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Much effort has been put into developing samplers with specific properties,
such as producing blue noise, low-discrepancy, lattice or Poisson disk sam-
ples. These samplers can be slow if they rely on optimization processes, may
rely on a wide range of numerical methods, are not always differentiable.
The success of recent diffusion models for image generation suggests that
these models could be appropriate for learning how to generate point sets
from examples. However, their convolutional nature makes these methods
impractical for dealing with scattered data such as point sets. We propose
a generic way to produce 2-d point sets imitating existing samplers from
observed point sets using a diffusion model. We address the problem of
convolutional layers by leveraging neighborhood information from an op-
timal transport matching to a uniform grid, that allows us to benefit from
fast convolutions on grids, and to support the example-based learning of
non-uniform sampling patterns. We demonstrate how the differentiability
of our approach can be used to optimize point sets to enforce properties.

CCS Concepts: • Computing methodologies → Rendering; Neural net-
works; •Mathematics of computing → Quadrature.

Additional Key Words and Phrases: Path tracing, quasi-Monte Carlo in-
tegration, low discrepancy sequences, generator matrices, integer linear
programming.

1 INTRODUCTION
A wide range of samplers have been designed in the past, for quasi-
Monte Carlo integration, rendering, image stippling, positionning
objects or generally, to uniformly or non-uniformly cover some
space. The generated samples can have various properties, such as
being low discrepancy or stratified, having a blue noise spectrum,
producing low integration error, with high packing density, satis-
fying a Poisson disk criterion, or high inter-point distances [Pharr
et al. 2016; Singh et al. 2019]. Generating these samples can come
at significant cost, especially when points are obtained from com-
plex optimization schemes [Ahmed et al. 2022; De Goes et al. 2012;
Fattal 2011; Öztireli and Gross 2012; Paulin et al. 2020; Roveri et al.
2017]. In addition, satisfying multiple properties at the same time is
difficult, and is the focus of entire methods – e.g., generating low
discrepancy sequences with blue noise properties. Differentiability
can also be desirable in contexts involving further optimizations,
but may be problematic for specific samplers, for instance when
considered in a differential renderer [Jakob et al. 2022b]. The large
set of available samplers makes sample generation little generic,
with methods involving smooth non-convex optimization, integer
linear programming, number theory, bruteforce approaches with
clever data structures, etc.

This work is shared under a Creative Commons Attribution-Share Alike 3.0 License.

Recently, diffusion models have become extremely popular in
the context of image generation [Ho et al. 2020; Rombach et al.
2022; Sohl-Dickstein et al. 2015]. By learning how to denoise an
image that initially only contains random values, these models have
been able to produce impressive results, i.e., to learn the very fine
structure of themanifold of realistic images. It hence seems judicious
to take advantage of these models to learn the very fine structure
of sample points produced by existing samplers. However, these
models heavily rely on convolutions, which makes it impractical to
efficiently handle point sets.

In this paper, we propose to learn the distribution of 2-d samples
produced by a wide range of samplers using a diffusion model.
When point sets are not stratified, we resort to an optimal transport
matching to a uniform grid that mostly preserves neighborhood
information so as to benefit from efficient convolutional layers. We
demonstrate that a single architecture is able to learn sample points
produced by different methods, and even allows to reproduce non-
uniform point sets. The differentiability of our network allows us
to add properties to a given samplers, e.g., allowing to add low
discrepancy properties to a given optimal transport-based sampler.
While our network is currently limited to generating 2-d samples, it
produces samples beyond the range of samples count it has been
trained on. We provide trained networks alongside the paper and
believe this exciting step will open the door to further conditioning.
Code is provided in supplementary material.

