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Figure 1: Examples of Poses created using our method. Pink spheres represent positional constraint on the end-effectors and
green spheres represents look-at constraint for the Neck joint. Our model is able to satisfy the given constraints tightly and
also allows quick posing and editing.

ABSTRACT
Posing a 3D character for film or game is an iterative and labori-
ous process where many control handles (e.g. joints) need to be
manipulated to achieve a compelling result. Neural Inverse Kine-
matics (IK) is a new type of IK that enables sparse control over a 3D
character pose, and leverages full body correlations to complete the
un-manipulated joints of the body. While neural IK is promising,
current methods are not designed to preserve previous edits in
posing workflows. Current models generate a single pose from the
handles only—regardless of what was there previously—making
it difficult to preserve any variations and hindering tasks such as
pose and motion editing.

In this paper, we introduce SKEL-IK, a novel architecture and
training scheme that is conditioned on a base pose, and designed
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to flow information directly onto the skeletal graph structure, such
that hard constraints can be enforced by blocking information flows
at certain joints. As a result, we are able to satisfy both hard and
soft constraints, as well as preserve un-manipulated parts of the
body when desired. Finally, by controlling the base pose in different
ways, we demonstrate the ability of our model to perform tasks
such as generating variations and quickly editing poses and mo-
tions; with less erosion of the base poses compared to the current
state-of-the-art.

CCS CONCEPTS
•Computingmethodologies→Animation; •Human-centered
computing → Interaction design.

KEYWORDS
skeletal networks, pose authoring, learned inverse kinematics, 3D
animation

https://orcid.org/0009-0005-0442-9781
https://orcid.org/0009-0002-7496-6185
https://orcid.org/0009-0008-3038-4881
https://orcid.org/0009-0006-5343-3450
https://doi.org/10.1145/3610548.3618217


SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Agrawal et al.

ACM Reference Format:
Dhruv Agrawal, Martin Guay, Jakob Buhmann, Dominik Borer, and Robert
W. Sumner. 2023. Pose and Skeleton-aware Neural IK for Pose and Motion
Editing. In SIGGRAPH Asia 2023 Conference Papers (SA Conference Papers
’23), December 12–15, 2023, Sydney, NSW, Australia. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3610548.3618217

1 INTRODUCTION
Posing a character can at times be repetitive, and deep learning
applied to pose and motion autocompletion has recently become
a popular area of research. In fact, the recent ProtoRes IK model
[Oreshkin et al. 2022] showed that it was possible to train a single
model on a large dataset to predict quality full body poses, from
different configurations of sparse handles.

Building upon their progress, we identified certain workflows
where neural IK is still limited and could not be used. First, anima-
tors want the ability to impose hard constraints strictly. Current
methods however, which generate a pose from a global latent code,
can cause changes due to other user-controlled constraints. Sec-
ondly, animators may want to use the sparse handles to edit an
existing motion such as captured motion (mocap). However, encod-
ing the handles and decoding them erodes the motions; hindering
the use of neural IK for this task. And finally, animators may want
to generate variations or use a different tool to alter a pose, which
unfortunately are lost after moving the handles, as can be seen in
our video.

In this paper we propose SKEL-IK, a neural IK network condi-
tioned both on sparse handles and a base pose–generating poses
that match the constraints, while preserving the base pose as much
as possible. Our network operates directly on the skeletal graph
structure, thus enabling both hard and soft constraints by blocking
information flow at specific joints in the case of hard constraints.

The challenge with conditioning on the base pose is that we
do not have labelled data of the posing process, but rather final
movements from motion capture. To overcome this challenge, we
introduce a pose-preservation parameter in our network, together
with losses and a training scheme, providing the ability to preserve
either the shape of a pose, or the global positioning; enabling more
flexibility to animators to achieve their vision. Finally, we evaluate
our model over different benchmarks, and show results of our ap-
proach for creating poses, generating variations and editing mocap
by manipulating sparse handles.

2 RELATEDWORK
Inverse kinematics as an optimization problem has been studied ex-
tensively both in graphics and robotics [Balestrino et al. 1984; Buss
and Kim 2005; Girard and Maciejewski 1985; Yamane and Naka-
mura 2003]. One limitation of these methods is that local minima
might not look natural. Data-driven methods based on different
parametric models such as linear, or gaussian processes, have been
used as a prior in the optimization process, or a projection to avoid
unnatural local minima [Csiszar et al. 2017; D’Souza et al. 2001;
Ren and Ben-Tzvi 2020]. The main limitation of these approaches
was their specialization to the amount of constraints and special-
ization to a small motion space or action. Training a single model
for an entire dataset and variable amount of constraints was not

Figure 2: Different possible poses for the same set of posi-
tional constraints (shown as golden circles). Decoding a pose
from only the constraints would result in an average pose
and lose variability present in the data.

feasible. Recently, deep learning has proven able to learn such a
representation [Oreshkin et al. 2022].

