new scenes and

can be readily applied on consumer hardware. During an extensive

evaluation, we have shown that the rendering quality matches or

outperforms other generalizing neural rendering approaches even

if they relied on a time-consuming preprocessing on the dataset.

ACKNOWLEDGMENTS

We would like to thank all members of the Visual Computing Lab

Erlangen for their support and fruitful discussions. Specifically,

we appreciate Mathias Harrer’s contribution to the evaluation and

Dominik Penk’s help regarding the dataset preparation. We also

thank Ashutosh Mishra for his insights about prior arts.

The authors gratefully acknowledge the scientific support and

HPC resources provided by the National High Performance Com-

puting Center of the Friedrich-Alexander-Universität Erlangen-

Nürnberg (NHR@FAU) under the project b162dc. NHR funding

is provided by federal and Bavarian state authorities. NHR@FAU

hardware is partially funded by the German Research Foundation

(DFG) – 440719683. Linus Franke was supported by the Bavarian Re-

search Foundation (Bay. Forschungsstiftung) AZ-1422-20. Joachim

Keinert was supported by the Free State of Bavaria in the DSAI

project.

LiveNVS: Neural View Synthesis on Live RGB-D Streams

REFERENCES

Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lem-

pitsky. 2020. Neural Point-Based Graphics (NPBG). In European Conference on
Computer Vision (ECCV) (Lecture urls in Computer Science), Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer, Cham, 696–712.

https://doi.org/10.1007/978-3-030-58542-6_42

Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.

2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. CVPR (2022).

Alexander W. Bergman, Petr Kellnhofer, and Gordon Wetzstein. 2021. Fast Training

of Neural Lumigraph Representations Using Meta Learning. arXiv (June 2021).

arXiv:2106.14942

Ang Cao, Chris Rockwell, and Justin Johnson. 2022. FWD: Real-Time Novel View Syn-

thesis With Forward Warping and Depth. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 15713–15724.

Junli Cao, Huan Wang, Pavlo Chemerys, Vladislav Shakhrai, Ju Hu, Yun Fu, Denys

Makoviichuk, Sergey Tulyakov, and Jian Ren. 2023. Real-Time Neural Light Field

on Mobile Devices. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 8328–8337.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,

Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao,

Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository.

arXiv:1512.03012

Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu,

and Hao Su. 2021. Mvsnerf: Fast generalizable radiance field reconstruction from

multi-view stereo. (2021), 14124–14133.

Jaesung Choe, Sunghoon Im, Francois Rameau, Minjun Kang, and In So Kweon. 2021.

Volumefusion: Deep depth fusion for 3d scene reconstruction. (2021), 16086–16095.

Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. 2016. A Large

Dataset of Object Scans. arXiv:1602.02481 [cs] (May 2016). arXiv:1602.02481 [cs]

Ronald Clark. 2022. Volumetric Bundle Adjustment for Online Photorealistic Scene

Capture. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). IEEE, New Orleans, LA, USA, 6114–6122. https://doi.org/10.1109/

CVPR52688.2022.00603

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser,

and Matthias Nießner. 2017a. Scannet: Richly-annotated 3d Reconstructions of

Indoor Scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 5828–5839.

Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Christian

Theobalt. 2017b. Bundlefusion: Real-time globally consistent 3d reconstruction

using on-the-fly surface reintegration. ACM Transactions on Graphics (ToG) 36, 4
(2017), 1.

Stefano Esposito, Daniele Baieri, Stefan Zellmann, André Hinkenjann, and Emanuele

Rodolà. 2022. KiloNeuS: A Versatile Neural Implicit Surface Representation for

Real-Time Rendering. arXiv:2206.10885 [cs]

Yasutaka Furukawa and Carlos Hernández. 2015. Multi-View Stereo: A Tutorial. Number

9,1/2 in Foundation and Trends in Computer Graphics and Vision. Now, Boston

Delft.

Carsten Griwodz, Simone Gasparini, Lilian Calvet, Pierre Gurdjos, Fabien Castan,

Benoit Maujean, Gregoire De Lillo, and Yann Lanthony. 2021. AliceVision Mesh-

room: An Open-Source 3D Reconstruction Pipeline. In MMSys: ACM Multimedia
Systems Conference. Istanbul Turkey, 241–247. https://doi.org/10.1145/3458305.

3478443

Dennis Haitz, Boris Jutzi, Markus Ulrich, Miriam Jaeger, and Patrick Huebner. 2023.

