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ABSTRACT
We propose Neural Gradient Learning (NGL), a deep learning ap-
proach to learn gradient vectors with consistent orientation from
3D point clouds for normal estimation. It has excellent gradient
approximation properties for the underlying geometry of the data.
We utilize a simple neural network to parameterize the objective
function to produce gradients at points using a global implicit rep-
resentation. However, the derived gradients usually drift away from
the ground-truth oriented normals due to the lack of local detail
descriptions. Therefore, we introduce Gradient Vector Optimiza-
tion (GVO) to learn an angular distance field based on local plane
geometry to refine the coarse gradient vectors. Finally, we formu-
late our method with a two-phase pipeline of coarse estimation
followed by refinement. Moreover, we integrate two weighting
functions, i.e., anisotropic kernel and inlier score, into the optimiza-
tion to improve the robust and detail-preserving performance. Our
method efficiently conducts global gradient approximation while
achieving better accuracy and generalization ability of local feature
description. This leads to a state-of-the-art normal estimator that
is robust to noise, outliers and point density variations. Extensive
evaluations show that our method outperforms previous works in
both unoriented and oriented normal estimation on widely used
benchmarks. The source code and pre-trained models are available
at https://github.com/LeoQLi/NGLO.

CCS CONCEPTS
• Computing methodologies → Point-based models; Mesh
models; Reconstruction.
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1 INTRODUCTION
Normal estimation is a fundamental task in computer vision and
computer graphics. Oriented normal with consistent orientation
is a prerequisite for many downstream tasks, such as graphics
rendering [Blinn 1978; Gouraud 1971; Phong 1975] and surface
reconstruction [Kazhdan 2005; Kazhdan et al. 2006; Kazhdan and
Hoppe 2013]. Due to noise levels, uneven sampling densities, and
various complex geometries, estimating oriented normals from
3D point clouds still remains challenging. As shown in Fig. 1, the
paradigm of oriented normal estimation usually includes: unori-
ented normal estimation that provides vectors perpendicular to
the surfaces defined by local neighborhoods; normal orientation
that aligns the directions of adjacent vectors for global consistency.
Over the past few years, many excellent algorithms [Ben-Shabat
and Gould 2020; Lenssen et al. 2020; Li et al. 2022b,a, 2023b; Zhu
et al. 2021] have been proposed for unoriented normal estimation.
However, their estimated normals are randomly oriented on both
sides of the surface and cannot be directly used in downstream
applications without normal orientation. Most normal orientation
approaches are based on a propagation strategy [Hoppe et al. 1992;
Jakob et al. 2019; König and Gumhold 2009; Metzer et al. 2021;
Schertler et al. 2017; Xu et al. 2018]. These methods are mainly
based on the assumption of smooth and clean points, and carefully
tune data-specific parameters, such as the neighborhood size of
the propagation. Moreover, the issue of error propagation in the
orientation process may let errors in local areas overflow into the
subsequent steps.

The two-stage architecture of existing oriented normal estima-
tion paradigms needs to combine two independent algorithms, and
requires a lot of work to tune the parameters of the two algorithms.

https://github.com/LeoQLi/NGLO
https://doi.org/10.1145/3610548.3618253
https://doi.org/10.1145/3610548.3618253
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3610548.3618253&domain=pdf&date_stamp=2023-12-11
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Figure 1: For oriented normal estimation, previous methods
usually conduct a two-stage pipeline, i.e., (1) unoriented nor-
mal estimation and (2) normal orientation, while ourmethod
achieves this through Neural Gradient Learning (NGL) and
Gradient Vector Optimization (GVO). We introduce effective
novel designs into our method that enable it to improve the
SOTA results.

More importantly, the stability and effectiveness of the integrated
algorithm cannot be guaranteed. In our experiments, we evaluate
the combinations of different algorithms for unoriented normal es-
timation and normal orientation. A key observation is that, for the
same normal orientation algorithm, integrating a better unoriented
normal estimation algorithm does not lead to better orientation
results. That is, using higher precision unoriented normals does
not necessarily result in more accurate oriented normals using
existing propagation strategies. In Fig. 2, we use a simple exam-
ple to illustrate that judging whether to invert the direction of
neighborhood normals based on a propagation rule will lead to
unreasonable results. The propagation strategy is affected by the
direction distribution of the unoriented normal vectors. Therefore,
it is necessary to design a complete and unified pipeline for oriented
normal estimation.

In a data-driven manner, the workflow of our proposed method
is an inversion of the traditional pipeline (see Fig. 1). We start by
solving normals with consistent orientation but possibly moderate
accuracy, and then we further refine the normals. We introduce
Neural Gradient Learning (NGL) and Gradient Vector Optimization
(GVO), defined by a family of loss functions that can be used with
point cloud data with noise, outliers and point density variations,
and efficiently produce high accurate oriented normals for each
point. Specifically, the NGL learns gradient vectors from global
geometry representation, while the GVO optimizes vectors based
on an insight into the local property. A series of qualitative and
quantitative evaluation experiments are conducted to demonstrate
the effectiveness of the proposed method.

To summarize, our main contributions include:
• A technique of neural gradient learning, which can derive gradi-
ent vectors with consistent orientations from implicit represen-
tations of point cloud data.

• A gradient vector optimization strategy, which learns an angular
distance field based on local geometry to further optimize the
gradient vectors.