2.1 Neural IK
Protores [Oreshkin et al. 2022] is designed to generate a full pose
from the handles. The model builds upon a prototypical function
that compresses the variable number of handles into a generalized
pose and improves it over multiple residual blocks. Since, [Voleti
et al. 2022] extends ProtoRes to be conditioned on SMPL [Loper
et al. 2015] shape parameters and gender, in order to generate fully
meshed characters instead of skeletons. Transforming the handles
into a global pose vector means that these methods generate or
decode a pose that might be influenced from other handles. Also,
there is no mechanism to preserve the previous state of the pose the
user is editing. Two issues we address in this paper with a skeletal
graph neural network conditioned on the previous base pose.

Motion reconstruction from sparse IMUs is another problem
closely related to sparse pose reconstruction. These methods in-
fer poses leveraging temporal coherence, and train on motion se-
quences. For example, [Huang et al. 2018] used data from 6 IMUs
to learn a bi-directional RNN, which was since then extended with
Transformers [Jiang et al. 2022] and physically correct motions [Yi
et al. 2022]. Recently, [Castillo et al. 2023] used a diffusion model to
recover motion from only head and wrist mounted IMUs. As this
work focuses on pose reconstruction, we do not train for temporal
coherency. However, the skeletal structure of our model can be
intuitively extended to address temporal motion completion.

2.2 Skeletal Networks
Graph Neural Networks (GNNs) are natural model candidates for
processing skeletal structures. Compared to traditional Fully Con-
nect Networks, GNNs process information on a per node or a per
edge level. Aberman et al. [Aberman et al. 2020] use skeletal con-
volutions and pooling in order to reduce different skeletons into a
reduced common primal skeleton for transferring motions across
different topologies. Then through unpooling, they can reconstruct
a higher resolution retargeted skeleton. For pose estimation from
video, Li et al. [Li et al. 2021] build a hierarchical VAE using skele-
tal convolutions and predefined-pooling to learn a generic motion
prior. They then showcase the use of these motion priors for vari-
ous tasks including Human Pose Estimation from videos, Motion
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Figure 3: Given a base pose and a set of constraints, we first initialize the graph using the Joint State Encoder. The Skeletal-
Transformer then exchanges information between the joints at different resolution. The final encodings of the joint-level
joints are decoded into positions and orientations independently. Finally, we use traditional forward kinematics to recover the
final global pose.

Completion, and Motion Interpolation. [Grigorev et al. 2023] and
[Pfaff et al. 2021] maintain edge and vertex level features at different
resolution.

2.2.1 Aggregation Mechanisms. Many of the works on graph neu-
ral networks involve aggregating neighboring edges. In [Gilmer
et al. 2017], Summation is proposed, in [Bruna et al. 2014] Spec-
tral Convolutions, and recently Multi-Head Attention for graphs
in [Veličković et al. 2018]. More recently, [Dwivedi and Bresson
2021] also use the attention mechanism on graphs and introduce an
adapted version of a traditional Transformer model [Vaswani et al.
2017] for use on graphs. [Wang et al. 2022] allow the system to
discover the pools for the pooling operation via a node clustering
assignment problem. Because our pools are semantically defined,
they do not need to be rediscovered. Instead we focus on facilitating
exchange between different skeleton resolutions by introducing a
cross-layer attention.

3 SKEL-IK
We introduce a new neural network conditioned on both sparse
handles and a base pose that operates directly on the skeletal graph
structure, passing information from the constrained joints to neigh-
boring joints over multiple message passing steps (Section 3.3). This
allows us to learn local joint-level features resulting in both better
preservation of the base pose, as well as to impose hard constraints
by blocking information flow at specific joints.

The challenge with conditioning on the base pose is that we do
not have datasets of animators animating, but rather final motions
and poses. To circumvent this limitation, we devised a training
scheme and loss (Section 4) that samples random poses to expose
our network to all kinds of configurations the user may be in.