Combining HoloLens with Instant-NeRFs: Advanced Real-Time 3DMobile Mapping.

arXiv:2304.14301 [cs]

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and

Gabriel Brostow. 2019. Deep Blending for Free-Viewpoint Image-Based Rendering.

ACM Transactions on Graphics 37, 6 (Jan. 2019), 1–15. https://doi.org/10.1145/

3272127.3275084

Hamed Z. Jahromi, Ivan Bartolec, Edwin Gamboa, Andrew Hines, and Raimund Schatz.

2020. You Drive Me Crazy! Interactive QoE Assessment for Telepresence Robot

Control. In 2020 Twelfth International Conference on Quality ofMultimedia Experience
(QoMEX). 1–6. https://doi.org/10.1109/QoMEX48832.2020.9123117

Nishant Jain, Suryansh Kumar, and Luc Van Gool. 2023. Enhanced Stable View Syn-

thesis. arXiv:2303.17094 [cs]

Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola, and Henrik Aanaes. 2014.

Large Scale Multi-view Stereopsis Evaluation. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, Columbus, OH, USA, 406–413. https://doi.

org/10.1109/CVPR.2014.59

Yuheng Jiang, Kaixin Yao, Zhuo Su, Zhehao Shen, Haimin Luo, and Lan Xu. 2023.

Instant-NVR: Instant Neural Volumetric Rendering for Human-object Interactions

from Monocular RGBD Stream. arXiv:2304.03184 [cs]

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks and

temples: Benchmarking large-scale scene reconstruction. ACM Transactions on
Graphics (ToG) 36, 4 (2017), 1–13.

Lukas Koestler, Nan Yang, Niclas Zeller, and Daniel Cremers. 2022. TANDEM: Tracking

and Dense Mapping in Real-time Using Deep Multi-view Stereo. In Proceedings of
the 5th Conference on Robot Learning. PMLR, 34–45.

Georgios Kopanas, Julien Philip, Thomas Leimkühler, and George Drettakis. 2021.

Point-Based Neural Rendering with Per-View Optimization. Computer Graphics
Forum (2021), 16. https://doi.org/10/gk669d

Chaojian Li, Sixu Li, Yang Zhao, Wenbo Zhu, and Yingyan Lin. 2022a. RT-NeRF: Real-

Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering.

arXiv:2212.01120 [cs]

Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Ping Tan. 2022b. Streaming

Radiance Fields for 3D Video Synthesis. arXiv:2210.14831 [cs]

Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker, and Noah Snavely. 2023.

DynIBaR: Neural Dynamic Image-Based Rendering. arXiv:2211.11082 [cs]

Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai, Hujun Bao, and Xiaowei

Zhou. 2022. Efficient Neural Radiance Fields for Interactive Free-viewpoint Video.

In SIGGRAPH Asia 2022 Conference Papers. ACM, Daegu Republic of Korea, 1–9.

https://doi.org/10.1145/3550469.3555376

Stefan Lionar, Lukas Schmid, Cesar Cadena, Roland Siegwart, and Andrei Cramariuc.

2021. NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric

Mapping. In 2021 International Conference on 3D Vision (3DV). 1279–1289. https:

//doi.org/10/gpcgwz

Andréa Macario Barros, Maugan Michel, Yoann Moline, Gwenolé Corre, and Frédérick

Carrel. 2022. A Comprehensive Survey of Visual SLAM Algorithms. Robotics 11, 1
(Feb. 2022), 24. https://doi.org/10/gpjddp

Tanwi Mallick, Partha Pratim Das, and Arun Kumar Majumdar. 2014. Characterizations

of Noise in Kinect Depth Images: A Review. IEEE Sensors Journal 14, 6 (June 2014),
1731–1740. https://doi.org/10.1109/JSEN.2014.2309987

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance

Fields for View Synthesis. In European Conference on Computer Vision (ECCV), An-
drea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer,

Cham, 405–421.

Thomas Müller, Alex Evans, Christoph Schied, Marco Foco, András Bódis-Szomorú,

Isaac Deutsch, Michael Shelley, and Alexander Keller. 2022b. Instant Neural

Radiance Fields. In Special Interest Group on Computer Graphics and Interac-
tive Techniques Conference Real-Time Live! ACM, Vancouver BC Canada, 1–2.

https://doi.org/10/gqkshw

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022a. Instant

neural graphics primitives with a multiresolution hash encoding. ACM Transactions
on Graphics (ToG) 41, 4 (2022), 1–15.