Figure 2: Different cases of flipping (or not) vector 𝒏2 based
on vector 𝒏1. Given a reference vector 𝒏1, we propagate its
orientation to vector 𝒏2. The classic criteria is that we flip
the sign of 𝒏2 if 𝒏1·𝒏2 <0. We can observe that there are many
wrong cases according to this naive rule. The blue semicircle
denotes the angle range, and any vector 𝒏𝑖 within it satisfies
𝒏1 · 𝒏𝑖 >0. The surface is shown as a gray line and its ground-
truth normal as a red arrow. We let two normal vectors be
on the same point for better illustration. We only change 𝒏2
in each row and 𝒏1 in each column.

• We report the state-of-the-art performance for both unoriented
and oriented normal estimation on point clouds with noise, den-
sity variations and complex geometries.

2 RELATEDWORK
2.1 Unoriented Normal Estimation
The most widely used unoriented normal estimation method for
point clouds is Principle Component Analysis (PCA) [Hoppe et al.
1992]. Later, PCA variants [Alexa et al. 2001; Huang et al. 2009;
Lange and Polthier 2005; Mitra and Nguyen 2003; Pauly et al. 2002],
Voronoi-based paradigms [Alliez et al. 2007; Amenta and Bern 1999;
Dey and Goswami 2006; Mérigot et al. 2010], and methods based
on complex surfaces [Aroudj et al. 2017; Cazals and Pouget 2005;
Guennebaud and Gross 2007; Levin 1998; Öztireli et al. 2009] have
been proposed to improve the performance. These traditional meth-
ods [Cazals and Pouget 2005; Hoppe et al. 1992] are usually based on
geometric prior of point cloud data itself, and require complex pre-
processing and parameter fine-tuning according to different types
of data. Recently, some studies proposed to use neural networks to
directly or indirectly map high-dimensional features of point clouds
into 3D normal vectors. For example, the regression-based methods
directly estimate normals from structured data [Boulch and Mar-
let 2016; Lu et al. 2020; Roveri et al. 2018] or unstructured point
clouds [Ben-Shabat et al. 2019; Guerrero et al. 2018; Hashimoto and
Saito 2019; Li et al. 2022a, 2023b; Zhou et al. 2020a, 2022, 2020b]. In
contrast, the surface fitting-based methods first employ a neural
network to predict point weights, then they derive normal vectors
through weighted plane fitting [Cao et al. 2021; Lenssen et al. 2020]
or polynomial surface fitting [Ben-Shabat and Gould 2020; Li et al.
2022b; Zhang et al. 2022; Zhou et al. 2023; Zhu et al. 2021] on local
neighborhoods. In our experiments, we observe that regression-
based methods train models more stably and perform optimization
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more efficiently without coupling the fitting step used in fitting-
based methods. In contrast, our method finds the optimal point
normal through a classification strategy.

2.2 Consistent Normal Orientation
The normals estimated by the above methods do not preserve a
consistent orientation since they only look for lines perpendicular
to the surface. Based on local consistency strategy, the pioneer-
ing work [Hoppe et al. 1992] and its improved methods [Jakob
et al. 2019; Schertler et al. 2017; Seversky et al. 2011; Wang et al.
2012; Xu et al. 2018] propagate seed point’s normal orientation
to its adjacent points via a Minimum Spanning Tree (MST). More
recent work [Metzer et al. 2021] introduces a dipole propagation
strategy across the partitioned patches to achieve global consis-
tency. However, these methods are limited by error propagation
during the orientation process. Some other methods show that
normal orientation can benefit from reconstructing surfaces from
unoriented points. They usually adopt different volumetric rep-
resentation techniques, such as signed distance functions [Mello
et al. 2003; Mullen et al. 2010], variational formulations [Alliez et al.
2007; Huang et al. 2019; Walder et al. 2005], visibility [Chen et al.
2010; Katz et al. 2007], isovalue constraints [Xiao et al. 2023], active
contours [Xie et al. 2004] and winding-number field [Xu et al. 2023].
The correctly-oriented normals can be achieved from their solved
representations, but their normals are not accurate in the vertical
direction. Furthermore, a few approaches [Guerrero et al. 2018;
Hashimoto and Saito 2019; Li et al. 2023a; Wang et al. 2022] focus
on using neural networks to directly learn a general mapping from
point clouds to oriented normals. Different from the above methods,
we solve the oriented normal estimation by first determining the
global orientation and then improving its direction accuracy based
on local geometry.

3 PRELIMINARY
In general, the gradient of a real-valued function 𝑓 (𝑥,𝑦, 𝑧) in a 3D
Cartesian coordinate system (also called gradient field) is given by
a vector whose components are the first partial derivatives of 𝑓 , i.e.,
∇𝑓 (𝑥,𝑦, 𝑧)= 𝑓𝑥 𝒊 + 𝑓𝑦𝒋 + 𝑓𝑧𝒌 , where 𝒊, 𝒋 and 𝒌 are the standard unit
vectors in the directions of the 𝑥,𝑦 and 𝑧 coordinates, respectively.
If the function 𝑓 is differentiable at a point 𝒑 and suppose that
∇𝑓 (𝒑)≠0, then there are two important properties of the gradient
field: (1) The maximum value of the directional derivative, i.e.,
the maximum rate of change of the function 𝑓 , is defined by the
magnitude of the gradient ∥∇𝑓 ∥ and occurs in the direction given
by ∇𝑓 . (2) The gradient vector ∇𝑓 is perpendicular to the level
surface 𝑓 (𝒑)=0.