3.1 Skeletal Neural Network
We represent each joint (e.g. hip, right elbow, left ankle, . . . ) as a
node in our graph and the bones (femur, humerus, . . . ) as edges.

Each node maintains two vectors, the joint embedding 𝐽 𝑖
𝑒𝑚𝑏

and
the joint state 𝐽 𝑖𝑠𝑡𝑎𝑡𝑒 .

𝐽 𝑖
𝑒𝑚𝑏

is a linear embedding of one-hot encoded joint ID with ad-
ditional control bits. We first generate an intermediate embedding,�𝐽 𝑖
𝑒𝑚𝑏

, derived from the joint ID:

�𝐽 𝑖
𝑒𝑚𝑏

= Wemb 𝐽 𝑖
𝑜𝑛𝑒−ℎ𝑜𝑡 , (1)

where 𝑖 ∈ {hip, head, right wrist, . . . } andWemb is a learned linear
transformation.

For the unconstrained joints, our approach can be viewed as mix-
ing between the base pose and the set of constraints. The additional
control bits give control to the artist on the nature and the ratio of
mixing between the two.

3.1.1 Preserve-orient
(
c𝑖
𝐼𝐾

)
. This bit is a real value in the range

[0,1] informing our network to preserve the shape of the pose (local
orientation).

3.1.2 Preserve-pos
(
c𝑖
𝐹𝐾

)
. This bit is a parameter in the range [0,1]

informing our network to preserve the spatial aspect of the pose
(global positions).

3.1.3 Is Constrained
(
c𝑖
𝐼𝐶

)
. This bit is a Boolean valued bit that dif-

ferentiates between base and constrained joints, and is set to True
only if the joint has a positional, orientation, or look-at constraint.

Hence, 𝐽𝑒𝑚𝑏 is defined as:

𝐽𝑒𝑚𝑏 = �𝐽𝑒𝑚𝑏 ⊕ C𝐹𝐾 ⊕ C𝐼𝐾 ⊕ C𝐼𝐶 , (2)

where C∗ =
[
c𝑖∗
]
𝑖
and ⊕ is the concatenation operation.

3.2 Pose & Constraints Encoder
The second per-joint vector, 𝐽 𝑖𝑠𝑡𝑎𝑡𝑒 , encodes the joint transformation.
It is independent of joint identity, 𝐽 𝑖

𝑒𝑚𝑏
. We use a fully connected

neural network with one hidden layer to encode the position and
orientation of each joint into its respective joint state.
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During a forward pass, we first initialize the nodes in the skeletal
graph using the Joint State Encoder, as shown in Fig. 3, with a
sample from our training dataset. Next, we overwrite 𝐽 𝑖𝑠𝑡𝑎𝑡𝑒 for the
constrained joints with desired position or orientation states.

3.3 Skeletal Transformer
The main architecture of our model is the Skeletal-Transformer,
as shown in Fig. 3. The Transformer is built as a series of Graph-
Transformer layers similar to [Dwivedi and Bresson 2021]. Inside
each layer, information is exchanged amongst neighboring joints
via the attention mechanism. Using attention in place of other
aggregation functions allow the joints to dynamically attend to
their neighbors.

We use 𝐽𝑒𝑚𝑏 as the keys K and queries Q, and 𝐽𝑠𝑡𝑎𝑡𝑒 as the
values V. The attention weights are assigned based on joint identity,
𝐽 𝑖
𝑒𝑚𝑏

. As, the linear embedding �𝐽 𝑖
𝑒𝑚𝑏

is fixed during inference, the
attention weights become a function of only the control bits.

The fully connected network and layer normalization then give
the updated joint states. Since the fully connected network operates
in parallel over the joints, no inter-joint information occurs in these
steps. We only update the states 𝐽𝑠𝑡𝑎𝑡𝑒 for the unconstrained joints.
The constrained joints are derived purely from the Pose Encoder.
In order to enable preserving states, we use a residual connection
in order to easily learn the identity function.

The evolution of the joint states from the Skeletal-Transformer
can hence be summarised as:

�𝐽 𝑡𝑠𝑡𝑎𝑡𝑒 = MHA
(
K = 𝐽𝑒𝑚𝑏 ,V = 𝐽 𝑡−1𝑠𝑡𝑎𝑡𝑒 ,Q = 𝐽𝑒𝑚𝑏

)
(3)

𝐽 𝑡𝑠𝑡𝑎𝑡𝑒 = CIC ⊗ Layer-Norm
(
𝐹𝐶𝑁

(�𝐽 𝑡𝑠𝑡𝑎𝑡𝑒 ) ) + 𝐽 𝑡−1𝑠𝑡𝑎𝑡𝑒 , (4)

where 𝐽 𝑡𝑠𝑡𝑎𝑡𝑒 is the joint state after step 𝑡 , CIC is the inverse of C𝐼𝐶
and ⊗ is the Hadamard product.

