
Example-Based Sampling with Diffusion Models
BASTIEN DOIGNIES, Univ. Lyon, France
NICOLAS BONNEEL, CNRS, Univ. Lyon, France
DAVID COEURJOLLY, CNRS, Univ. Lyon, France
JULIE DIGNE, CNRS, Univ. Lyon, France
LOÏS PAULIN, Univ. Lyon, France
JEAN-CLAUDE IEHL, Univ. Lyon, France
VICTOR OSTROMOUKHOV, Univ. Lyon, France
Much effort has been put into developing samplers with specific properties,
such as producing blue noise, low-discrepancy, lattice or Poisson disk sam-
ples. These samplers can be slow if they rely on optimization processes, may
rely on a wide range of numerical methods, are not always differentiable.
The success of recent diffusion models for image generation suggests that
these models could be appropriate for learning how to generate point sets
from examples. However, their convolutional nature makes these methods
impractical for dealing with scattered data such as point sets. We propose
a generic way to produce 2-d point sets imitating existing samplers from
observed point sets using a diffusion model. We address the problem of
convolutional layers by leveraging neighborhood information from an op-
timal transport matching to a uniform grid, that allows us to benefit from
fast convolutions on grids, and to support the example-based learning of
non-uniform sampling patterns. We demonstrate how the differentiability
of our approach can be used to optimize point sets to enforce properties.

CCS Concepts: • Computing methodologies → Rendering; Neural net-
works; •Mathematics of computing → Quadrature.

Additional Key Words and Phrases: Path tracing, quasi-Monte Carlo in-
tegration, low discrepancy sequences, generator matrices, integer linear
programming.

1 INTRODUCTION
A wide range of samplers have been designed in the past, for quasi-
Monte Carlo integration, rendering, image stippling, positionning
objects or generally, to uniformly or non-uniformly cover some
space. The generated samples can have various properties, such as
being low discrepancy or stratified, having a blue noise spectrum,
producing low integration error, with high packing density, satis-
fying a Poisson disk criterion, or high inter-point distances [Pharr
et al. 2016; Singh et al. 2019]. Generating these samples can come
at significant cost, especially when points are obtained from com-
plex optimization schemes [Ahmed et al. 2022; De Goes et al. 2012;
Fattal 2011; Öztireli and Gross 2012; Paulin et al. 2020; Roveri et al.
2017]. In addition, satisfying multiple properties at the same time is
difficult, and is the focus of entire methods – e.g., generating low
discrepancy sequences with blue noise properties. Differentiability
can also be desirable in contexts involving further optimizations,
but may be problematic for specific samplers, for instance when
considered in a differential renderer [Jakob et al. 2022b]. The large
set of available samplers makes sample generation little generic,
with methods involving smooth non-convex optimization, integer
linear programming, number theory, bruteforce approaches with
clever data structures, etc.

This work is shared under a Creative Commons Attribution-Share Alike 3.0 License.

Recently, diffusion models have become extremely popular in
the context of image generation [Ho et al. 2020; Rombach et al.
2022; Sohl-Dickstein et al. 2015]. By learning how to denoise an
image that initially only contains random values, these models have
been able to produce impressive results, i.e., to learn the very fine
structure of themanifold of realistic images. It hence seems judicious
to take advantage of these models to learn the very fine structure
of sample points produced by existing samplers. However, these
models heavily rely on convolutions, which makes it impractical to
efficiently handle point sets.

In this paper, we propose to learn the distribution of 2-d samples
produced by a wide range of samplers using a diffusion model.
When point sets are not stratified, we resort to an optimal transport
matching to a uniform grid that mostly preserves neighborhood
information so as to benefit from efficient convolutional layers. We
demonstrate that a single architecture is able to learn sample points
produced by different methods, and even allows to reproduce non-
uniform point sets. The differentiability of our network allows us
to add properties to a given samplers, e.g., allowing to add low
discrepancy properties to a given optimal transport-based sampler.
While our network is currently limited to generating 2-d samples, it
produces samples beyond the range of samples count it has been
trained on. We provide trained networks alongside the paper and
believe this exciting step will open the door to further conditioning.
Code is provided in supplementary material.

2 RELATED WORKS
Existing samplers have a wide range of properties. We enumerate
importants classes of samplers below.

Blue Noise. Blue noise samples have a characteristic “ring-like”
Fourier power spectrum, with low frequencies converging to zero.
They are interesting forMonte Carlo integration purposes [Pilleboue
et al. 2015; Subr and Kautz 2013], digital halftoning [Ulichney 1987]
or stippling [Deussen et al. 2000] and well describe arrangements
of natural phenomenas that have been optimized through evolution
such as the retinal distribution of cones [Yellott 1982]. They are of-
ten costly obtained through optimization, for instance using kernel
approaches [Ahmed et al. 2022; Fattal 2011], pair-correlation func-
tion [Öztireli and Gross 2012] or optimal transport [De Goes et al.
2012; Paulin et al. 2020; Qin et al. 2017], though fast approximations
exist [Nader and Guennebaud 2018]. Tile-based approaches pre-
compute tiles for fast synthesis, but are memory demanding [Kopf
et al. 2006; Ostromoukhov et al. 2004; Wachtel et al. 2014].

ar
X

iv
:2

30
2.

05
11

6v
1

 [
cs

.G
R

]
 1

0
Fe

b
20

23

HTTPS://ORCID.ORG/0000-0001-5243-4810
HTTPS://ORCID.ORG/0000-0003-3164-8697
HTTPS://ORCID.ORG/0000-0003-0905-0840
HTTPS://ORCID.ORG/0000-0001-9170-8407
HTTPS://ORCID.ORG/0000-0001-6877-2398

2 • Bastien Doignies, Nicolas Bonneel, David Coeurjolly, Julie Digne, Loïs Paulin, Jean-Claude Iehl, and Victor Ostromoukhov

Poisson Disk. Poisson disk samples have the property that no
point fall within a distance smaller than a threshold from another
point [Bridson 2007; Dunbar and Humphreys 2006; Gamito andMad-
dock 2009; Wei 2008; Yuksel 2015]. Their spectra resemble those of
blue noise distributions, except that they do not decrease towards
zero as the frequency decreases [Pilleboue et al. 2015]. They natu-
rally occur in other natural process such as the placement of trees
in a forest. In low dimensions, they are relatively fast to compute.