Recently, deep neural networks have been used to reconstruct
surfaces from point cloud data by learning implicit functions. These
approaches represent a surface as the zero level-set of an implicit
function 𝑓 , i.e.,

S =
{
𝒙 ∈ R3 | 𝑓 (𝒙 ;𝜽 ) = 0

}
, (1)

where 𝑓 : R3 →R is a neural network with parameter 𝜽 , such as
multi-layer perceptron (MLP). Implicit function learning methods
adopt either signed distance function [Park et al. 2019] or binary
occupancy [Mescheder et al. 2019] as the shape representation.

(a) (c) (d) (e) (f)

Gradient Vector Output Normal Target Normal

P

(b)

Vector Samples Distance Field

Figure 3: (a-c): The neural gradient learning function 𝑓 takes
a point cloud 𝑷 as input and derives point-wise gradient ∇𝑓
within the network based on neighboring regions of the sur-
face. (d-f): The gradient vector optimization function𝑔 selects
the optimal vector sample according to angular distance as
the normal 𝒏.

If the function 𝑓 is continuous and differentiable, the formula
of normal vector (perpendicular to the surface) at a point 𝒑 is
𝒏𝒑 =∇𝑓 (𝒑)/∥∇𝑓 (𝒑)∥, where ∥·∥ means vector norm. Using neural
networks as implicit representations of surfaces can benefit from
their adaptability and approximation capability [Atzmon et al. 2019].
Meanwhile, we can obtain the gradient ∇𝑓 in the back-propagation
process of training 𝑓 .

4 METHOD
As shown in Fig. 3, our method consists of two parts: (1) the neu-
ral gradient learning (𝑷 → 𝑓 → ∇𝑓 ) to estimate inaccurate but
correctly-oriented gradients, and (2) the gradient vector optimiza-
tion (∇𝑓 →𝑔→𝒏) to refine the coarse gradients to obtain accurate
normals, which will be introduced in the following sections.

4.1 Neural Gradient Learning
Consider a point set 𝑿 = {𝒙𝑖 }𝑀1

𝑖=1 that is sampled from raw point
cloud 𝑷 (possibly distorted) through certain probability distribution
D, we explore training a neural network 𝑓 with parameter 𝜽 to
derive the gradient during the optimization. First, we introduce a
loss function defined by the form of

L(𝜽 ) = E𝒙∼D T
(
𝐹 (𝒙 ;𝜽 ), F𝑿 (𝒙)

)
, (2)

where T : R×R→ R is a differentiable similarity function. 𝐹 (𝒙 ;𝜽 )
is the learning objective to be optimized and F𝑿 (𝒙) is the distance
measure with respect to 𝑿 . In this work, our insight is that incorpo-
rating neural gradients in a manner similar to [Atzmon and Lipman
2020, 2021] can learn neural gradient fields with consistent orienta-
tions from various point clouds. To this end, we add the derivative
data of 𝑓 , i.e.,

𝐹 (𝒙 ;𝜽 ) = 𝑓 (𝒙 ;𝜽 ) · 𝒗 , (3)
where 𝒗 = ∇𝑓 (𝒙;𝜽 )/∥∇𝑓 (𝒙 ;𝜽 )∥ is the normalized neural gradi-
ent. Eq. (3) incorporates an implicit representation and a gradient
approximation with respect to the underlying geometry of 𝑿 .

We first show a special case of Eq. (2), which is given by

L(𝜽 ) = E𝒙∼D T
(
𝒙 − 𝑓 (𝒙 ;𝜽 ) · 𝒗, 𝒑

)
. (4)

Such definition of training objective has been used by surface re-
construction methods [Chibane et al. 2020; Ma et al. 2021] to learn
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signed or unsigned distance functions from noise-free data. Recall
that the gradient will be the direction in which the distance value
increases the fastest. These methods exploit this property to move
a query position 𝒙 by distance 𝑓 (𝒙;𝜽 ) along or against the gra-
dient direction 𝒗 to its closest point 𝒑 sampled on the manifold.
Specifically, 𝑓 (𝒙;𝜽 ) is interpreted as a signed distance [Ma et al.
2021] or unsigned distance [Chibane et al. 2020]. This way they can
learn reasonable signed/unsigned distance functions from the input
noise-free point clouds. In contrast, we are not looking to learn an
accurate distance field to approximate the underlying surface, but
to learn a neural gradient field with a consistent orientation from a
variety of data, even in the presence of noise.

Next, we will extend Eq. (2) to a more general case for neural
gradient learning. Given a point 𝒙 , instead of using the unsigned
distance in [Atzmon and Lipman 2020] or its nearest sampling
point [Chibane et al. 2020; Ma et al. 2021], we consider the mean
vector of its neighborhood, that is

F𝑿 (𝒙) = 1
𝑘

𝑘∑︁
𝑖=1

(
𝒙 − N𝑘

𝑖 (𝒙, 𝑷 )
)
, 𝒙 ∈ 𝑿 , (5)

where N𝑘
𝑖
(𝒙, 𝑷 ) denotes the 𝑘 nearest points of 𝒙 in 𝑷 . Intuitively,

F𝑿 (𝒙) ∈ R3 is a vector from the averaged point position 𝒙 =∑𝑘
𝑖=1 N𝑘

𝑖
(𝒙, 𝑷 )/𝑘 to 𝒙 .