2 RELATED WORKS
Existing samplers have a wide range of properties. We enumerate
importants classes of samplers below.

Blue Noise. Blue noise samples have a characteristic “ring-like”
Fourier power spectrum, with low frequencies converging to zero.
They are interesting forMonte Carlo integration purposes [Pilleboue
et al. 2015; Subr and Kautz 2013], digital halftoning [Ulichney 1987]
or stippling [Deussen et al. 2000] and well describe arrangements
of natural phenomenas that have been optimized through evolution
such as the retinal distribution of cones [Yellott 1982]. They are of-
ten costly obtained through optimization, for instance using kernel
approaches [Ahmed et al. 2022; Fattal 2011], pair-correlation func-
tion [Öztireli and Gross 2012] or optimal transport [De Goes et al.
2012; Paulin et al. 2020; Qin et al. 2017], though fast approximations
exist [Nader and Guennebaud 2018]. Tile-based approaches pre-
compute tiles for fast synthesis, but are memory demanding [Kopf
et al. 2006; Ostromoukhov et al. 2004; Wachtel et al. 2014].
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Poisson Disk. Poisson disk samples have the property that no
point fall within a distance smaller than a threshold from another
point [Bridson 2007; Dunbar and Humphreys 2006; Gamito andMad-
dock 2009; Wei 2008; Yuksel 2015]. Their spectra resemble those of
blue noise distributions, except that they do not decrease towards
zero as the frequency decreases [Pilleboue et al. 2015]. They natu-
rally occur in other natural process such as the placement of trees
in a forest. In low dimensions, they are relatively fast to compute.

Low Discrepancy Sequences. Discrepancy is a uniformity measure
directly related to Monte Carlo integration error. Low discrepancy
sequences (LDS) thus have several advantages. First they are se-
quences, so that samples can be progressively added. Second, they
are low discrepancy, hence guaranteeing good numerical integration
error [Lemieux 2009; Niederreiter 1992]. Samplers achieving low
discrepancy usually rely on arithmetic and number theory construc-
tions leading to extremely fast generators (e.g. in base 2, the 𝑖-th
sample using [Sobol’ 1967] is given by amatrix/vector multiplication
in 𝐺𝐹 (2) on the bitwise representation of 𝑖). Alternatively, lattices
produce low discrepancy sequences. A rank-1 lattice repeatedly
translates an initial point by a given amount in a given direction in
a toric domain [Keller 2004]. Rank-n lattices similarly use multiple
independent vectors. Good lattices can be similarly hard to optimize
for [L’Ecuyer and Munger 2016].

Designing Complex Point Processes. Aside global point set proper-
ties such as blue-noise, Poisson disk or low discrepancy, the problem
of designing a point process matching some exemplars or satisfying
additional constraints has been addressed in several ways. One can
design sampler mixing global properties such as low discrepancy
and blue-noise [Ahmed et al. 2016; Ahmed and Wonka 2021; Perrier
et al. 2018], we can use a profile based approach to generate LDS
samplers with adjustable or with scriptable properties (e.g. blue-
noise properties, stratification on some projections. . . ) [L’Ecuyer
and Munger 2016; Paulin et al. 2022]. Mixing point process proper-
ties can also be achieved by interpolating their high order statistics
such as their pair-correlation functions [Öztireli and Gross 2012].
Focusing on spectral properties, [Leimkühler et al. 2019] have pro-
posed a neural network approach to target specific profiles defined
as combinations of radial power spectra.

Point sets through deep learning. Perhaps the closest to our work
is that of [Leimkühler et al. 2019]. They learn arbitrary dimensional
point sets by matching power spectra. There is a number of im-
portant differences with respect to our work. First, they require a
power spectrum as input while we require examples from a given
sampler. This allows us to capture all characteristics of samplers
and not just spectra. Second, our network is able to produce point
sets of significantly different sizes without re-training. Third, we
propose a way to benefit from efficient convolutions on grids. While
this restricts us to low-dimensional settings (we demonstrate our
approach in two dimensions), this allows us to use thousands of
convolution layers at different scales and to benefit from recent
advances in diffusion models. These differences allow us to finely
capture the structure of point sets (see Sec. 4.1).

In the context of Monte Carlo integration, deep learning has been
used to learn a control variate [Müller et al. 2020], though this does

not directly address the location of point samples. Deep learning
has also been used for importance sampling [Müller et al. 2019].