Low Discrepancy Sequences. Discrepancy is a uniformity measure
directly related to Monte Carlo integration error. Low discrepancy
sequences (LDS) thus have several advantages. First they are se-
quences, so that samples can be progressively added. Second, they
are low discrepancy, hence guaranteeing good numerical integration
error [Lemieux 2009; Niederreiter 1992]. Samplers achieving low
discrepancy usually rely on arithmetic and number theory construc-
tions leading to extremely fast generators (e.g. in base 2, the 𝑖-th
sample using [Sobol’ 1967] is given by amatrix/vector multiplication
in 𝐺𝐹 (2) on the bitwise representation of 𝑖). Alternatively, lattices
produce low discrepancy sequences. A rank-1 lattice repeatedly
translates an initial point by a given amount in a given direction in
a toric domain [Keller 2004]. Rank-n lattices similarly use multiple
independent vectors. Good lattices can be similarly hard to optimize
for [L’Ecuyer and Munger 2016].

Designing Complex Point Processes. Aside global point set proper-
ties such as blue-noise, Poisson disk or low discrepancy, the problem
of designing a point process matching some exemplars or satisfying
additional constraints has been addressed in several ways. One can
design sampler mixing global properties such as low discrepancy
and blue-noise [Ahmed et al. 2016; Ahmed and Wonka 2021; Perrier
et al. 2018], we can use a profile based approach to generate LDS
samplers with adjustable or with scriptable properties (e.g. blue-
noise properties, stratification on some projections. . .) [L’Ecuyer
and Munger 2016; Paulin et al. 2022]. Mixing point process proper-
ties can also be achieved by interpolating their high order statistics
such as their pair-correlation functions [Öztireli and Gross 2012].
Focusing on spectral properties, [Leimkühler et al. 2019] have pro-
posed a neural network approach to target specific profiles defined
as combinations of radial power spectra.

Point sets through deep learning. Perhaps the closest to our work
is that of [Leimkühler et al. 2019]. They learn arbitrary dimensional
point sets by matching power spectra. There is a number of im-
portant differences with respect to our work. First, they require a
power spectrum as input while we require examples from a given
sampler. This allows us to capture all characteristics of samplers
and not just spectra. Second, our network is able to produce point
sets of significantly different sizes without re-training. Third, we
propose a way to benefit from efficient convolutions on grids. While
this restricts us to low-dimensional settings (we demonstrate our
approach in two dimensions), this allows us to use thousands of
convolution layers at different scales and to benefit from recent
advances in diffusion models. These differences allow us to finely
capture the structure of point sets (see Sec. 4.1).

In the context of Monte Carlo integration, deep learning has been
used to learn a control variate [Müller et al. 2020], though this does

not directly address the location of point samples. Deep learning
has also been used for importance sampling [Müller et al. 2019].

Probabilistic Denoising Diffusion. Our method is based on Proba-
bilistic Denoising Diffusion, a concept introduced by [Sohl-Dickstein
et al. 2015] in the context of unsupervised learning. The core idea
of Denoising diffusion is to gradually remove any structure in the
image by progressively adding noise and to train a neural network
to invert the degradation process. This allows to capture the data
distribution and sample from it. This idea has been extensively used
for image synthesis [Ho et al. 2020] with impressive results, either
by working directly in pixel space or in the latent space [Rombach
et al. 2022]. In this paper, we propose to exploit the capacity of these
networks to learn structure from a set of examples to learn point
distributions.

3 DENOISING DIFFUSION MODEL

3.1 Architecture
The denoising process involves a sequence of denoising operations
which operate at given timesteps. Each denoising is achieved by a
forward pass in a single denoising network Y\ , which takes as input
both the noisy image 𝑥𝑡 and the embedded timestep 𝑡 .
Our network architecture is very similar to the one of [Ho et al.

2020]. It corresponds to a U-Net [Ronneberger et al. 2015], where
each level is composed of two convolutional residual blocks (ResNet)
and the feature maps are downsampled by a factor 2 between each
level. While the original architecture only included attention blocks
between the two convolutional blocks of the 16 × 16 level, we add
attention to all levels, which we found to work better in practice.
Unless specified otherwise, we used 1000 diffusion time steps. The
overall architecture design is detailed in supplementary material.

The network learns a time-dependent noise model Y\ (𝑥𝑡 , 𝑡) given
a noise Y𝑡 added to the input data, 𝑥𝑡 = 𝑥𝑡 + Y𝑡 at each time step 𝑡 .
In our setting, 𝑥0 is the offset between strata centers and the input
point set as obtained in Sec 3.2. The network thus predicts noise,
that can then be progressively removed from a white noise point
set to denoise it according to the learned data distribution.

3.2 Convolutions on grids
While computing the required convolutions used in the diffusion
model is possible on unstructured point sets [Groh et al. 2019; Hua
et al. 2018; Simonovsky and Komodakis 2017], this comes at a pro-
hibitive cost in our context, due to the large number of convolutions
involved. Fortunately, our point sets are not arbitrary but may uni-
formly cover the unit square. In certain cases, they can be stratified,
i.e., each stratum of size 1√

𝑛
× 1√

𝑛
contains a single sample. This is

notably the case for the large class of (0,𝑚, 𝑠)-nets samplers [Nieder-
reiter 1992]. In that case, we use a pixel grid of

√
𝑛 ×

√
𝑛 pixels, and

store in each pixel the 2-d offset between the stratum center and its
corresponding sample location. When this is not the case, we com-
pute a linear assignment using optimal transport between the strata
centers and the set of samples (Fig. 1) [Bonneel et al. 2011], and sim-
ilarly store in each pixel the 2-d offset between the stratum center
and its corresponding sample location. Doing so allows to work on
2-d grids and benefit from optimized convolutions. In our settings,

Example-Based Sampling with Diffusion Models • 3

the grid acts as an approximate nearest neighbor acceleration data
structure, such that, when a convolution is performed, neighbor-
ing samples approximately correspond to neighboring pixels, and
are thus appropriately weighted. We evaluate this property with
non-uniform sampling in Sec. 4.2. This remapping further allows to
remain invariant under re-ordering of samples.