For the similarity measure T of vector-valued functions, we
adopt the standard Euclidean distance. Then, the loss in Eq. (2) for
Neural Gradient Learning (NGL) has the format

L(𝜽 ) =
𝑓 (𝒙 ;𝜽 ) · 𝒗 − 1

𝑘

𝑘∑︁
𝑖=1

(
𝒙 − N𝑘

𝑖 (𝒙, 𝑷 )
) . (6)

As illustrated in Fig. 3(b), ourmethod not onlymatches the predicted
gradient on the position of 𝒙 , but also matches the gradient on the
neighboring regions of 𝒙 . This is important because our input point
cloud is noisy and individual points may not lie on the underlying
surface. Finally, the training loss is an aggregation of the objective
for each neural gradient learning function L(𝜽 ) |𝒙𝑖 of 𝒙𝑖 , i.e.,

LNGL =
1
𝑀1

𝑀1∑︁
𝑖=1

L(𝜽 ) |𝒙𝑖 , 𝒙𝑖 ∈ 𝑿 . (7)

For the distribution D, we make it concentrate in the neighbor-
hood of 𝒙 in 3D space. Specifically, D is set by uniform sampling
points 𝒙 from 𝑷 and placing an isotropic Gaussian 𝑁 (𝒙, 𝜎2) for
each 𝒙 . The distribution parameter 𝜎 depends on each point 𝒙 and
is adaptively set to the distance from the 50th nearest point to
𝒙 [Atzmon and Lipman 2020, 2021].

Our network architecture for neural gradient learning is based
on the one used in [Atzmon and Lipman 2020; Ma et al. 2021], which
is composed of eight linear layers with ReLU activation functions
(except the last layer) and a skip connection. After training, the
network can derive pointwise gradients from the raw data 𝑷 (see
2D examples in Fig. 4).

Extension. If we assume the raw data 𝑷 is noise-free, that is, the
neighborsN𝑘 (𝒙, 𝑷 ) are located on the surface, then the formula of

Clean Low Medium High

Figure 4: Our method can estimate gradient vectors (green
rays) from point clouds (black dots) with different noise lev-
els.

Eq. (6) can take another form

L(𝜽 ) =
(𝑓 (𝒙 ;𝜽 ) · 𝒗 − 𝒙

)
+ 1
𝑘

𝑘∑︁
𝑖=1

N𝑘
𝑖 (𝒙, 𝑷 )

 . (8)

More particularly, if we set 𝑘 =1 and the nearest point of 𝒙 in 𝑷 be
𝒑, i.e., N𝑘=1 (𝒙, 𝑷 ) =𝒑, then the above formula is turned into the
special case in Eq. (4). Specifically, the derived formula in Eq. (8)
also distinguishes our method from the methods [Atzmon and
Lipman 2020, 2021; Chibane et al. 2020; Ma et al. 2021], since their
objectives only consider the location of each clean point, while our
proposed objective covers the neighborhood of each noisy point to
approximate the surface gradients.

4.2 Gradient Vector Optimization
A notable shortcoming of neural gradient learning is that the de-
rived gradient vectors are inaccurate because the implicit function
tries to approximate the whole shape surface instead of focusing
on fitting local regions. Therefore, the learned gradient vectors are
inadequate to be used as surface normals and need to be further
refined. Inspired by the implicit surface representations, we define
the expected normal as the zero level-set of a function

V =
{
𝒙 ∈ R3, 𝒗 ∈ R3 | 𝑔(𝒙, 𝒗; 𝝑) = 0

}
, (9)

where 𝑔 : R3 × R3 → R is a neural network with parameter 𝝑 that
predicts (unsigned) angular distance field between the normalized
gradient vector 𝒗 and the ground-truth normal vector �̂� (see Fig. 5).
Given appropriate training objectives, the zero level-set of 𝑔 can
be a vector cluster describing the normals of point cloud 𝑷 . To this
end, we introduce Gradient Vector Optimization (GVO) defined by
the form of a loss function

L(𝝑) = E𝒗∼D′ T
(
𝑔(𝒙, 𝒗; 𝝑), ⟨𝒗, �̂�⟩

)
, (10)

where D′ is a probability distribution based on an initial vector
𝒗 ∈R3. ⟨·⟩ ∈ [0, 𝜋] means the angular difference between two unit
vectors. In contrast to the previous method [Li et al. 2023b], we
regress angles using weighted features of the approximated local
plane instead of point features from PointNet [Qi et al. 2017]. The
motivation is that simple angle regression with 𝑔 fails to be robust
to noise or produce high-quality normals.