Probabilistic Denoising Diffusion. Our method is based on Proba-
bilistic Denoising Diffusion, a concept introduced by [Sohl-Dickstein
et al. 2015] in the context of unsupervised learning. The core idea
of Denoising diffusion is to gradually remove any structure in the
image by progressively adding noise and to train a neural network
to invert the degradation process. This allows to capture the data
distribution and sample from it. This idea has been extensively used
for image synthesis [Ho et al. 2020] with impressive results, either
by working directly in pixel space or in the latent space [Rombach
et al. 2022]. In this paper, we propose to exploit the capacity of these
networks to learn structure from a set of examples to learn point
distributions.

3 DENOISING DIFFUSION MODEL

3.1 Architecture
The denoising process involves a sequence of denoising operations
which operate at given timesteps. Each denoising is achieved by a
forward pass in a single denoising network 𝜀𝜃 , which takes as input
both the noisy image 𝑥𝑡 and the embedded timestep 𝑡 .
Our network architecture is very similar to the one of [Ho et al.

2020]. It corresponds to a U-Net [Ronneberger et al. 2015], where
each level is composed of two convolutional residual blocks (ResNet)
and the feature maps are downsampled by a factor 2 between each
level. While the original architecture only included attention blocks
between the two convolutional blocks of the 16 × 16 level, we add
attention to all levels, which we found to work better in practice.
Unless specified otherwise, we used 1000 diffusion time steps. The
overall architecture design is detailed in supplementary material.

The network learns a time-dependent noise model 𝜀𝜃 (𝑥𝑡 , 𝑡) given
a noise 𝜀𝑡 added to the input data, 𝑥𝑡 = 𝑥𝑡 + 𝜀𝑡 at each time step 𝑡 .
In our setting, 𝑥0 is the offset between strata centers and the input
point set as obtained in Sec 3.2. The network thus predicts noise,
that can then be progressively removed from a white noise point
set to denoise it according to the learned data distribution.

3.2 Convolutions on grids
While computing the required convolutions used in the diffusion
model is possible on unstructured point sets [Groh et al. 2019; Hua
et al. 2018; Simonovsky and Komodakis 2017], this comes at a pro-
hibitive cost in our context, due to the large number of convolutions
involved. Fortunately, our point sets are not arbitrary but may uni-
formly cover the unit square. In certain cases, they can be stratified,
i.e., each stratum of size 1√

𝑛
× 1√

𝑛
contains a single sample. This is

notably the case for the large class of (0,𝑚, 𝑠)-nets samplers [Nieder-
reiter 1992]. In that case, we use a pixel grid of

√
𝑛 ×

√
𝑛 pixels, and

store in each pixel the 2-d offset between the stratum center and its
corresponding sample location. When this is not the case, we com-
pute a linear assignment using optimal transport between the strata
centers and the set of samples (Fig. 1) [Bonneel et al. 2011], and sim-
ilarly store in each pixel the 2-d offset between the stratum center
and its corresponding sample location. Doing so allows to work on
2-d grids and benefit from optimized convolutions. In our settings,
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the grid acts as an approximate nearest neighbor acceleration data
structure, such that, when a convolution is performed, neighbor-
ing samples approximately correspond to neighboring pixels, and
are thus appropriately weighted. We evaluate this property with
non-uniform sampling in Sec. 4.2. This remapping further allows to
remain invariant under re-ordering of samples.
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Fig. 1. When input point sets are not stratified, we compute a linear assign-
ment problem between strata centers (red) and sample points (blue) using
optimal transport. Each stratum stores its assigned point offset (green ar-
rows). The grid thus serves as an approximate nearest neighbor acceleration
data structure and benefits from efficient convolutions.