3.3.1 Layered Skeletal Structure. While the number of nodes in
our graph is not large, the length of the longest path in our graph
can be comparatively long. For example, a path from the left foot to
the right wrist involves over half of the joints in our graph. These
long kinematic chains can slow down the rate of information flow
through the graph. Therefore, to add shorter paths, we adopt a
layered architecture for our skeletal network. We perform message
passing at different resolutions simultaneously, similar to [Grigorev
et al. 2023].

We first down-sample our full resolution skeleton (Fig. 4a) to a
limb-level skeleton (Fig. 4b) with one node for each limb, in addition
to nodes for the spine and the hip joints. We further down-sample
to a body-level skeleton (Fig. 4c) with nodes corresponding to upper
and lower bodies respectively.

This reduces the number of message passing steps required to
converge to the final pose. We found that using 6 steps at full
resolution and 4 steps on limb-level and 2 steps on body-level
skeletons to give the best results. The order of the steps is shown
in Fig. 3.

Lastly, we need to define appropriate pooling and unpooling
functions between the layers of our Skeletal-Transformer. Previous
works have used summation or a predefined linear combination of
the components. We use masked inter-level Multi-Head Attention

(a) (b) (c)

Figure 4: Working at different resolutions allows our model
to learn local and global features. (a) Joint-level skeletonwith
one graph node for each joint. (b) Limb-level skeleton pools
joints into one node for hip, spine and each of the four limbs.
(c) Body-level skeleton further reduces to one node each for
the upper and the lower body.

blocks to mix information between the two layers. We designed
the mask such that a node can only attend to itself and appropri-
ate nodes from the other resolution. This allows the network to
dynamically assign weights to information from different nodes
across layers.

3.3.2 Confidence Mask. Our network operates on the skeleton
directly and is thus exposed to the information of the base pose. At
the start of our neighborhood aggregation process (𝑡 = 0), only the
constrained joints hold information that needs to be propagated
through our skeleton. Therefore, we define a joint-level mask𝑀𝑙

𝑡 to
indicate which joints hold new information in layer 𝑙 after block 𝑡 .
At the start of the stage,𝑀 𝐽 𝑜𝑖𝑛𝑡

𝑡=0 is the same as Is Constrained vector,
C𝐼𝐶 . The limb-level and body-level masks are defined as:

𝑀𝑙
𝑡=0 [ 𝑗] =

{
1 if ∃ Joint 𝑗0, s.t. 𝑗0 ∈ 𝑗 and v𝑗0

𝐼𝐶
= 1

0 Otherwise
(5)

At the end of every Skeletal-Transformer block, the mask for
layer 𝑙 ∈ {joint, limb, body} is updated:

𝑀𝑙
𝑡 = A𝑙𝑀𝑙

𝑡−1 , (6)

where A𝑙 is the adjacency matrix corresponding to the skeleton of
layer 𝑙 . Each entry in the mask has an upper bound set to 1, which
means full neighbor influence, and prevents the messages from
increasing for nodes with degree greater than 1.

3.4 Pose Decoder
In the last stage of our model, the Pose Decoder decodes the final
joint encodings (concatenated 𝐽𝑒𝑚𝑏 and 𝐽𝑠𝑡𝑎𝑡𝑒 ) into final positions
and orientations. We implement the Pose Decoder as two fully
connected networks with one hidden layer shown as Global Posi-
tion and Local Orientation Decoders in Fig. 3. Similar to the Pose
Encoder, the final pose is decoded independently for each joint.
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Table 1: Comparing the performance of our model against the baselines described in Section 5.2. We use L2 error for the
positional constraints and the geodesic error for the orientations. We compare the performance on satisfying the constraints as
well as preserving an initial pose. Our model can match the performance of the current state-of-the-art model at sparse posing
while also allows strict hard constraints and local pose editing. We list the performance of SKEL-IK as the minimum across its
modes. All pose aware models were trained with 𝜆𝑝𝑝 = 1.0.