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

Fig. 1. When input point sets are not stratified, we compute a linear assign-
ment problem between strata centers (red) and sample points (blue) using
optimal transport. Each stratum stores its assigned point offset (green ar-
rows). The grid thus serves as an approximate nearest neighbor acceleration
data structure and benefits from efficient convolutions.

3.3 Training
The benefit of a convolutional approach is that the same convolution
weights can be used for different grid sizes. It thus becomes possible
to train the same network with point sets of different sizes, and
hope that it generalizes. We explore in Sec. 4.1 how it succeeds
in generalizing. However, within a single batch, the sample count
should remain the same, due to the way batches are processed. For
a given batch of size 𝐵, we thus build a loss that sums contributions
for different input grid sizes S stored in different batches:

L(𝜖\ , 𝜖𝑡) =
∑︁
𝑗 ∈S

1
𝐵

𝐵∑︁
𝑖=1

∥𝜖\ (𝑥𝑡𝑖 , 𝑡𝑖) − 𝜖𝑡𝑖 ∥2 ,

for randomly chosen {𝑡𝑖 }.We typically useS = {8×8, 16×16, 32×32},
hence learning from sample sizes {64, 256, 1024}. We obtain one
trained network, of the same architecture but different training
weights, per type of sampler, each able to produce point sets of
different sample sizes.
We train networks to reproduce Sobol’ samples with Owen’s

scrambling [Owen 1998; Sobol’ 1967] as a representative LDSmatrix-
based sampler, LatNetBuilder samples as a representative LDS lattice-
based sampler, a Poisson disk sampler (classical dart throwing ap-
proach), SOT [Paulin et al. 2020] as a representative blue noise
sampler using optimal transport, GBN [Ahmed et al. 2022] as a
representative kernel-based blue noise sampler, LDBN [Ahmed et al.
2016] as a sampler that combines low discrepancy properties and
blue noise spectrum, and Rank-1 [Keller 2004] as a representative
of lattice based sampler. We train all our models using 64k point
sets, except for the SOT sampler trained with only 32 (not 32k) point

sets to assess robustness to small training datasets. We train for a
constant time of 3 hours, and synthesis time is typically 35 minutes
for 1000 point sets of 1024 samples each using 1000 diffusion steps.

4 VALIDATION AND APPLICATIONS

4.1 Properties of generated samples
We study power spectra, optimal transport energy, discrepancy,
integration errors and minimum distance statistics of generated
point sets, and verify that they match properties they were trained
for. We also verify how our network generalizes as we increase
the number of samples outside the range it was trained for. For
these comparisons, we compare to the approach of [Leimkühler
et al. 2019]. For stationary and isotropic point processes or samplers
targeting such properties, we have used their publicly available
implementation with a 1d radial mean power spectrum loss (same
learning parameters as the one provided by the authors for simi-
lar experiments). For non-stationary or anisotropic samplers (e.g.
Sobol’+Owen and Rank1), we had to design our own learning ex-
periment following their examples in 1d, with losses defined as 𝑙1
norm between 2d power spectra (cropped to the central frequency
part). We observe that such training turns out to be very difficult
in 2d and leads to non-competitive results. In Fig 2, we only show
results for Sobol’+Owen in 2d and leave the discussion for Rank-1
in supplementary materials.
While we trained our network on small set of sample sizes

({64, 256, 1024}), we assess the performance of these metrics for
other sample sizes ({576, 4096}). For most of these properties, we
illustrate them with violin plots (Fig. 3, 4, 5, 6), that show the distri-
bution of values in the form of vertical histograms (e.g., similar to a
population pyramid). We compute them using 128 point sets.

Power spectra. In Fig. 2, we first show performances of [Leimküh-
ler et al. 2019] and our approach to recover spectral properties of
the training sets (either through 1d radial mean power spectra for
stationay and isotropic point sets, or 2d spectra for other ones). As
discussed above, capturing anisotropic spectra with [Leimkühler
et al. 2019] is very challenging using a 2d spectra loss function. Our
approach fully captures such characteristics.

Optimal transport energy. Optimal transport (OT) provides a way
to characterize the uniformity of a point set by computing the
(squared) semi-discrete optimal transport distance between the point
set and a uniform distribution [Mérigot 2011]. Fig. 3 illustrates how
we match the OT energy.

Discrepancy and integration error. Fig. 4 and 5 show how our net-
work matches integration errors and discrepancy of point sets. For
discrepancy, we used the L2 discrepancy [Heinrich 1996; Nieder-
reiter 1992]. For integration error, we compute the average MSE
on the integration of wide anisotropic Gaussians (anisotropic ratio
between 1:1 and 1:9, and Gaussian sizes ranging from 0.1 to 0.333
for its largest axis) or Heaviside distributions randomly linearly di-
viding the unit square. We randomly chose 64k integrands among 1
million, whose integral has been estimated with maximum precision
as reference. These statistics also often match for sample sizes not
seen during training ({576, 4096}).

4 • Bastien Doignies, Nicolas Bonneel, David Coeurjolly, Julie Digne, Loïs Paulin, Jean-Claude Iehl, and Victor Ostromoukhov

Poisson disk GBN SOT LDBN Sobol’+Owen Rank1
O
rig

in
al

0 1 2 3 4
0

1

2

3

4

‰ 0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

[L
ei
m
kü

hl
er

et
al
.2
01
9]

N.A.

N.A.

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

N.A.

O
ur

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

0 1 2 3 4
0

1

2

3

4

Fig. 2. For various input samplers and their spectral content (Fourier power spectrum and radial mean power spectrum), we compare our approach (last three
rows) with that of [Leimkühler et al. 2019] (1d radial mean power spectrum loss for Poisson disk, GBN, SOT and LDBN; for Sobol’+Owen and Rank-1, we used
the 2d power spetrum cropped to the central part, framed in orange, for the learning to converge).