Given a neighborhood size𝑚, we can construct the input data
as the nearest neighbor graph 𝐺 = (N , E), where (𝒙, 𝒙 𝑗 ) ∈ E is
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Figure 5: Left: illustration of the angular distance field of
a vector 𝒏. Right: given an initial vector 𝒗0 and its vector
samples in the unit sphere (black dots with a Gaussian dis-
tribution), our method will select vector 𝒗1 rather than 𝒗2 as
a candidate since 𝒗1 has a smaller angular distance 𝜙 with
respect to the target vector 𝒏.

a directed edge if 𝒙 𝑗 is one of the 𝑚 nearest neighbors of 𝒙 . Let
N𝑚 (𝒙) = {𝒙 𝑗 − 𝒙}𝑚

𝑗=1 be the centered coordinates of the points
in the neighborhood. The standard way to solve for unoriented
normal at a point is to fit a plane to its local neighborhood [Levin
1998], which is described as

𝒏∗𝑖 = argmin
𝒏

∑︁
𝒙′
𝑗
∈N𝑚 (𝒙𝑖 )

𝒙′𝑗 · 𝒏2
. (11)

In practice, there are two main issues about the utilizing of Eq. (11)
[Lenssen et al. 2020]: (i) it acts as a low-pass filter for the data
and eliminates sharp details, (ii) it is unreliable if there is noise or
outliers in the data. We will show that both issues can be resolved
by integrating weighting functions into our optimization pipeline.
In short, the preservation of detailed features is achieved by an
anisotropic kernel that infers weights of point pairs based on their
relative positions, while the robustness to outliers is achieved by a
scoring mechanism that weights points according to inlier scores.

Anisotropic Kernel. For feature encoding, our extraction layer is
formulated as

𝒙′
𝑙
=𝛾

(
𝒙𝑙 , 𝛽

(
MAX

{
𝛼 (𝑤 𝑗 · 𝒙 𝑗 )

}𝑚
𝑗=1

))
, 𝑙 =1, · · · ,𝑚′, (12)

whereMAX{·} indicates the feature maxpooling over the neighbors
N𝑚 (𝒙)= {𝒙𝒋 − 𝒙}𝑚

𝑗=1 of a center point 𝒙 .𝑚′ ⩽𝑚 means that fewer
neighbors are used in the next layer, and we usually set 𝑚′ to
𝑚/2. 𝛼, 𝛽 and 𝛾 are MLPs. They compose an anisotropic kernel
that considers the full geometric relationship between neighboring
points, not just their positions, thus providing features with richer
contextual information. Specifically,𝑤 is a weight given by

𝑤 𝑗 =
𝑑 𝑗∑𝑚
𝑖=1 𝑑𝑖

, 𝑑𝑖 = sigmoid
(
𝜗1 − 𝜗2∥𝒙𝑖 − 𝒙 ∥

)
, (13)

where 𝜗1 and 𝜗2 are learnable parameters with the initial value
set to 1. The weight 𝑤 lets the kernel concentrate on the points
𝒙𝑖 ∈ N𝑚 (𝒙) that are closer to its center 𝒙 .

Inlier Score. Based on the neighborsN𝑚 (𝒙) of 𝒙 , the inlier score
function 𝑠 (𝒙, 𝒗; 𝝑) is optimized by

L1 (𝝑) = E𝒗∼D′ T1
(
𝑠 (𝒙𝑖 , 𝒗; 𝝑), 𝛿 (𝒙𝑖 , �̂�)

)
, 𝒙𝑖 ∈ N𝑚 (𝒙) , (14)
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Figure 6: The PGP curves of oriented normal on the Fa-
mousShape dataset. It depicts the percentage of good points
(PGP) for a given angle threshold. Our method achieves the
best value at most of the thresholds.

where T1 is mean squared error. The function 𝑠 assigns low scores
to outliers and high scores to inliers. Correspondingly, 𝛿 generates
scores based on the distance between neighboring points 𝒙𝑖 and
the local plane determined by the normal vector �̂� at point 𝒙 , that
is

𝛿 (𝒙𝑖 , �̂�) = exp
(
− (𝒙𝑖 · �̂�)2

𝜌2

)
, 𝒙𝑖 ∈ N𝑚 (𝒙) , (15)

where 𝜌 =max(0.052, 0.3
∑𝑚
𝑖=1 (𝒙𝑖 · �̂�)2/𝑚) [Li et al. 2022a]. The

function 𝑠 regresses the score of each point in the neighbor graph,
and these scores are used to find the vector angles based on score-
weighted gradient vector optimization

L2 (𝝑) = E𝒗∼D′ T2
(
𝑠 ⊙ 𝑔(𝒙, 𝒗; 𝝑), ⟨𝒗, �̂�⟩

)
, (16)

where T2 is mean absolute error. ⊙ denotes that the score function 𝑠
is integrated into the feature encoding of learning angular distance
field. The score and angle are jointly regressed by MLP layers based
on the neighbor graph. In summary, our final training loss is

LGVO = L1 (𝝑) + _L2 (𝝑) , (17)
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Table 1: RMSE of oriented normals on datasets PCPNet and FamousShape. ∗means the source code is uncompleted.

Category
PCPNet Dataset FamousShape Dataset

Noise Density Noise Density
None 0.12% 0.6% 1.2% Stripe Gradient Average None 0.12% 0.6% 1.2% Stripe Gradient Average