3.3 Training
The benefit of a convolutional approach is that the same convolution
weights can be used for different grid sizes. It thus becomes possible
to train the same network with point sets of different sizes, and
hope that it generalizes. We explore in Sec. 4.1 how it succeeds
in generalizing. However, within a single batch, the sample count
should remain the same, due to the way batches are processed. For
a given batch of size 𝐵, we thus build a loss that sums contributions
for different input grid sizes S stored in different batches:

L(𝜖𝜃 , 𝜖𝑡 ) =
∑︁
𝑗 ∈S

1
𝐵

𝐵∑︁
𝑖=1

∥𝜖𝜃 (𝑥𝑡𝑖 , 𝑡𝑖 ) − 𝜖𝑡𝑖 ∥2 ,

for randomly chosen {𝑡𝑖 }.We typically useS = {8×8, 16×16, 32×32},
hence learning from sample sizes {64, 256, 1024}. We obtain one
trained network, of the same architecture but different training
weights, per type of sampler, each able to produce point sets of
different sample sizes.
We train networks to reproduce Sobol’ samples with Owen’s

scrambling [Owen 1998; Sobol’ 1967] as a representative LDSmatrix-
based sampler, LatNetBuilder samples as a representative LDS lattice-
based sampler, a Poisson disk sampler (classical dart throwing ap-
proach), SOT [Paulin et al. 2020] as a representative blue noise
sampler using optimal transport, GBN [Ahmed et al. 2022] as a
representative kernel-based blue noise sampler, LDBN [Ahmed et al.
2016] as a sampler that combines low discrepancy properties and
blue noise spectrum, and Rank-1 [Keller 2004] as a representative
of lattice based sampler. We train all our models using 64k point
sets, except for the SOT sampler trained with only 32 (not 32k) point

sets to assess robustness to small training datasets. We train for a
constant time of 3 hours, and synthesis time is typically 35 minutes
for 1000 point sets of 1024 samples each using 1000 diffusion steps.

4 VALIDATION AND APPLICATIONS

4.1 Properties of generated samples
We study power spectra, optimal transport energy, discrepancy,
integration errors and minimum distance statistics of generated
point sets, and verify that they match properties they were trained
for. We also verify how our network generalizes as we increase
the number of samples outside the range it was trained for. For
these comparisons, we compare to the approach of [Leimkühler
et al. 2019]. For stationary and isotropic point processes or samplers
targeting such properties, we have used their publicly available
implementation with a 1d radial mean power spectrum loss (same
learning parameters as the one provided by the authors for simi-
lar experiments). For non-stationary or anisotropic samplers (e.g.
Sobol’+Owen and Rank1), we had to design our own learning ex-
periment following their examples in 1d, with losses defined as 𝑙1
norm between 2d power spectra (cropped to the central frequency
part). We observe that such training turns out to be very difficult
in 2d and leads to non-competitive results. In Fig 2, we only show
results for Sobol’+Owen in 2d and leave the discussion for Rank-1
in supplementary materials.
While we trained our network on small set of sample sizes

({64, 256, 1024}), we assess the performance of these metrics for
other sample sizes ({576, 4096}). For most of these properties, we
illustrate them with violin plots (Fig. 3, 4, 5, 6), that show the distri-
bution of values in the form of vertical histograms (e.g., similar to a
population pyramid). We compute them using 128 point sets.

Power spectra. In Fig. 2, we first show performances of [Leimküh-
ler et al. 2019] and our approach to recover spectral properties of
the training sets (either through 1d radial mean power spectra for
stationay and isotropic point sets, or 2d spectra for other ones). As
discussed above, capturing anisotropic spectra with [Leimkühler
et al. 2019] is very challenging using a 2d spectra loss function. Our
approach fully captures such characteristics.

Optimal transport energy. Optimal transport (OT) provides a way
to characterize the uniformity of a point set by computing the
(squared) semi-discrete optimal transport distance between the point
set and a uniform distribution [Mérigot 2011]. Fig. 3 illustrates how
we match the OT energy.