Example-Based Sampling with Diffusion Models • 5

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1

3 × 10
3

4 × 10
3

5 × 10
3

O
T,

64

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1

10
3

7 × 10
4

8 × 10
4

9 × 10
4

O
T,

25
6

Poisson DC Poisson NN Poisson GBN DC GBN NN GBN SOT DC SOT NN SOT LDBN DC LBN NN LDBN Owen DC Owen (2d)DC Owen NN Owen R1 NN R1

10
3

3 × 10
4

4 × 10
4

6 × 10
4

O
T,

57
6

Poisson DC Poisson NN Poisson GBN DC GBN NN GBN SOT DC SOT NN SOT LDBN DC LDBN NN LDBN Owen DC Owen (2d)DC Owen NN Owen R1 NN R1

2 × 10
4

3 × 10
4

O
T,

10
24

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1
4 × 10

5

5 × 10
5

6 × 10
5

7 × 10
5

8 × 10
5

O
T,

40
96

Fig. 3. We verify that the point sets predicted by our network match the
semi-discrete optimal transport distance to a uniform distribution of the
original point sets. These plots show these statistics distributions for 128
point sets from the training set and produced by our network, for sample
counts of 64, 256, 576, 1024 and 4096 (top to bottom). The network has
only been trained with point sets of 64, 256 and 1024 samples, but success-
fully predicts point sets of 576 and 4096 samples (results highlighted in
an orange frame). Labels prefixed by DC refer to Deep Point Correlation
results [Leimkühler et al. 2019] (on 1d radial power spectral, unless 2d is
specified), while NN refers to results produced by our Neural Network.

Minimum distance. For distributions such as Poisson Disk, the
minimum distance between any pair of samples can be important.
We assess this statistics in Fig. 6. This property is highly sensitive as
it only depends on the location of 2 points within the entire point set.
For this property, the approach of [Leimkühler et al. 2019] performs
remarkably well, due to the repulsion of points introduced during
learning. In our approach, we tend to produce points with lower
minimum distance value.

4.2 Non-uniform distributions
The goal of our optimal transport matching to a uniform grid is to
infer neighborhood information on the point sets from neighbor-
hood information on the grid, that is, neighboring points on the grid
are expected to correspond to neighboring samples. In Fig. 7, using
a non-uniform linear ramp sliced optimal transport sampling, we
show that, even for non-uniform sampling, our network successfully
learns from examples and preserve spectral noise characteristics
of the sampler. As a stress test, we also learn to sample a blobby
function shown in Fig. 8. In this example, we learn from importance

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1
10

7

10
6

10
5

10
4

G
au

ss
ia
n,

64

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1

10
8

10
7

10
6

10
5

10
4

G
au

ss
ia
n,

25
6

Poisson DC Poisson NN Poisson GBN DC GBN NN GBN SOT DC SOT NN SOT LDBN DC LDBN NN LDBN Owen DC Owen (2d)DC Owen NN Owen R1 NN R1

10
9

10
8

10
7

10
6

10
5

10
4

G
au

ss
ia
n,

57
6

Poisson DC Poisson NN Poisson GBN DC GBN NN GBN SOT DC SOT NN SOT LDBN DC LDBN NN LDBN Owen DC Owen (2d)DC Owen NN Owen R1 NN R1
10

10

10
9

10
8

10
7

10
6

10
5

G
au

ss
ia
n,

10
24

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1

10
11

10
10

10
9

10
8

10
7

10
6

G
au

ss
ia
n,

40
96

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1

10
3

H
ea
vi
si
de

,6
4

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1

10
4

H
ea
vi
si
de

,2
56

Poisson DC Poisson NN Poisson GBN DC GBN NN GBN SOT DC SOT NN SOT LDBN DC LDBN NN LDBN Owen DC Owen (2d)DC Owen NN Owen R1 NN R1

10
5

10
4

H
ea
vi
si
de

,5
76

Poisson DC Poisson NN Poisson GBN DC GBN NN GBN SOT DC SOT NN SOT LDBN DC LDBN NN LDBN Owen DC Owen (2d)DC Owen NN Owen R1 NN R1

10
5

H
ea
vi
si
de

,1
02

4

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1

10
6

10
5

H
ea
vi
si
de

,4
09

6

Fig. 4. Our network matches integration errors on Gaussian integrands
(top 4 plots) and Heaviside integrands (bottom 4 plots), even beyond the
sample sizes it was trained for ({64, 256, 1024}). Sample counts are 64, 256,
576, 1024 and 4096 (top to bottom for each integrand).

sampled GBN point sets obtained by rejection sampling. Our net-
work reproduces the sampling density well, and mostly preserves

6 • Bastien Doignies, Nicolas Bonneel, David Coeurjolly, Julie Digne, Loïs Paulin, Jean-Claude Iehl, and Victor Ostromoukhov

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1

2 × 10
2

3 × 10
2

4 × 10
2

D
is
cr
ep

an
cy
,6

4

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1

10
2

3 × 10
3

4 × 10
3

6 × 10
3

D
is
cr
ep

an
cy
,2

56

Poisson DC Poisson NN Poisson GBN DC GBN NN GBN SOT DC SOT NN SOT LDBN DC LDBN NN LDBN Owen DC Owen (2d)DC Owen NN Owen R1 NN R1

10
2

D
is
cr
ep

an
cy
,5

76

Poisson DC Poisson NN Poisson GBN DC GBN NN GBN SOT DC SOT NN SOT LDBN DC LDBN NN LDBN Owen DC Owen (2d)DC Owen NN Owen R1 NN R1

10
3

D
is
cr
ep

an
cy
,1

02
4

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1

10
3

D
is
cr
ep

an
cy
,4

09
6

Fig. 5. Our network matches the L2 discrepancy of the original point sets.
Sample counts are 64, 256, 576, 1024 and 4096 (top to bottom).

important characteristics of the GBN sampler despite inaccuracies in
neighborhood information due to the grid embedding. Non-uniform
sampling is not possible with the approach of [Leimkühler et al.
2019].