Model Constraints Pose Preservation Num ParametersPosition ↓ Orientation ↓ Position ↓ Orientation ↓
FCNN 0.1076 0.0637 0.2789 0.2876 28.4M
ProtoRes 0.0304 0.0508 — — 39.7M
ProtoResWithPrev 0.0625 0.0526 0.274 0.2644 39.7M
SKEL-IK (Ours) 0.0388 0.0517 0.2148 0.2581

Local mode 0.1899 0.0596 0.2591 0.2932

29.6M
Global mode 0.0388 0.0522 0.3777 0.3425
Pose Freeze mode 0.0480 0.0517 0.3606 0.2581
Place Freeze mode 0.1672 0.0549 0.2148 0.3538

Therefore, there is no information exchange among the joints dur-
ing this stage.

The final global positions and orientations are derived using
traditional forward kinematics from the predicted local orientations
and a fixed rest pose. Note that the predicted global positions are
not used for the final output but training with them empirically
helped the overall performance of our model.

By enforcing information sharing only through a graph network,
we have direct control over the influence of each joint. This design
enables hard constraints on joints by disabling information sharing
for the concerned joints.

4 POSE-PRESERVATION LOSS
To allow position, orientation and look-at constraints, we adopt the
same loss functions as [Oreshkin et al. 2022] and defer details to
the supplementary material.

In addition to their losses, we learn to preserve characteristics
from the base pose and introduce a Pose-Preservation Loss, L𝑝𝑝 .
We add position L2 and orientation geodesic losses between the
output pose and the base pose:

L𝑝𝑝 (y, y′,R,R′)= | |C𝐹𝐾 ⊗ 𝑀
𝑗𝑜𝑖𝑛𝑡

𝑡=0 ⊗(y − y′) | |22

+ arccos
[(
𝑡𝑟
(
C𝐼𝐾 ⊗𝑀 𝑗𝑜𝑖𝑛𝑡

𝑡=0 ⊗R′𝑇R
)
−1

)
/2
]
,
(7)

where y and R are the base position and orientation and y′ and R′

are the respective predictions. Finally,𝑀 𝑗𝑜𝑖𝑛𝑡

𝑡=0 , inverse of the binary
mask introduced in Eq. (5), is used to not penalize the constrained
joints. Since C∗𝐾 ∈ [0, 1]𝑁 𝑗𝑜𝑖𝑛𝑡𝑠 , Eq. (7) weights L𝑝𝑝 according
to the amount of base pose that should be preserved in the final
output.

Hence, our total loss is comprised of four terms:

L = L𝑝𝑜𝑠 + L𝑜𝑟𝑖𝑒𝑛𝑡 + L𝑙𝑜𝑜𝑘−𝑎𝑡 + 𝜆𝑝𝑝L𝑝𝑝 , (8)

with L𝑝𝑜𝑠 , L𝑜𝑟𝑖𝑒𝑛𝑡 , and L𝑙𝑜𝑜𝑘−𝑎𝑡 as in [Oreshkin et al. 2022] and
𝜆𝑝𝑝 controls the relative weight of L𝑝𝑝 .

5 EVALUATION
In this section, we evaluate our model against state-of-the-art
Neural IKmodels and validate ourmodel design through an ablation
study.

5.1 Dataset and Implementation details
All the models are trained on our own motion capture dataset and
onMiniUnity andMiniMixamo datasets provided by [Oreshkin et al.
2022]. Our dataset includes recording from two subjects retargeted
to a common 23-joint skeleton. It contains a total of 95,000 frames
of locomotion, idling, stretching, lying down and sitting motion.

Secondly, we set the dimensions of 𝐽𝑠𝑡𝑎𝑡𝑒 and 𝐽𝑒𝑚𝑏 to 512. Simi-
larly, the hidden layers of the Pose Encoder and Decoder are also of
512 dimensional. Lastly, the Multi-Head Attention blocks in each
Graph-Transformer layer use attention heads.

This results in a model that has 29.6M parameters. Our model
converges on our dataset in 36 hours when training with an AMD
5800X CPU and an NVIDIA RTX 3090 GPU. We list the remaining
hyperparameters in the supplementary materials.