Raul Mur-Artal and Juan D. Tardos. 2017. ORB-SLAM2: An Open-Source SLAM System

for Monocular, Stereo and RGB-D Cameras (arXiv). IEEE Transactions on Robotics
33, 5 (Oct. 2017), 1255–1262. https://doi.org/10/gdz797 arXiv:1610.06475

Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,

Andrew J. Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew

Fitzgibbon. 2011. KinectFusion: Real-time Dense Surface Mapping and Tracking. In

2011 10th IEEE International Symposium on Mixed and Augmented Reality. 127–136.
https://doi.org/10/dhvm3p

Joseph Ortiz, Alexander Clegg, Jing Dong, Edgar Sucar, David Novotny, Michael

Zollhoefer, and Mustafa Mukadam. 2022. iSDF: Real-Time Neural Signed Distance

Fields for Robot Perception. arXiv:2204.02296 [cs] (April 2022). arXiv:2204.02296 [cs]
Ruslan Rakhimov, Andrei-Timotei Ardelean, Victor Lempitsky, and Evgeny Burnaev.

2022. NPBG++: Accelerating Neural Point-Based Graphics. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 15969–15979.

Christian Reiser, Richard Szeliski, Dor Verbin, Pratul P. Srinivasan, Ben Mildenhall,

Andreas Geiger, Jonathan T. Barron, and Peter Hedman. 2023. MERF: Memory-

Efficient Radiance Fields for Real-time View Synthesis in Unbounded Scenes.

arXiv:2302.12249 [cs]

Gernot Riegler and Vladlen Koltun. 2020. Free View Synthesis. arXiv:2008.05511 [cs]
(Aug. 2020). arXiv:2008.05511 [cs]

Gernot Riegler and Vladlen Koltun. 2021. Stable View Synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12216–12225.

Antoni Rosinol, John J. Leonard, and Luca Carlone. 2022. NeRF-SLAM: Real-Time

Dense Monocular SLAM with Neural Radiance Fields. arXiv:2210.13641 [cs]

Darius Rückert, Linus Franke, and Marc Stamminger. 2022. Adop: Approximate

differentiable one-pixel point rendering. ACM Transactions on Graphics (ToG) 41, 4
(2022), 1–14.

D. Rückert, M. Innmann, and M. Stamminger. 2019. FragmentFusion: A Light-Weight

SLAM Pipeline for Dense Reconstruction. In 2019 IEEE International Symposium on
Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). 342–347. https://doi.org/

10/gjhfv4

Darius Rückert and Marc Stamminger. 2021. Snake-SLAM: Efficient Global Visual

Inertial SLAM Using Decoupled Nonlinear Optimization. In 2021 International
Conference on Unmanned Aircraft Systems (ICUAS). 219–228. https://doi.org/10.

1109/ICUAS51884.2021.9476760

Johannes L. Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys.

2016. Pixelwise View Selection for Unstructured Multi-View Stereo (COLMAP). In

European Conference on Computer Vision (ECCV), Bastian Leibe, Jiri Matas, Nicu

https://doi.org/10.1007/978-3-030-58542-6_42
https://arxiv.org/abs/2106.14942
https://arxiv.org/abs/1512.03012
https://arxiv.org/abs/1602.02481
https://doi.org/10.1109/CVPR52688.2022.00603
https://doi.org/10.1109/CVPR52688.2022.00603
https://arxiv.org/abs/2206.10885
https://doi.org/10.1145/3458305.3478443
https://doi.org/10.1145/3458305.3478443
https://arxiv.org/abs/2304.14301
https://doi.org/10.1145/3272127.3275084
https://doi.org/10.1145/3272127.3275084
https://doi.org/10.1109/QoMEX48832.2020.9123117
https://arxiv.org/abs/2303.17094
https://doi.org/10.1109/CVPR.2014.59
https://doi.org/10.1109/CVPR.2014.59
https://arxiv.org/abs/2304.03184
https://doi.org/10/gk669d
https://arxiv.org/abs/2212.01120
https://arxiv.org/abs/2210.14831
https://arxiv.org/abs/2211.11082
https://doi.org/10.1145/3550469.3555376
https://doi.org/10/gpcgwz
https://doi.org/10/gpcgwz
https://doi.org/10/gpjddp
https://doi.org/10.1109/JSEN.2014.2309987
https://doi.org/10/gqkshw
https://doi.org/10/gdz797
https://arxiv.org/abs/1610.06475
https://doi.org/10/dhvm3p
https://arxiv.org/abs/2204.02296
https://arxiv.org/abs/2302.12249
https://arxiv.org/abs/2008.05511
https://arxiv.org/abs/2210.13641
https://doi.org/10/gjhfv4
https://doi.org/10/gjhfv4
https://doi.org/10.1109/ICUAS51884.2021.9476760
https://doi.org/10.1109/ICUAS51884.2021.9476760