4.3 Applications
Aside from the fast generation of point sets, we also benefit from
the differentiability of our network to further optimize point sets
within their class.

We illustrate how the differentiability of our network can be used
to add properties to generated point sets. Here, we wish to add low
discrepancy properties to a sliced optimal transport sampler [Paulin
et al. 2020], to benefit from both low discrepancy and low optimal
transport energy. We train the network on SOT and then fix the
trained weights of the network. Then we optimize the initial white
noise samples with an objective function aimed at minimizing the
L2 discrepancy measure. As backpropagation requires significant
memory overhead, we reduce the number of diffusion steps to 100
(instead of 1000) in the diffusion model. In Fig. 9, we illustrate the
result of our optimization in terms of discrepancy and optimal trans-
port energy, and illustrate with an example generated point set.

5 DISCUSSIONS & PERSPECTIVES
We showed that diffusion models provide a powerful tool for learn-
ing how to generate point sets directly from examples across a wide
range of samplers and they generalize well with sample size. Gen-
eralization hints at the fact that the network is correctly learning
the general principles that make each point set so particular. An

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1

10
2

10
1

M
in
D
is
t,
64

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1
10

3

10
2

M
in
D
is
t,
25

6

Poisson DC Poisson NN Poisson GBN DC GBN NN GBN SOT DC SOT NN SOT LDBN DC LDBN NN LDBN Owen DC Owen (2d)DC Owen NN Owen R1 NN R1

10
4

10
3

10
2

M
in
D
is
t,
57

6

Poisson DC Poisson NN Poisson GBN DC GBN NN GBN SOT DC SOT NN SOT LDBN DC LDBN NN LDBN Owen DC Owen (2d)DC Owen NN Owen R1 NN R1

10
3

10
2

M
in
D
is
t,
10

24

Poisson NN Poisson GBN NN GBN SOT NN SOT LDBN NN LDBN Owen NN Owen R1 NN R1

10
4

10
3

10
2

M
in
D
is
t,
40

96

Fig. 6. We evaluate the minimum pairwise distance between samples. This
property is highly sensitive as it only depends on the location of 2 samples.
Our network tends to produce smaller values, while the sample repulsion of
[Leimkühler et al. 2019] better preserve minimum distances. Sample counts
are 64, 256, 576, 1024 and 4096 (top to bottom).

interesting future work would involve conditioning the network
with respect to the particular sampler, sampler type or more general
desired properties. This would allow for a single trained network
to produce point sets of types. Preliminary experiments showed
subpar results, but more complex architectures could alleviate this
issue. The capacity of our network to produce possibly non-uniform
example-based point sets may open the door to syntheses where
sampling data are only available through a small number of mea-
surements (e.g., distribution of trees, cells, etc.) and optimizing only
for summarized statistics (power spectrum or PCF) is not desired.
This is a promising direction as we have successfully trained our
network with 32 examples of the SOT sampler.

While in principle ourmethodwouldwork in arbitrary dimension,
the efficiency gained through our convolutions on grids would
be lost as storing higher dimensional grids becomes impractical,
both in terms of storage (that exponentially grows with dimension)
and supported sample size (in the form 𝑘𝑑 for some 𝑘 , similarly
to stratified samplers). To date, higher dimensional data would be
better supported by the approach of [Leimkühler et al. 2019] that
does not rely on grids. To remove this grid-dependency in the Monte
Carlo sampling, one could adapt recent diffusionmodels for 3D point
cloud shape synthesis [Luo and Hu 2021; Zeng et al. 2022]. While
our network is reasonably efficient, other recent architectures have
been proposed to accelerate diffusion models and could be explored
as well [Song et al. 2020].

Example-Based Sampling with Diffusion Models • 7

Fig. 7. We sample from a learned sliced OT linear ramp. Top row, left.
One example point set used for training (among 66,035). Top row, right.
One synthesized point set. Bottom row. Unwarping example and synthe-
sized point sets to recover a uniform distribution shows that their spectra
match. The uniformity of the unwarped samples can also be measured:
the semi-discrete optimal transport energy averaged for 128 realizations
of 256 samples is 7.24.10−4 for the neural network output, compared with
7.16.10−4 for the original sliced OT uniform samples.

. . .

. . .

Fig. 8. As a stress test, we sample from the density 0.2𝑒−20(𝑥2+𝑦2) +
0.2 sin(𝜋𝑥)2 sin(𝜋𝑦)2 by importance sampling using GBN as a training
set (first row). Our sampler reproduces the density well and mostly pre-
serves important characteristics of the sampler (second row).

However, in the settings we focus on, in most cases our samples
preserve characteristics of major samplers well, including their
power spectrum, Monte Carlo integration quality, distance sta-
tistics, optimal transport energy and discrepancy. Our diffusion-
based sampler allows to generate point sets much faster than some
optimization-based samplers by learning from their output. Aside
for the fast generation of diverse point sets, we have shown use for
our network’s differentiability by adding a low discrepancy prop-
erty to an optimal transport-based sampler. Rendering applications
could benefit from our samplers, e.g., through differentiable render-
ing pipelines [Jakob et al. 2022a] or for generating point sets nicely
distributing Monte Carlo error in a blue noise fashion in screen
space [Salaün et al. 2022].

3 × 10 3 4 × 10 3 5 × 10 3

Discrepancy

7 × 10 4

8 × 10 4

9 × 10 4

OT
 E

ne
rg

y

Owen
SOT
After Optim.
Before Optim

Fig. 9. We used a trained SOT sampling network to optimize the discrep-
ancy of the generated point sets among the class of SOT point sets. For
128 SOT (blue) and some Sobol’+Owen (red) point sets as representative
of blue noise and LDS samplers, we show their distribution of OT and dis-
crepancy statistics. In orange, we illustrate the SOT and discrepancy value
for 10 optimized point sets as well as a representative trajectory during the
optimization process. We also show a representative point set before (right)
and after (left) optimization.