Discrepancy and integration error. Fig. 4 and 5 show how our net-
work matches integration errors and discrepancy of point sets. For
discrepancy, we used the L2 discrepancy [Heinrich 1996; Nieder-
reiter 1992]. For integration error, we compute the average MSE
on the integration of wide anisotropic Gaussians (anisotropic ratio
between 1:1 and 1:9, and Gaussian sizes ranging from 0.1 to 0.333
for its largest axis) or Heaviside distributions randomly linearly di-
viding the unit square. We randomly chose 64k integrands among 1
million, whose integral has been estimated with maximum precision
as reference. These statistics also often match for sample sizes not
seen during training ({576, 4096}).
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Fig. 2. For various input samplers and their spectral content (Fourier power spectrum and radial mean power spectrum), we compare our approach (last three
rows) with that of [Leimkühler et al. 2019] (1d radial mean power spectrum loss for Poisson disk, GBN, SOT and LDBN; for Sobol’+Owen and Rank-1, we used
the 2d power spetrum cropped to the central part, framed in orange, for the learning to converge).
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Fig. 3. We verify that the point sets predicted by our network match the
semi-discrete optimal transport distance to a uniform distribution of the
original point sets. These plots show these statistics distributions for 128
point sets from the training set and produced by our network, for sample
counts of 64, 256, 576, 1024 and 4096 (top to bottom). The network has
only been trained with point sets of 64, 256 and 1024 samples, but success-
fully predicts point sets of 576 and 4096 samples (results highlighted in
an orange frame). Labels prefixed by DC refer to Deep Point Correlation
results [Leimkühler et al. 2019] (on 1d radial power spectral, unless 2d is
specified), while NN refers to results produced by our Neural Network.

Minimum distance. For distributions such as Poisson Disk, the
minimum distance between any pair of samples can be important.
We assess this statistics in Fig. 6. This property is highly sensitive as
it only depends on the location of 2 points within the entire point set.
For this property, the approach of [Leimkühler et al. 2019] performs
remarkably well, due to the repulsion of points introduced during
learning. In our approach, we tend to produce points with lower
minimum distance value.

4.2 Non-uniform distributions
The goal of our optimal transport matching to a uniform grid is to
infer neighborhood information on the point sets from neighbor-
hood information on the grid, that is, neighboring points on the grid
are expected to correspond to neighboring samples. In Fig. 7, using
a non-uniform linear ramp sliced optimal transport sampling, we
show that, even for non-uniform sampling, our network successfully
learns from examples and preserve spectral noise characteristics
of the sampler. As a stress test, we also learn to sample a blobby
function shown in Fig. 8. In this example, we learn from importance
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Fig. 4. Our network matches integration errors on Gaussian integrands
(top 4 plots) and Heaviside integrands (bottom 4 plots), even beyond the
sample sizes it was trained for ({64, 256, 1024}). Sample counts are 64, 256,
576, 1024 and 4096 (top to bottom for each integrand).

sampled GBN point sets obtained by rejection sampling. Our net-
work reproduces the sampling density well, and mostly preserves
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Fig. 5. Our network matches the L2 discrepancy of the original point sets.
Sample counts are 64, 256, 576, 1024 and 4096 (top to bottom).

important characteristics of the GBN sampler despite inaccuracies in
neighborhood information due to the grid embedding. Non-uniform
sampling is not possible with the approach of [Leimkühler et al.
2019].

4.3 Applications
Aside from the fast generation of point sets, we also benefit from
the differentiability of our network to further optimize point sets
within their class.

We illustrate how the differentiability of our network can be used
to add properties to generated point sets. Here, we wish to add low
discrepancy properties to a sliced optimal transport sampler [Paulin
et al. 2020], to benefit from both low discrepancy and low optimal
transport energy. We train the network on SOT and then fix the
trained weights of the network. Then we optimize the initial white
noise samples with an objective function aimed at minimizing the
L2 discrepancy measure. As backpropagation requires significant
memory overhead, we reduce the number of diffusion steps to 100
(instead of 1000) in the diffusion model. In Fig. 9, we illustrate the
result of our optimization in terms of discrepancy and optimal trans-
port energy, and illustrate with an example generated point set.