Laura Fink, Darius Rückert, Linus Franke, Joachim Keinert, and Marc Stamminger

Sebe, and Max Welling (Eds.), Vol. 9907. European Conference on Computer Vision

(ECCV), Springer, Cham, 501–518. https://doi.org/10.1007/978-3-319-46487-9_31

Thomas Schöps, Torsten Sattler, and Marc Pollefeys. 2020. SurfelMeshing: Online

Surfel-Based Mesh Reconstruction. IEEE Transactions on Pattern Analysis and
Machine Intelligence 42, 10 (Oct. 2020), 2494–2507. https://doi.org/10/gh84zp

Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong Yuan, Yi Xu,

and Andreas Geiger. 2022. NeRFPlayer: A Streamable Dynamic Scene Representa-

tion with Decomposed Neural Radiance Fields. arXiv:2210.15947 [cs]

Documentation Stereolabs. 2023. Depth Sensing: Depth Settings.

https://www.stereolabs.com/docs/depth-sensing/depth-settings/.

Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davison. 2021. iMAP: Implicit

Mapping and Positioning in Real-Time. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 6229–6238.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2021. Direct Voxel Grid Opti-

mization: Super-fast Convergence for Radiance Fields Reconstruction (DVGO).

arXiv:2111.11215 [cs] (Nov. 2021). arXiv:2111.11215 [cs]
Joo Kooi Tan and Akitoshi Sato. 2020. Human-Robot Cooperation Based on Visual

Communication. https://doi.org/10.24507/ijicic.16.02.543

Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen Lombardi, Kalyan

Sunkavalli, Ricardo Martin-Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,

et al. 2020. State of the art on neural rendering. In Computer Graphics Forum, Vol. 39.

Wiley Online Library, 701–727.

Justus Thies, Michael Zollhöfer, and Matthias Nießner. 2019. Deferred Neural Render-

ing: Image Synthesis Using Neural Textures. ACM Transactions on Graphics 38, 4
(July 2019), 1–12. https://doi.org/10.1145/3306346.3323035 arXiv:1904.12356

FangjinhuaWang, Silvano Galliani, Christoph Vogel, Pablo Speciale, andMarc Pollefeys.

2021a. Patchmatchnet: Learnedmulti-view patchmatch stereo. (2021), 14194–14203.

Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P. Srinivasan, Howard Zhou,

Jonathan T. Barron, RicardoMartin-Brualla, Noah Snavely, and Thomas Funkhouser.

2021b. IBRNet: Learning Multi-View Image-Based Rendering. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). Virtual, 4690–4699.

Silvan Weder, Johannes L Schonberger, Marc Pollefeys, and Martin R Oswald. 2021.

Neuralfusion: Online depth fusion in latent space. (2021), 3162–3172.

Thomas Whelan, Renato F Salas-Moreno, Ben Glocker, Andrew J Davison, and Stefan

Leutenegger. 2016. ElasticFusion: Real-time Dense SLAM and Light Source Estima-

tion. The International Journal of Robotics Research 35, 14 (Dec. 2016), 1697–1716.

https://doi.org/10/f9k45t

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,

Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.

Neural fields in visual computing and beyond. , 641–676 pages.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. 2018.

The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Salt Lake
City, UT, 586–595. https://doi.org/10/gfz33w

Qingtian Zhu, Chen Min, Zizhuang Wei, Yisong Chen, and Guoping Wang. 2021. Deep

Learning for Multi-View Stereo via Plane Sweep: A Survey. arXiv:2106.15328 [cs]
(July 2021). arXiv:2106.15328 [cs]

Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hujun Bao, Zhaopeng Cui,

Martin R Oswald, and Marc Pollefeys. 2022. NICE-SLAM: Neural Implicit Scalable

Encoding for SLAM. (2022), 12786–12796.

https://doi.org/10.1007/978-3-319-46487-9_31
https://doi.org/10/gh84zp
https://arxiv.org/abs/2210.15947
https://arxiv.org/abs/2111.11215
https://doi.org/10.24507/ijicic.16.02.543
https://doi.org/10.1145/3306346.3323035
https://arxiv.org/abs/1904.12356
https://doi.org/10/f9k45t
https://doi.org/10/gfz33w
https://arxiv.org/abs/2106.15328

LiveNVS: Neural View Synthesis on Live RGB-D Streams

IBR-NET IBRSVSFWDOursGround Truth

Figure 11: NVS results onMotorcycle, Sofa and Scannet.