By design, our model has very different properties based on the
configuration of C𝐹𝐾 and C𝐼𝐾 . Therefore, for ease of analysis, we
evaluate our model in the following modes:

• Global mode: C𝐹𝐾 = 0; C𝐼𝐾 = 0
• Local mode: C𝐹𝐾 = 1; C𝐼𝐾 = 1
• Place Freeze mode: C𝐹𝐾 = 1; C𝐼𝐾 = 0
• Pose Freeze mode: C𝐹𝐾 = 0; C𝐼𝐾 = 1

5.2 Baselines
We compare our approach against the ProtoRes model by [Oreshkin
et al. 2022]. Since, it does not allow conditioning on a base pose,
ProtoRes can diverge from the original pose for very sparse number
of handles. According to our knowledge, currently there exists no
neural IK model that can be conditioned on another pose. Therefore,
we derive two other models as baselines.

FCNN is a fully connected autoencoder with a three layer fully
connected encoder and a decoder that is identical to ProtoRes. We
input base positions and orientations for the unconstrained joints
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Table 2: Comparing the performance of differentmodels on the publicly availableMiniUnity andMiniMixamo datasets provided
by [Oreshkin et al. 2022]. The constraints are set on Hips and both feet and the base pose is selected randomly. All models were
trained with 𝜆𝑝𝑝 = 0.1.

Model
MiniUnity MiniMixamo

Constraints Pose Preservation Constraints Pose Preservation
Position ↓ Orientation ↓ Position ↓ Orientation ↓ Position ↓ Orientation ↓ Position ↓ Orientation ↓

ProtoRes 0.0153 0.0583 — — 0.0262 0.0695 — —
ProtoResWithPrev 0.0234 0.0607 0.4472 0.3050 0.0549 0.0920 0.5336 0.3815
SKEL-IK (Ours) 0.0148 0.0557 0.3358 0.2529 0.0360 0.0889 0.3735 0.2674

and the desired positions and orientations for the constrained joint
simultaneously to the model.

Next, we modify the original ProtoRes model, ProtoResWithPrev,
to allow conditioning on a separate pose. We introduce two new
handles types, Preserve-pos and Preserve-orient, that encode joint-
wise base transforms. The input to the model contains 2 × 𝑁 𝑗𝑜𝑖𝑛𝑡𝑠
additional handles defining the base pose to be preserved.

5.3 Quantitative Analysis
In this section, we compare the performance of our model against
the various baselines described previously. We compare different
models, using the L2 reconstruction error for the positions and the
geodesic error for the orientations, for the constraints as well as for
the base pose. The summary of our results can be seen in Table 1
for our own dataset and in Table 2 for MiniUnity and MiniMixamo
datasets provided by [Oreshkin et al. 2022].

The constraints specific errors reported in Table 1 and Table 2
are the average error on only the constrained joints. Subsequently,
the Pose preservation metrics are only measured on the uncon-
strained joints. Hence, we do not penalize the models for moving
the constrained joints from their base transforms.

To illustrate the added flexibility of our model, we detail the
performance of each different mode in addition to overall best
metrics in Table 1. Amongst these modes, we see that Global
mode best satisfies the constraints at the expense of worse pose-
preservation error. This characteristic is similar to the base ProtoRes
model where the global correlations are encouraged.

In contrast, Local mode, in Table 1, better preserves the base pose
at the expense of higher constraints error. We see that Pose Freeze
mode best preserves the base pose orientations at the expense of
the positions. The Place Freeze mode has the opposite effect with
the best performance at preserving base positions.

Without any task-specific architecture, the FCNN baseline con-
stantly performs worse than both ProtoRes models and our model.
Across the three datasets, we see that the original ProtoRes is the
best at satisfying constraints. This is expected since satisfying con-
straints and the preserving an initial pose are partially adversarial
problems. Even with identical architecture to ProtoRes, we see that
ProtoResWithPrev model has worse performance on satisfying the
constraints. However, our model in Global mode performs similar
to ProtoRes while also providing conditioning on a pose.

In Table 2, we see SKEL-IK performs similar to ProtoRes at sat-
isfying constraints and beats ProtoResWithPrev at preserving the

base pose. These results are also consistent with results on our
dataset on MiniMixamo and MiniUnity datasets. For brevity, we do
not list the performance of each mode individually.

5.4 Ablation Study
We perform an ablation study on the various design changes leading
to our final model. A list of all these developments can be found in
Table 3. We start with a basic Graph Attention network as described
by [Veličković et al. 2018] and additively introduce new features to
reach our final design. The initial model only works on a joint-level
skeleton and is not trained to preserve any base pose. As we can see
in Table 3, the performance of this model is very limited. Adding the
confidence mask provides some improvements due to better flow
of information. This suggests that information from unconstrained
joints can be noisy at the start of the message passing process.