ACKNOWLEDGMENTS
This work was funded in part by the french Agence Nationale de la
Recherche, grant ANR-20-CE45-0025.

REFERENCES
Abdalla G. M. Ahmed, Hélène Perrier, David Coeurjolly, Victor Ostromoukhov, Jianwei

Guo, Dong-Ming Yan, Hui Huang, and Oliver Deussen. 2016. Low-Discrepancy Blue
Noise Sampling. ACM Trans. on Graphics (SIGGRAPH Asia) 35, 6 (2016), 247:1–247:13.
https://doi.org/f9cpt2

Abdalla G. M. Ahmed, Jing Ren, and Peter Wonka. 2022. Gaussian Blue Noise. ACM
Trans. Graph. 41, 6, Article 260 (nov 2022), 15 pages. https://doi.org/jtp8

Abdalla G. M. Ahmed and Peter Wonka. 2021. Optimizing Dyadic Nets. ACM Trans. on
Graphics (SIGGRAPH) 40, 4 (2021), 141:1–141:17. https://doi.org/hn22

Nicolas Bonneel, Michiel Van De Panne, Sylvain Paris, and Wolfgang Heidrich. 2011.
Displacement interpolation using Lagrangian mass transport. In Proceedings of the
2011 SIGGRAPH Asia conference. 1–12. https://doi.org/gkcqgt

Robert Bridson. 2007. Fast Poisson disk sampling in arbitrary dimensions. SIGGRAPH
sketches 10, 1 (2007), 1. https://doi.org/gf8tsr

Fernando De Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun.
2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 6 (2012), 171:1–
171:10. https://doi.org/gbb6n9

Oliver Deussen, Stefan Hiller, Cornelius Overveld, and Thomas Strothotte. 2000. Float-
ing Points: A Method for Computing Stipple Drawings. Computer Graphics Forum
(EG’00) 19, 3 (2000), 40–51. https://doi.org/fg9w98

Daniel Dunbar and Greg Humphreys. 2006. A spatial data structure for fast Poisson-disk
sample generation. ACM Transactions on Graphics (TOG) 25, 3 (2006), 503–508.

Raanan Fattal. 2011. Blue-Noise Point Sampling Using Kernel Density Model. ACM
Trans. Graph. 30 (2011), 48:1–48:12. https://doi.org/cv7pbv

Manuel N Gamito and Steve C Maddock. 2009. Accurate multidimensional Poisson-disk
sampling. ACM Trans. Graph. 29, 1 (2009), 8:1–8:19. https://doi.org/dr8646

Fabian Groh, Patrick Wieschollek, and Hendrik PA Lensch. 2019. Flex-Convolution:
Million-scale point-cloud learning beyond grid-worlds. In Computer Vision–ACCV
2018: 14th Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018,
Revised Selected Papers, Part I 14. Springer, 105–122.

Stefan Heinrich. 1996. Efficient algorithms for computing the L2-discrepancy. Math.
Comp. 65, 216 (1996), 1621–1633.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in Neural Information Processing Systems 33 (2020), 6840–6851.

Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. 2018. Pointwise convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 984–993.

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini,
Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang.
2022b. Mitsuba 3 renderer. https://mitsuba-renderer.org

https://doi.org/f9cpt2
https://doi.org/jtp8
https://doi.org/hn22
https://doi.org/gkcqgt
https://doi.org/gf8tsr
https://doi.org/gbb6n9
https://doi.org/fg9w98
https://doi.org/cv7pbv
https://doi.org/dr8646
https://mitsuba-renderer.org

8 • Bastien Doignies, Nicolas Bonneel, David Coeurjolly, Julie Digne, Loïs Paulin, Jean-Claude Iehl, and Victor Ostromoukhov

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022a. Dr.Jit:
A Just-In-Time Compiler for Differentiable Rendering. ACM Trans. on Graphics
(SIGGRAPH) 41, 4 (2022), 124:1–124:19. https://doi.org/gqjn7p

Alexander Keller. 2004. Stratification by rank-1 lattices. In Monte Carlo and Quasi-
Monte Carlo Methods 2002, Harald Niederreiter (Ed.). Springer, 299–313. https:
//doi.org/fks8z8

Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, and Dani Lischinski. 2006. Recursive
Wang Tiles for Real-Time Blue Noise. ACM Trans. Graph. 25, 3 (2006), 509–518.
https://doi.org/dgvw52

Pierre L’Ecuyer and David Munger. 2016. LatticeBuilder: A General Software Tool for
Constructing Rank-1 Lattice Rules. ACM Transactions on Mathematical Software 42
(2016), 1–30. https://doi.org/10.1145/2754929

Thomas Leimkühler, Gurprit Singh, Karol Myszkowski, Hans-Peter Seidel, and Tobias
Ritschel. 2019. Deep point correlation design. ACM Trans. on Graphics (SIGGRAPH
Asia) 38, 6 (2019), 1–17. https://doi.org/ggfg2x

Christiane Lemieux. 2009. Monte Carlo and Quasi-Monte Carlo Sampling. Springer.
https://doi.org/b8r4z5

Shitong Luo and Wei Hu. 2021. Diffusion probabilistic models for 3d point cloud
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2837–2845.

Quentin Mérigot. 2011. A multiscale approach to optimal transport. In Computer
Graphics Forum, Vol. 30. Wiley Online Library, 1583–1592. https://doi.org/cjh4q8

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
2019. Neural importance sampling. ACM Trans. on Graphics 38, 5 (2019), 1–19.
https://doi.org/jtrf

ThomasMüller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. Neural control
variates. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–19. https://doi.org/jtrj

Georges Nader and Gael Guennebaud. 2018. Instant transport maps on 2D grids. ACM
Trans. Graph. 37, 6 (2018), 249:1–249:13. https://doi.org/jtrg

Harald Niederreiter. 1992. Random Number Generation and Quasi-Monte Carlo Methods.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA.
https://doi.org/fd5fjw

Victor Ostromoukhov, Charles Donohue, and Pierre-Marc Jodoin. 2004. Fast Hierar-
chical Importance Sampling with Blue Noise Properties. ACM Trans. on Graphics
(SIGGRAPH) 23, 3 (2004), 488–495.