Laura Fink, Darius Rückert, Linus Franke, Joachim Keinert, and Marc Stamminger

Supplemental Material

In this supplementary material, we provide extra ablation studies

and details on experiments and implementation.

A IMPLEMENTATION DETAILS

A.1 Camera Pose Estimation

For the purpose of tracking, we employed Snake-SLAM [Rückert

and Stamminger 2021], for both the Redwood and Zed datasets. The

evaluation on Scannet was done using the provided camera param-

eters and for Tanks and Temples we used COLMAP [Schönberger

et al. 2016] reconstructions.

A.2 Details on Training

The used dataset is a combination of 82 Scannet scenes and 14

Tanks and Temples scenes. In each iteration, eight views are drawn

from the list provided by the view selection algorithm and sampled

according to pre-computed per-pixel lists. These views are then

warped and fused into a target view. As loss we solely used the

VGG loss [Zhang et al. 2018], computed from predicted target frame

and reference. In total, we run this training for 500K steps with a

batch size of 1 and learning rate 10
−4

using the Adam optimizer.

This took 24h on an RTX 3090 GPU.

A.3 Temporal Feedback of the Decoder

During inference, intermediate feature maps of the current and the

previous frame are blended according to a blending factor within

[0, 1] that can be set interactively. To allow for this feature, we

randomly sampled its value during training. In all of our evaluation

experiments, we set this blending factor to 0.1.

B FURTHER EVALUATION

B.1 Weighting Scheme

Figure 12 illustrates the influence of the involved weights on the

output image.

B.2 Auxiliary Features

We evaluated different pipeline variations which mainly focused

on providing additional in- and outputs of the en- and decoding

networks to improve quality. We did not incorporate additional

networks like MLPs for feature translation [Riegler and Koltun

2021] or transformers [Wang et al. 2021b] as done in related work

to keep the pipeline as light-weight as possible.

The simplest one is using RGB as input for the encoder only.

Additionally, we may add depth (+D) as additional feature, where

+D𝑜 means the original depth from the depth camera was provided

as input for the encoder and the fused depth of the target view

was provided for the decoder. A fused depth map of the source

images was provided for the encoder for the variant +D𝑓 (which

is only possible when backwards warping). +V indicates that we

additionally compute per-pixel feature variance of the target feature

map. The variant +𝑐 lets the encoder output an additional channel

which is used as weight during the fusion phase and expresses

confidence of predicted neural features.

The Table 6 shows mean results for the evaluation scenes of the

Scannet dataset. Most variations performed very similar and are

within a 1% margin. SSIM was not sensitive to image differences

at all, while L1 showed up to 2.5 % relative difference between the

best and worst performing variant.

In general, we can observe slightly improved metric values, less

blurring and artifact reduction when adding input features to the

networks. We identify RGB+D𝑓 +𝑐 as best compromise between

image quality improvements and investment of additional compute

time and memory consumption.

B.3 Additional Results

Table 7 show additional metrics to the experiment conducted in

the paper. Additionally, we performed some tests regarding scene-

specific fine-tuning. Compared to methods which are tailored to

(a) (b)

(a) (b) (c) (d)

(e) (f) (g)

(a) (b) (c) (d)

(e) (f) (g)

Figure 12: Influence of weighting scheme. (a) Reference,

(b) 𝑤 = (𝑤𝑑𝑤𝑣𝑤𝑖)5, (c) 𝑤 = 𝑤𝑑𝑤𝑣𝑤𝑖 , (d) 𝑤 = 1, (e) 𝑤 = 𝑤𝑣 ,

(f)𝑤 = 𝑤𝑑 , (g)𝑤 = 𝑤𝑖 .