PCA+MST [Hoppe et al. 1992] 19.05 30.20 31.76 39.64 27.11 23.38 28.52 35.88 41.67 38.09 60.16 31.69 35.40 40.48
PCA+SNO [Schertler et al. 2017] 18.55 21.61 30.94 39.54 23.00 25.46 26.52 32.25 39.39 41.80 61.91 36.69 35.82 41.31
PCA+ODP [Metzer et al. 2021] 28.96 25.86 34.91 51.52 28.70 23.00 32.16 30.47 31.29 41.65 84.00 39.41 30.72 42.92
AdaFit [Zhu et al. 2021]+MST 27.67 43.69 48.83 54.39 36.18 40.46 41.87 43.12 39.33 62.28 60.27 45.57 42.00 48.76
AdaFit [Zhu et al. 2021]+SNO 26.41 24.17 40.31 48.76 27.74 31.56 33.16 27.55 37.60 69.56 62.77 27.86 29.19 42.42
AdaFit [Zhu et al. 2021]+ODP 26.37 24.86 35.44 51.88 26.45 20.57 30.93 41.75 39.19 44.31 72.91 45.09 42.37 47.60
HSurf-Net [Li et al. 2022a]+MST 29.82 44.49 50.47 55.47 40.54 43.15 43.99 54.02 42.67 68.37 65.91 52.52 53.96 56.24
HSurf-Net [Li et al. 2022a]+SNO 30.34 32.34 44.08 51.71 33.46 40.49 38.74 41.62 41.06 67.41 62.04 45.59 43.83 50.26
HSurf-Net [Li et al. 2022a]+ODP 26.91 24.85 35.87 51.75 26.91 20.16 31.07 43.77 43.74 46.91 72.70 45.09 43.98 49.37
PCPNet [Guerrero et al. 2018] 33.34 34.22 40.54 44.46 37.95 35.44 37.66 40.51 41.09 46.67 54.36 40.54 44.26 44.57
DPGO∗ [Wang et al. 2022] 23.79 25.19 35.66 43.89 28.99 29.33 31.14 - - - - - - -
SHS-Net [Li et al. 2023a] 10.28 13.23 25.40 35.51 16.40 17.92 19.79 21.63 25.96 41.14 52.67 26.39 28.97 32.79
Ours 12.52 12.97 25.94 33.25 16.81 9.47 18.49 13.22 18.66 39.70 51.96 31.32 11.30 27.69

Table 2: RMSE of unoriented normal on datasets PCPNet and FamousShape. ∗ means the source code is uncompleted or
unavailable.

Category
PCPNet Dataset FamousShape Dataset

Noise Density Noise Density
None 0.12% 0.6% 1.2% Stripe Gradient Average None 0.12% 0.6% 1.2% Stripe Gradient Average

Jet [Cazals and Pouget 2005] 12.35 12.84 18.33 27.68 13.39 13.13 16.29 20.11 20.57 31.34 45.19 18.82 18.69 25.79
PCA [Hoppe et al. 1992] 12.29 12.87 18.38 27.52 13.66 12.81 16.25 19.90 20.60 31.33 45.00 19.84 18.54 25.87
PCPNet [Guerrero et al. 2018] 9.64 11.51 18.27 22.84 11.73 13.46 14.58 18.47 21.07 32.60 39.93 18.14 19.50 24.95
Zhou et al.∗ [Zhou et al. 2020b] 8.67 10.49 17.62 24.14 10.29 10.66 13.62 - - - - - - -
Nesti-Net [Ben-Shabat et al. 2019] 7.06 10.24 17.77 22.31 8.64 8.95 12.49 11.60 16.80 31.61 39.22 12.33 11.77 20.55
Lenssen et al. [Lenssen et al. 2020] 6.72 9.95 17.18 21.96 7.73 7.51 11.84 11.62 16.97 30.62 39.43 11.21 10.76 20.10
DeepFit [Ben-Shabat and Gould 2020] 6.51 9.21 16.73 23.12 7.92 7.31 11.80 11.21 16.39 29.84 39.95 11.84 10.54 19.96
MTRNet∗ [Cao et al. 2021] 6.43 9.69 17.08 22.23 8.39 6.89 11.78 - - - - - - -
Refine-Net [Zhou et al. 2022] 5.92 9.04 16.52 22.19 7.70 7.20 11.43 - - - - - - -
Zhang et al.∗ [Zhang et al. 2022] 5.65 9.19 16.78 22.93 6.68 6.29 11.25 9.83 16.13 29.81 39.81 9.72 9.19 19.08
Zhou et al.∗ [Zhou et al. 2023] 5.90 9.10 16.50 22.08 6.79 6.40 11.13 - - - - - - -
AdaFit [Zhu et al. 2021] 5.19 9.05 16.45 21.94 6.01 5.90 10.76 9.09 15.78 29.78 38.74 8.52 8.57 18.41
GraphFit [Li et al. 2022b] 5.21 8.96 16.12 21.71 6.30 5.86 10.69 8.91 15.73 29.37 38.67 9.10 8.62 18.40
NeAF [Li et al. 2023b] 4.20 9.25 16.35 21.74 4.89 4.88 10.22 7.67 15.67 29.75 38.76 7.22 7.47 17.76
HSurf-Net [Li et al. 2022a] 4.17 8.78 16.25 21.61 4.98 4.86 10.11 7.59 15.64 29.43 38.54 7.63 7.40 17.70
SHS-Net [Li et al. 2023a] 3.95 8.55 16.13 21.53 4.91 4.67 9.96 7.41 15.34 29.33 38.56 7.74 7.28 17.61
Ours 4.06 8.70 16.12 21.65 4.80 4.56 9.98 7.25 15.60 29.35 38.74 7.60 7.20 17.62

Table 3: Comparison of the RMSE, number of learnable net-
work parameters (million), and test runtime (seconds per
100k points) for learning-based oriented normal estimation
methods.