5 DISCUSSIONS & PERSPECTIVES
We showed that diffusion models provide a powerful tool for learn-
ing how to generate point sets directly from examples across a wide
range of samplers and they generalize well with sample size. Gen-
eralization hints at the fact that the network is correctly learning
the general principles that make each point set so particular. An
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Fig. 6. We evaluate the minimum pairwise distance between samples. This
property is highly sensitive as it only depends on the location of 2 samples.
Our network tends to produce smaller values, while the sample repulsion of
[Leimkühler et al. 2019] better preserve minimum distances. Sample counts
are 64, 256, 576, 1024 and 4096 (top to bottom).

interesting future work would involve conditioning the network
with respect to the particular sampler, sampler type or more general
desired properties. This would allow for a single trained network
to produce point sets of types. Preliminary experiments showed
subpar results, but more complex architectures could alleviate this
issue. The capacity of our network to produce possibly non-uniform
example-based point sets may open the door to syntheses where
sampling data are only available through a small number of mea-
surements (e.g., distribution of trees, cells, etc.) and optimizing only
for summarized statistics (power spectrum or PCF) is not desired.
This is a promising direction as we have successfully trained our
network with 32 examples of the SOT sampler.

While in principle ourmethodwouldwork in arbitrary dimension,
the efficiency gained through our convolutions on grids would
be lost as storing higher dimensional grids becomes impractical,
both in terms of storage (that exponentially grows with dimension)
and supported sample size (in the form 𝑘𝑑 for some 𝑘 , similarly
to stratified samplers). To date, higher dimensional data would be
better supported by the approach of [Leimkühler et al. 2019] that
does not rely on grids. To remove this grid-dependency in the Monte
Carlo sampling, one could adapt recent diffusionmodels for 3D point
cloud shape synthesis [Luo and Hu 2021; Zeng et al. 2022]. While
our network is reasonably efficient, other recent architectures have
been proposed to accelerate diffusion models and could be explored
as well [Song et al. 2020].
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Fig. 7. We sample from a learned sliced OT linear ramp. Top row, left.
One example point set used for training (among 66,035). Top row, right.
One synthesized point set. Bottom row. Unwarping example and synthe-
sized point sets to recover a uniform distribution shows that their spectra
match. The uniformity of the unwarped samples can also be measured:
the semi-discrete optimal transport energy averaged for 128 realizations
of 256 samples is 7.24.10−4 for the neural network output, compared with
7.16.10−4 for the original sliced OT uniform samples.

. . .

. . .

Fig. 8. As a stress test, we sample from the density 0.2𝑒−20(𝑥2+𝑦2 ) +
0.2 sin(𝜋𝑥)2 sin(𝜋𝑦)2 by importance sampling using GBN as a training
set (first row). Our sampler reproduces the density well and mostly pre-
serves important characteristics of the sampler (second row).

However, in the settings we focus on, in most cases our samples
preserve characteristics of major samplers well, including their
power spectrum, Monte Carlo integration quality, distance sta-
tistics, optimal transport energy and discrepancy. Our diffusion-
based sampler allows to generate point sets much faster than some
optimization-based samplers by learning from their output. Aside
for the fast generation of diverse point sets, we have shown use for
our network’s differentiability by adding a low discrepancy prop-
erty to an optimal transport-based sampler. Rendering applications
could benefit from our samplers, e.g., through differentiable render-
ing pipelines [Jakob et al. 2022a] or for generating point sets nicely
distributing Monte Carlo error in a blue noise fashion in screen
space [Salaün et al. 2022].

3 × 10 3 4 × 10 3 5 × 10 3
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8 × 10 4

9 × 10 4
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 E
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rg
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Owen
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After Optim.
Before Optim

Fig. 9. We used a trained SOT sampling network to optimize the discrep-
ancy of the generated point sets among the class of SOT point sets. For
128 SOT (blue) and some Sobol’+Owen (red) point sets as representative
of blue noise and LDS samplers, we show their distribution of OT and dis-
crepancy statistics. In orange, we illustrate the SOT and discrepancy value
for 10 optimized point sets as well as a representative trajectory during the
optimization process. We also show a representative point set before (right)
and after (left) optimization.
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Supplementary document
1 DIFFUSION MODEL
Diffusion models date back to the work of Sohl-Dickstein et al.
[2015] but were popularized by Ho et al. [2020] for image synthesis.
This section recalls the details for completeness.