LiveNVS: Neural View Synthesis on Live RGB-D Streams

Variant PSNR ↑ L1 ↓ SSIM ↑ LPIPS ↓
RGB 22.44 0.1428 0.7967 0.4016

RGB+𝑐 22.48 0.1422 0.7976 0.3986

RGB+V 22.51 0.1428 0.7974 0.4032

RGB+D𝑓 22.60 0.1399 0.7981 0.4019

RGB+D𝑓 +𝑐 22.57 0.1392 0.7972 0.4007

RGB+D𝑓 +V 22.55 0.1405 0.7973 0.4010

RGB+D𝑜+V 22.47 0.1411 0.7953 0.3987

RGB+D𝑓 +𝑐+V 22.46 0.1427 0.7962 0.4011

Table 6: Performance of various network variants. Bold en-

tries performed best within 0.5% relative difference.

scene-specific reconstruction (often needing hours per scene or

multiple minutes per view), metrics indicate only mid-range results,

see Table 8. However, Figure 13 illustrates that synthesized views

generally look plausible.

Laura Fink, Darius Rückert, Linus Franke, Joachim Keinert, and Marc Stamminger

NPBG++ ADOPIBR-NETSVSOursGround Truth

Figure 13: Finetuned NVS Results onMotorcycle, Sofa and Scannet.

LiveNVS: Neural View Synthesis on Live RGB-D Streams

Table 7: Quantitative comparison of the rendering quality. Note, that our approach is the only method that directly processes

the live RGB-D stream, while all other approach use the globally fused point cloud or mesh.

Scannet Sofa Motorcycle

PSNR ↑ L1 ↓ SSIM ↑ LPIPS ↓ PSNR ↑ L1 ↓ SSIM ↑ LPIPS ↓ PSNR ↑ L1 ↓ SSIM ↑ LPIPS ↓
Ours 20.40 0.061 0.747 0.274 17.15 0.093 0.594 0.303 19.48 0.082 0.714 0.234

FWD 17.27 0.106 0.695 0.428 15.27 0.121 0.488 0.451 19.87 0.072 0.690 0.295

SVS 23.76 0.042 0.796 0.316 20.01 0.061 0.694 0.247 22.64 0.051 0.744 0.237

IBRNet 24.96 0.035 0.802 0.248 23.56 0.041 0.758 0.179 27.77 0.028 0.821 0.149

NPBG++ 20.90 0.066 0.758 0.396 15.34 0.125 0.535 0.500 17.40 0.103 0.654 0.366

DIBR 19.62 0.065 0.708 0.325 16.69 0.091 0.592 0.290 18.28 0.084 0.662 0.313

Table 8: Quantitative comparison of the rendering quality for finetuned (
ft
) experiments.

Scannet Sofa Motorcycle

PSNR ↑ L1 ↓ SSIM ↑ LPIPS ↓ PSNR ↑ L1 ↓ SSIM ↑ LPIPS ↓ PSNR ↑ L1 ↓ SSIM ↑ LPIPS ↓
Ours

ft
21.15 0.055 0.758 0.260 19.59 0.077 0.716 0.200 17.36 0.092 0.618 0.247

SVS
ft

23.26 0.044 0.785 0.260 25.04 0.038 0.775 0.162 20.11 0.060 0.688 0.206

IBRNet
ft

25.42 0.033 0.804 0.229 28.14 0.027 0.812 0.163 23.59 0.042 0.743 0.182

NPBG++
ft

21.66 0.058 0.763 0.363 17.02 0.111 0.637 0.392 15.26 0.122 0.521 0.496

ADOP 24.78 0.039 0.694 0.208 24.26 0.044 0.598 0.172 20.34 0.066 0.585 0.236

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 SLAM
	3.2 Key Frame Selection from Input Stream
	3.3 View Selection for Rendering
	3.4 Encoding
	3.5 Warping
	3.6 Screen-Space Surface Fusion
	3.7 Feature Weighting
	3.8 Deferred Warping Mode
	3.9 Decoding with Temporal Feedback Loop

	4 Results
	4.1 Datasets & Training Procedure
	4.2 Live RGB-D Stream Novel View Synthesis
	4.3 Novel View Synthesis on Full Datasets
	4.4 Preprocessing and Render Time
	4.5 Ablation Studies

	5 Limitations and Future Work
	6 Conclusion
	Acknowledgments
	References
	A Implementation details
	A.1 Camera Pose Estimation
	A.2 Details on Training
	A.3 Temporal Feedback of the Decoder

	B Further Evaluation
	B.1 Weighting Scheme
	B.2 Auxiliary Features
	B.3 Additional Results