HSurf-Net+ODP AdaFit+ODP PCPNet SHS-Net Ours

RMSE 31.07 30.93 37.66 19.79 18.49
Param. 2.59 5.30 22.36 3.27 2.38
Time 308.82 304.77 63.02 65.89 71.29

where _=0.5 is a weighting factor.

DistributionD′. This distribution is different during the training
and testing phases. During training, we first uniformly sample𝑀2
random vectors in 3D space for each point of the input point cloud.
Then the network is trained to predict the angle of each vector with
respect to the ground-truth normal. At test time, we establish an
isotropic Gaussian 𝑁

(
𝒗, ([ · 45◦)2) that forms a distribution about

the initial gradient vector 𝒗 in the unit sphere, and then we obtain
a set of𝑀3 vector samples around 𝒗. As shown in Fig. 5, the trained
network tries to find an optimal candidate as output from the vector
samples according to the predicted angle.

5 EXPERIMENTS
Implementation. For NGL, the 𝑘 in Eq. (5) is set to 𝑘 = 64 and

we select 𝑀1 = 5000 points from distribution D as the input dur-
ing training. For GVO, we train it only on the PCPNet training
set [Guerrero et al. 2018] and use the provided normals to calculate
vector angles. We select𝑚=700 neighboring points for each query
point. For the distribution D′, we set 𝑀2 = 500, 𝑀3 = 4000 and
[=0.4.

Metrics. We use the Root Mean Squared Error (RMSE) to evaluate
the estimated normals and use the Percentage of Good Points (PGP)
to show the error distribution [Li et al. 2022a; Zhu et al. 2021].

5.1 Evaluation
Evaluation of Oriented Normal. The baseline methods include

PCPNet [Guerrero et al. 2018], DPGO [Wang et al. 2022], SHS-
Net [Li et al. 2023a] and different two-stage pipelines, which are
built by combining unoriented normal estimation methods (PCA
[Hoppe et al. 1992], AdaFit [Zhu et al. 2021], HSurf-Net [Li et al.
2022a]) and normal orientation methods (MST [Hoppe et al. 1992],
SNO [Schertler et al. 2017], ODP [Metzer et al. 2021]). We choose
them as they are representative algorithms in this research field
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Table 4: Ablation studies with the metric of unoriented and oriented normal on the PCPNet dataset. Please see the text for
more details.

Category
Unoriented Normal Oriented Normal

Noise Density Noise Density
None 0.12% 0.6% 1.2% Stripe Gradient Average None 0.12% 0.6% 1.2% Stripe Gradient Average

(a)

w/o NGL 4.20 8.78 16.16 21.67 4.88 4.64 10.06 124.53 123.11 120.35 117.44 123.57 118.80 121.30
w/o GVO 12.24 12.74 17.89 23.88 15.16 13.75 15.94 18.39 15.32 25.20 32.57 22.91 15.73 21.69
w/o inlier score 4.26 8.94 16.11 21.70 5.26 5.00 10.21 12.78 13.25 25.99 33.43 17.30 9.82 18.76
w/o 𝑤 in kernel 4.11 8.71 16.14 21.63 5.11 4.80 10.08 12.38 12.94 25.88 33.30 16.87 9.47 18.47

(b)

LNGL (L1) 4.09 8.69 16.13 21.65 4.80 4.57 9.99 17.27 12.27 35.58 37.95 11.26 9.28 20.60
LNGL (MSE) 4.08 8.70 16.13 21.64 4.82 4.58 9.99 21.71 18.82 27.81 33.38 13.29 11.68 21.12
LGVO(_=0.2) 4.12 8.75 16.16 21.74 5.09 4.71 10.10 12.60 12.99 25.98 33.34 16.90 9.57 18.56
LGVO(_=0.8) 4.14 8.82 16.18 21.64 4.96 4.74 10.08 12.58 13.09 26.04 33.33 16.87 9.45 18.56

(c)
𝑘 =1 4.07 8.70 16.13 21.65 4.79 4.55 9.98 13.57 18.24 38.29 47.23 9.27 8.99 22.60
𝑘 =32 4.06 8.69 16.13 21.65 4.79 4.56 9.98 13.64 24.31 29.83 33.93 17.37 8.51 21.27
𝑘 =128 4.08 8.70 16.13 21.64 4.84 4.58 9.99 12.84 23.65 34.96 33.03 37.64 18.42 26.76

(d) 𝑑𝜎 =32th 4.07 8.69 16.12 21.66 4.83 4.56 9.99 12.86 23.75 29.68 36.67 10.97 8.92 20.47
𝑑𝜎 =64th 4.08 8.70 16.13 21.64 4.81 4.57 9.99 13.77 18.98 29.84 33.25 18.41 8.87 20.52

(e)

[=0.3 4.10 8.70 16.14 21.64 4.87 4.62 10.01 12.46 13.01 25.85 33.18 16.78 9.47 18.46
[=0.5 4.06 8.69 16.12 21.64 4.80 4.55 9.98 12.54 13.04 25.91 33.26 16.77 9.39 18.49
𝑀2 =3000 4.07 8.70 16.13 21.65 4.82 4.57 9.99 12.55 13.05 25.90 33.23 16.79 9.40 18.49
𝑀2 =5000 4.06 8.70 16.12 21.65 4.81 4.56 9.98 12.47 13.01 25.90 33.22 16.72 9.30 18.44
Full 4.06 8.70 16.12 21.65 4.80 4.56 9.98 12.52 12.97 25.94 33.25 16.81 9.47 18.49