Probabilistic Denoising Diffusion models involve a forward pro-
cess, where noise is gradually added to the signal (here an image)
and a reverse process where noise is removed through a learnable
network. The forward diffusion process is a Markov Chain, where
each transition adds Gaussian Noise to the image, following:

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼 ) , (1)

where (𝛽𝑡 )𝑇𝑡=0 are the noise variances for each time 𝑡 . The variance
schedule is chosen such that nothing distinguishes 𝑥𝑇 from a white
noise. In our model, we set the variances 𝛽𝑡 to be constant 𝛽𝑡 = 𝛽

One has:
𝑞𝑥1:𝑇 |𝑥0 =

∏
𝑡=1· · ·𝑇

𝑞(𝑥𝑡 |𝑥𝑡−1) . (2)

The reverse (denoising) process is also a Markov Chain, with
transitions:

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)) , (3)

𝜇𝜃 and Σ𝜃 are learned by examples. To simplify, following the work
of Ho et al. [2020], we consider that Σ𝜃 = 𝜎𝑡 𝐼 , with 𝜎𝑡 = 𝛽𝑡 = 𝛽 .
The forward process allows to sample 𝑥𝑡 with arbitrary 𝑡 from 𝑥0,
following:

𝑞(𝑥𝑡 |𝑥0) = N(𝑥𝑡 ;
√
𝛼𝑡𝑥0, (1 − 𝛼𝑡 )𝐼 ) , (4)

with 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 =
∏𝑡

𝑠=1 𝛼𝑠 .
During training, and image 𝑥0 is drawn from the set of examples,

along with a random time 𝑡 ∈ 1 · · ·𝑇 , a random noise image 𝜀 is
drawn following N(0, 𝐼 ) and the algorithm tries to minimize:

∥𝜀 − 𝜀𝜃 (
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜀, 𝑡)∥2 , (5)

by gradient descent.
During sampling a random noise image 𝑧 ∼ N(0, 𝐼 ) is drawn and

iteratively denoised by applying:

𝑥𝑡−1 =
1

√
𝛼𝑡

(𝑥𝑡 −
1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜀𝜃 (𝑥𝑡 , 𝑡)) + 𝜎𝑡𝑧 , (6)

where 𝑧 is a random noise and in our case, we take 𝜎𝑡 = 𝛽𝑡 The
key ingredient of diffusion models is the approximator 𝜀𝜃 , which is
modeled by a neural network.

2 NETWORK
Our network is a slightly modified version of the denoising network
of Ho et al. [2020] and is summarized on Figure 10.

3 LEARNING RANK-1 REALIZATIONS WITH [Leimkühler
et al. 2019]

Leimkühler et al. [2019] proposed a neural network based point
process design using losses defined from spectral or pair-correlation
information. In most examples provided by the authors, 1d losses (or
combination of 1d losses) are considered using 1d radial mean power
spectra or 1d pair correlation functions (allowing complex designs
such as a high-dimensional point process with some specific spectral
properties for given 1d or 2d projections). When targeting isotropic
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Fig. 10. Diffusion network architecture
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Fig. 11. Learning Rank-1 realizations using [Leimkühler et al. 2019] using a
2d power spectra loss, and a 1d power spectra loss. We recall the original
properties and our results for completeness.

samplers, the authors provided their experimental settings in https:
//github.com/sinbag/deepsampling. We use the same parameters
for Poisson disk, GBN, SOT, LDBN, targeting their respective radial
power spectra. For Sobol’+Owen, we keep the same settings but
updated the loss function to target a 2d power spectrum. Cropping
the spectra to the central part of the domain allowed us to obtain a
convergence of the learning step (in our experiments, increasing the
cropping domain does not help the convergence). For Rank-1, no
satisfactory results have been obtained, for the sake of completeness,
we illustrate in Fig.11 the point set and spectra we have obtained.
Note that Rank-1 is a very specific anisotropic sampler which is far
from the context of [Leimkühler et al. 2019]. Although, additional
investigation would be interesting to continue.

https://github.com/sinbag/deepsampling
https://github.com/sinbag/deepsampling
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