We observe that adding a Pose-preservation loss has a negative
effect on the model’s ability to satisfy the constraints. But training
with this loss allows us to preserve characteristics of a base pose.
Next, we introduce working on skeletons at different resolutions.
This also increases the total number of parameters in our model.
We use average pooling and broadcast unpooling at this stage.
This increment gives us the single biggest improvement in both,
satisfying the constraints and preserving the base pose.

We next introduce the control bits to have control over the mix-
ing of the base pose and the constraints. This has small impact on
the metrics while providing more control over the solution. Finally,
we use Graph-Transformer layer in place of simple Multi-Head
Attention blocks. This further increases the number of parameters
in the model and results in substantial improvements across all
metrics.

5.5 Joint Embedding Control Bits
We introduced control bits in Section 3.1. Here, we qualitatively
analyze their effect on the output of our model.

In each row of Fig. 6, we solve from identical base pose and
set of constraints but in different solve modes of our model. In
Global mode, the model is not penalized for modifying the base
pose. Therefore, it behaves as a Global IK Solver, not dissimilar
to ProtoRes. We see this global effect in column 6 of Fig. 6. In the
first two rows, while the other solutions maintain the position of
the unconstrained right arm, we see global correlations between
the two arms in the last column. Similarly, in rows 4 & 5, the legs
change their positions significantly compared to the base pose. This
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Table 3: Ablation Study. We additively introduce a new feature in each row and measure the performance as L2 reconstruction
and geodesic errors on the constraints and a base pose. We see that each of our additions either improves our performance
(Multi-Res Architecture and Graph-Transformer layer) or provides a new control to the user (Pose-Preservation loss and
Control Bits).

Model Constraints Pose Preservation
Position ↓ Orientation ↓ Position ↓ Orientation ↓

Base-GAT 0.8439 0.2884 — —
+ Confidence Mask 0.7977 0.2253 — —
+ Pose-preservation Loss 0.8100 0.2345 0.4451 0.3970
+ Multi-Res Architecture 0.2284 0.1168 0.2342 0.3808
+ Control Bits 0.2268 0.0972 0.2938 0.3514
+ Cross-layer attention 0.1482 0.0672 0.2878 0.3050
+ Graph-Transformer Layer 0.0388 0.0517 0.2148 0.2581

demonstrates that while our model excels at performing local edits,
we can still learn global correlations present in the data.

The last two rows in Fig. 6 show the same set of constraints
but from two different angles. We constrain the positions of the
hip joint along with both feet. Additionally, we add an orientation
constraint on the hip joint. While the four outputs appear similar in
Row 5, one can see a clear difference from the second angle. Local
and Place Freeze modes (columns 3 & 4) preserve the global base
position of the wrists. This causes the wrist to move relative to the
rest of the body. In contrast, in Pose Freeze mode (column 5), we
see that the local orientations of the shoulders are preserved. This
causes arms to rotate along with the rest of the body. Lastly, in
Global mode (column 6), we see that the pose of the hands changes
completely.

6 RESULTS
SKEL-IK is designed to be local, state aware, and controllable. This
enables it to create poses with hard constraints, to generate vari-
ations and preserve them in the pose crafting process, as well as
to quickly modify mocap sequences. These applications are best
appreciated in our accompanying video.

6.1 Hard Constraints
We can see in our video a comparison between [Oreshkin et al.
2022] and our SKEL-IK method for establishing hard constraints.
While a global neural inverse kinematics method will always have
some correlations between distant joints, SKEL-IK can completely
eliminate these correlations by disconnecting the skeletal graph
itself. Hence, when the constraints are feasible, we still see joints
such as the knees wobbling around when manipulating an arm
with ProtoRes. In our experiments, this behaviour persists even in
over-constrained scenario with up to 20 constraints. In contrast, our
approach can strictly keep the joints still with fewer constraints.

However, in cases where the constraints configuration is infeasi-
ble, as when the two wrists are further apart than the wingspan of
the skeleton, the hard constraints cannot be satisfied perfectly. In
these cases, the parent joint will be preferentially satisfied due to
the analytical forward kinematics step in our method. One could
also engineer rules into the user interface to prevent constraints
from getting into such impossible configurations.

6.2 Variability
Completing full pose from sparse handles is an under-constrained
problem. As such, there can be a number of feasible poses for a
specific set of constraints (for example, Fig. 2). If the final latent
representation of the complete pose is only derived from the speci-
fied constraints, all of these variations are lost. Our model allows
rediscovering these variations by conditioning on different base
poses. By conditioning on random poses from a pose library, we
can quickly generate different poses satisfying the same set of con-
straints. The base poses can even be selected more intelligently
with Nearest Neighbor search or by the artist from a pose library.