Art B. Owen. 1998. Scrambling Sobol’ and Niederreiter–Xing Points. Journal of
Complexity 14, 4 (1998), 466–489.

Cengiz Öztireli and Markus Gross. 2012. Analysis and synthesis of point distributions
based on pair correlation. ACM Transactions on Graphics (TOG) 31, 6 (2012), 1–10.
https://doi.org/gbb6qr

Loïs Paulin, Nicolas Bonneel, David Coeurjolly, Jean-Claude Iehl, Alexander Keller,
and Victor Ostromoukhov. 2022. MatBuilder: Mastering Sampling Uniformity over
Projections. ACM Trans. on Graphics (SIGGRAPH) 41, 4 (2022), 84:1–84:13. https:
//github.com/loispaulin/matbuilder

Loïs Paulin, Nicolas Bonneel, David Coeurjolly, Jean-Claude Iehl, Antoine Webanck,
Mathieu Desbrun, and Victor Ostromoukhov. 2020. Sliced optimal transport sam-
pling. ACM Trans. on Graphics (SIGGRAPH) 39, 4 (2020), 99:1–99:17. https:
//doi.org/gg8xfj

Hélène Perrier, David Coeurjolly, Feng Xie, Matt Pharr, Pat Hanrahan, and Victor
Ostromoukhov. 2018. Sequences with Low-Discrepancy Blue-Noise 2-D Projections.
37, 2 (2018), 339–353. https://doi.org/gd2j2d

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering:
From Theory to Implementation (3 ed.). Morgan-Kaufmann.

Adrien Pilleboue, Gurprit Singh, David Coeurjolly, Michael Kazhdan, and Victor Ostro-
moukhov. 2015. Variance Analysis for Monte Carlo Integration. ACM Trans. Graph.
34, 4 (2015), 124:1–124:14. https://doi.org/f7m28c

Hongxing Qin, Yi Chen, Jinlong He, and Baoquan Chen. 2017. Wasserstein Blue Noise
Sampling. ACM Trans. Graph. 36, 4, Article 137a (Oct. 2017). https://doi.org/gcj3d3

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
2022. High-Resolution Image Synthesis with Latent Diffusion Models. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 10684–
10695.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on Medical
image computing and computer-assisted intervention. Springer, 234–241. https:
//doi.org/gcgk7j

Riccardo Roveri, A Cengiz Öztireli, and Markus Gross. 2017. General point sampling
with adaptive density and correlations. In Computer Graphics Forum, Vol. 36. Wiley
Online Library, 107–117. https://doi.org/gbm2jp

Corentin Salaün, Iliyan Georgiev, Hans-Peter Seidel, and Gurprit Singh. 2022. Scalable
Multi-Class Sampling via Filtered Sliced Optimal Transport. ACM Trans. Graph. 41,
6, Article 261 (nov 2022), 14 pages. https://doi.org/10.1145/3550454.3555484

Martin Simonovsky and Nikos Komodakis. 2017. Dynamic edge-conditioned filters in
convolutional neural networks on graphs. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 3693–3702.

Gurprit Singh, Cengiz Öztireli, Abdalla G. M. Ahmed, David Coeurjolly, Kartic Subr,
Oliver Deussen, Victor Ostromoukhov, Ravi Ramamoorthi, and Wojciech Jarosz.
2019. Analysis of sample correlations for Monte Carlo rendering. In Computer
Graphics Forum, Vol. 38. Wiley Online Library, 473–491.

Ilya M. Sobol’. 1967. On the distribution of points in a cube and the approximate
evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki
7, 4 (1967), 784–802. https://doi.org/crdj6j

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. 2015.
Deep unsupervised learning using nonequilibrium thermodynamics. In International
Conference on Machine Learning. PMLR, 2256–2265.

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising diffusion implicit
models. arXiv preprint arXiv:2010.02502 (2020).

Kartic Subr and Jan Kautz. 2013. Fourier analysis of stochastic sampling strategies for
assessing bias and variance in integration. ACM Trans. Graph. 32, 4, Article 128
(2013), 12 pages. https://doi.org/gbdg7c

Robert Ulichney. 1987. Digital Halftoning. MIT Press, Cambridge, MA, USA.
Florent Wachtel, Adrien Pilleboue, David Coeurjolly, Katherine Breeden, Gurprit Singh,

Gaël Cathelin, Fernando De Goes, Mathieu Desbrun, and Victor Ostromoukhov.
2014. Fast tile-based adaptive sampling with user-specified Fourier spectra. ACM
Trans. on Graphics (SIGGRAPH) 33, 4 (2014), 1–11. https://doi.org/f6cz6k

Li-Yi Wei. 2008. Parallel Poisson disk sampling. In ACM Trans. Graph., Vol. 27. ACM,
20. https://doi.org/cs3jjv

John I. Yellott. 1982. Spectral analysis of spatial sampling by photoreceptors: Topological
disorder prevents aliasing. Vision Research 22, 9 (1982), 1205 – 1210. https://doi.
org/fsgtr4

Cem Yuksel. 2015. Sample elimination for generating Poisson disk sample sets. In
Computer Graphics Forum, Vol. 34. Wiley Online Library, 25–32. https://doi.org/
f7k7c7

Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and
Karsten Kreis. 2022. LION: Latent Point Diffusion Models for 3D Shape Generation.
In Advances in Neural Information Processing Systems (NeurIPS).

https://doi.org/gqjn7p
https://doi.org/fks8z8
https://doi.org/fks8z8
https://doi.org/dgvw52
https://doi.org/10.1145/2754929
https://doi.org/ggfg2x
https://doi.org/b8r4z5
https://doi.org/cjh4q8
https://doi.org/jtrf
https://doi.org/jtrj
https://doi.org/jtrg
https://doi.org/fd5fjw
https://doi.org/gbb6qr
https://github.com/loispaulin/matbuilder
https://github.com/loispaulin/matbuilder
https://doi.org/gg8xfj
https://doi.org/gg8xfj
https://doi.org/gd2j2d
https://doi.org/f7m28c
https://doi.org/gcj3d3
https://doi.org/gcgk7j
https://doi.org/gcgk7j
https://doi.org/gbm2jp
https://doi.org/10.1145/3550454.3555484
https://doi.org/crdj6j
https://doi.org/gbdg7c
https://doi.org/f6cz6k
https://doi.org/cs3jjv
https://doi.org/fsgtr4
https://doi.org/fsgtr4
https://doi.org/f7k7c7
https://doi.org/f7k7c7

Example-Based Sampling with Diffusion Models • 9

Supplementary document
1 DIFFUSION MODEL
Diffusion models date back to the work of Sohl-Dickstein et al.
[2015] but were popularized by Ho et al. [2020] for image synthesis.
This section recalls the details for completeness.