Ours

PCA+MSTAdaFit+SNO

HSurf-Net+ODPHSurf-Net+MST

AdaFit+MST

HSurf-Net+SNO

PCPNet

Point Cloud

Figure 7: The top row shows the scene reconstructed from
LiDAR data using our estimated normals, and below is a local
region comparison of the different methods.

at present. The quantitative comparison results on datasets PCP-
Net [Guerrero et al. 2018] and FamousShape [Li et al. 2023a] are
shown in Table 1. It is clear that our method achieves large per-
formance improvements over the vast majority of noise levels and
density variations on both datasets. Through this experiment, we
also find that combining a better unoriented normal estimation
algorithm with the same normal orientation algorithm does not
necessarily lead to better orientation results, e.g., PCA+MST vs.
AdaFit+MST and PCA+SNO vs. HSurf-Net+SNO. The error distri-
butions in Fig. 6 show that our method has the best performance at
most of the angle thresholds.

We provide more experimental results on different datasets in the
supplementary material, including comparisons with GCNO [Xu

0

180

NGL NGL+GVONGL+NeAF PCPNet+GVOPCPNetNeAF

28.30 10.7012.10 21.1133.42123.56

Figure 8: Error maps of oriented normals. We integrate our
NGL and GVO into other methods to estimate oriented nor-
mals. The mean value of RMSE is provided above each shape.

et al. 2023] on sparse data and more applications to surface recon-
struction.

Evaluation of Unoriented Normal. In this evaluation, we ignore
the orientation of normals and compare our method with baselines
that are used for estimating unoriented normals, such as the tradi-
tional methods PCA [Hoppe et al. 1992] and Jet [Cazals and Pouget
2005], the learning-based surface fitting methods AdaFit [Zhu et al.
2021] and GraphFit [Li et al. 2022b], and the learning-based regres-
sion methods NeAF [Li et al. 2023b] and HSurf-Net [Li et al. 2022a].
The quantitative comparison results on datasets PCPNet [Guerrero
et al. 2018] and FamousShape [Li et al. 2023a] are reported in Ta-
ble 2. We can see that our method has the best performance under
most point cloud categories and achieves the best average result.

Application. We employ the Poisson reconstruction algorithm
[Kazhdan and Hoppe 2013] to generate surfaces from the estimated
oriented normals on the Paris-rue-Madame dataset [Serna et al.
2014], acquired from the real-world using laser scanners. The re-
constructed surfaces are shown in Fig. 7, where ours exhibits more
complete and clear car shapes.

Complexity and Efficiency. We evaluate the learning-based ori-
ented normal estimation methods on a machine equipped with
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NVIDIA 2080 Ti GPU. In Table 3, we report the RMSE, number of
learnable network parameters, and test runtime for each method on
the PCPNet dataset. Our method achieves significant performance
improvement with minimal parameters and relatively less runtime.

5.2 Ablation Studies
Our method seeks to achieve better performance in both unoriented
and oriented normal estimation. We provide the ablation results of
our method in Table 4 (a)-(e), which are discussed in turn below:

Component. We remove NGL, GVO, inlier score and weight𝑤 of
the anisotropic kernel, respectively. If NGL is not used, we optimize
a randomly sampled set of vectors in the unit sphere for each point,
but the optimized normal vectors face both sides of the surface,
resulting in the worst orientations. Gradient vectors from NGL are
inaccurate when used as normals without being optimized by GVO.
The score and weight are important for improving performance,
especially in unoriented normal evaluation.

Loss. Replacing L2 distance in LNGL with L1 distance or MSE is
not a good choice. We also alternatively set _ in LGVO to 0.2 or 0.8,
both of which lead to worse results.

Size 𝑘 . For the neighborhood size in Eq. (5), we alternatively set
𝑘 to 1, 32 or 128, however, all of which do not bring better oriented
normal results.

Distribution D. We change the distribution parameter 𝜎 as the
distance 𝑑𝜎 of the 32th or 64th nearest point to 𝒙 , whereas the
results get worse.

Distribution D′. We change the distribution parameter [ to 0.3
or 0.5 and the vector sample size𝑀2 to 3000 or 5000, respectively.
The influence of these parameters on the results is relatively small.
The larger size gives better results, but requires more time and
memory consumption.

Modularity. In Fig. 8, we show that our NGL and GVO can be
integrated into some other methods (PCPNet [Guerrero et al. 2018]
and NeAF [Li et al. 2023b]) to estimate more accurate oriented
normals. Note that NeAF can not estimate oriented normals. We
can see that our NGL+GVO gives the best results.

6 CONCLUSION
In this work, we propose to learn neural gradient from point cloud
for oriented normal estimation. We introduce Neural Gradient
Learning (NGL) and Gradient Vector Optimization (GVO), defined by
a family of loss functions. Specifically, we minimize the correspond-
ing loss to let the NGL learn gradient vectors from global geometry
representation, and the GVO optimizes vectors based on an in-
sight into the local property. Moreover, we integrate two weighting
functions, including anisotropic kernel and inlier score, into the
optimization to improve robust and detail-preserving performance.
We provide extensive evaluation and ablation experiments that
demonstrate the state-of-the-art performance of our method and
the effectiveness of our designs. Future work includes improving the
performance under high noise and density variation, and exploring
more application scenarios of our algorithm.
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