As we see in Fig. 5, given a set of sparse handles, we can generate
a number of natural poses that satisfy the defined set of handles.
These suggestions can be used as part of a adaptive pose sugges-
tion system, as starting points for an animation or as background
characters that cannot feasibly be animated by hand (for exam-
ple, crowd simulation). By specifying sparse constraints, one could
easily generate a number of different animations to fill the scene.

6.3 Motion Editing
Motion editing refers to making changes to a base animation. With
motion capture becoming more and more prevalent in film making,
cleaning or modifying motion capture is becoming a staple of many
modern film production. Animators usually manipulate rig handles
comprised of FK and IK handles along keyframe interpolation to
fix movements. Consider a situation where the size or location of a
prop has to adjusted after the motion capture from the actors has
already been recorded. Editing with traditional animation tools or
rerecording the sequence are both expensive options.

As shown in our video, with SKEL-IK we can use the original
motion capture as our base animation and only add a new constraint
for the edited kick. In this example, we additvely edited the original
motion using only three keyframes specifying the offsets of the foot
constraint. While using such few constraints leads to an erosion of
the poses using previous neural IK methods, we are able to better
preserve the base animation and can alter motions more quickly.

7 DISCUSSION AND LIMITATIONS
During training the control bits, C𝐹𝐾 and C𝐼𝐾 , are randomly set
in the range [0, 1]. From our experiments, we see that smoothly
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moving through the range results in a smooth interpolation be-
tween the local and global modes during inference. We include an
illustration of these results in our accompanying video.

Our method can result in qualitatively non-natural poses when
the base pose is not natural or far from the handles configuration,
such as when a 180 degrees turn is required to reach the handles.
When such cases arise, the user can simply regenerate in global
mode to remove the large bias on the base pose.

From our experience, the model fails for cases that are not repre-
sented in the dataset, as is common for data driven systems. These
cases can occur when animators exaggerate a pose for stylistic
or dramatic effects. For example, when trying to bend the spine
backwards, we have seen that the model is not able to do so. How-
ever using IK optimization as a post process can help in such cases.
Alternatively, fine-tuning the model on a curated stylised dataset
can improve its performance in such exaggerated cases.

8 CONCLUSION AND FUTUREWORK
In this work, we introduced SKEL-IK, a new neural IK based on a
skeletal graph structure that is able to preserve characteristics of
the previous (base) pose in posing workflows. This enables neural
IK to be applied in new ways such as for generating variations and
for motion editing using sparse handles. We explored biasing our
network towards a base pose and showing different biases such as
preserving position, or shape (orientation), which opens the door
for even exploration. For example, one could train for a symmetry
parameter to bias towards symmetric poses given sparse handles.

One of the benefits of our skeletal graph structure is to impose
hard constraints strictly. And a remaining challenge with neural
IK bridging over to movies and games production are the different
character topologies and proportions animators use. In future work,
we could explore transferring knowledge across skeletal representa-
tions similarly to [Aberman et al. 2020], in order to provide neural
IK tools for different characters and proportions.

Lastly, while our work focused on pose editing by conditioning
on a base pose, our model can be easily extended for applications
such as motion completion using a temporal graph structure or
to incorporate additional constraints such as a interpenetration,
ground penetration or producing physically valid poses.
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(a) Positional constraints on both wrists and both feet

(b) Positional constraints on both wrists and both feet

(c) Positional constraints on only wrists

(d) Positional constraints on both feet and the hip

Figure 5: By initializing our model with random sampled base poses, we generate a number of varying poses for the same set of
handles. Even when all the end effectors are constrained, a large amount of variation can be seen in (a) neutral pose and (b)
extended left leg. We see even more variation with fewer constraints as seen in constraining (c) wrists and (d) feet and hip.
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Figure 6: Comparing the characteristics of our model in different execution modes. Column 1 shows the active positional and
orientation constraints. Column 2 shows the base pose used for initialization. We see maximum global correlation in global
mode (Column 6). The unconstrained body parts move to best satisfy the constraints. Local (Column 3), Place Freeze (Column
4) and Pose Freeze (Column 5) modes retain different characteristics of the base pose. We see this difference the best when an
orientation constraint (Row 5 and 6) is applied. The hands behave differently compared to the remaining pose across different
modes.