Probabilistic Denoising Diffusion models involve a forward pro-
cess, where noise is gradually added to the signal (here an image)
and a reverse process where noise is removed through a learnable
network. The forward diffusion process is a Markov Chain, where
each transition adds Gaussian Noise to the image, following:

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼) , (1)

where (𝛽𝑡)𝑇𝑡=0 are the noise variances for each time 𝑡 . The variance
schedule is chosen such that nothing distinguishes 𝑥𝑇 from a white
noise. In our model, we set the variances 𝛽𝑡 to be constant 𝛽𝑡 = 𝛽

One has:
𝑞𝑥1:𝑇 |𝑥0 =

∏
𝑡=1· · ·𝑇

𝑞(𝑥𝑡 |𝑥𝑡−1) . (2)

The reverse (denoising) process is also a Markov Chain, with
transitions:

𝑝\ (𝑥𝑡−1 |𝑥𝑡) = N(𝑥𝑡−1; `\ (𝑥𝑡 , 𝑡), Σ\ (𝑥𝑡 , 𝑡)) , (3)

`\ and Σ\ are learned by examples. To simplify, following the work
of Ho et al. [2020], we consider that Σ\ = 𝜎𝑡 𝐼 , with 𝜎𝑡 = 𝛽𝑡 = 𝛽 .
The forward process allows to sample 𝑥𝑡 with arbitrary 𝑡 from 𝑥0,
following:

𝑞(𝑥𝑡 |𝑥0) = N(𝑥𝑡 ;
√
𝛼𝑡𝑥0, (1 − 𝛼𝑡)𝐼) , (4)

with 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 =
∏𝑡

𝑠=1 𝛼𝑠 .
During training, and image 𝑥0 is drawn from the set of examples,

along with a random time 𝑡 ∈ 1 · · ·𝑇 , a random noise image Y is
drawn following N(0, 𝐼) and the algorithm tries to minimize:

∥Y − Y\ (
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡Y, 𝑡)∥2 , (5)

by gradient descent.
During sampling a random noise image 𝑧 ∼ N(0, 𝐼) is drawn and

iteratively denoised by applying:

𝑥𝑡−1 =
1

√
𝛼𝑡

(𝑥𝑡 −
1 − 𝛼𝑡√
1 − 𝛼𝑡

Y\ (𝑥𝑡 , 𝑡)) + 𝜎𝑡𝑧 , (6)

where 𝑧 is a random noise and in our case, we take 𝜎𝑡 = 𝛽𝑡 The
key ingredient of diffusion models is the approximator Y\ , which is
modeled by a neural network.

2 NETWORK
Our network is a slightly modified version of the denoising network
of Ho et al. [2020] and is summarized on Figure 10.

3 LEARNING RANK-1 REALIZATIONS WITH [Leimkühler
et al. 2019]

Leimkühler et al. [2019] proposed a neural network based point
process design using losses defined from spectral or pair-correlation
information. In most examples provided by the authors, 1d losses (or
combination of 1d losses) are considered using 1d radial mean power
spectra or 1d pair correlation functions (allowing complex designs
such as a high-dimensional point process with some specific spectral
properties for given 1d or 2d projections). When targeting isotropic

64x64 64x64

32x32 32x32

16x16 16x16
Down/Upsampling by 2

Attention block

Skip connections1x1

 t

Dense layer for t,
Group Norm + Conv

Temporal encoding

Fig. 10. Diffusion network architecture

O
rig

in
al

0 1 2 3 4
0

1

2

3

4

O
ur

0 1 2 3 4
0

1

2

3

4

2d
ta
rg
et

0 1 2 3 4
0

1

2

3

4

1d
ta
rg
et

0 1 2 3 4
0

1

2

3

4

Fig. 11. Learning Rank-1 realizations using [Leimkühler et al. 2019] using a
2d power spectra loss, and a 1d power spectra loss. We recall the original
properties and our results for completeness.

samplers, the authors provided their experimental settings in https:
//github.com/sinbag/deepsampling. We use the same parameters
for Poisson disk, GBN, SOT, LDBN, targeting their respective radial
power spectra. For Sobol’+Owen, we keep the same settings but
updated the loss function to target a 2d power spectrum. Cropping
the spectra to the central part of the domain allowed us to obtain a
convergence of the learning step (in our experiments, increasing the
cropping domain does not help the convergence). For Rank-1, no
satisfactory results have been obtained, for the sake of completeness,
we illustrate in Fig.11 the point set and spectra we have obtained.
Note that Rank-1 is a very specific anisotropic sampler which is far
from the context of [Leimkühler et al. 2019]. Although, additional
investigation would be interesting to continue.

https://github.com/sinbag/deepsampling
https://github.com/sinbag/deepsampling

	Abstract
	1 Introduction
	2 Related works
	3 Denoising Diffusion model
	3.1 Architecture
	3.2 Convolutions on grids
	3.3 Training

	4 Validation and applications
	4.1 Properties of generated samples
	4.2 Non-uniform distributions
	4.3 Applications

	5 Discussions & Perspectives
	References
	1 Diffusion model
	2 Network
	3 Learning Rank-1 realizations with leimkuhler2019deep

