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ABSTRACT

Session types provide a principled approach to typed communica-

tion protocols that guarantee type safety and protocol fidelity. For-

malizations of session-typed communication are typically based

on process calculi, concurrent lambda calculi, or linear logic. An

alternative model based on context-sensitive typing and typestate

has not received much attention due to its apparent restrictions.

However, this model is attractive because it does not force pro-

grammers into particular patterns like continuation-passing style

or channel-passing style, but rather enables them to treat commu-

nication channels like mutable variables.

Polymorphic typestate is the key that enables a full treatment

of session-typed communication. Previous work in this direction

was hampered by its setting in a simply-typed lambda calculus.

We show that higher-order polymorphism and existential types en-

able us to lift the restrictions imposed by the previous work, thus

bringing the expressivity of the typestate-based approach on par

with the competition. On this basis, we define PolyVGR, the sys-

tem of polymorphic typestate for session types, establish its basic

metatheory, type preservation and progress, and present a proto-

type implementation.
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1 INTRODUCTION

When Honda and others [18, 35] proposed session types, little did

they know that their system would become a cornerstone for type

disciplines for communication protocols. Their original system de-

scribes bidirectional, heterogeneously typed communication chan-

nels between two processes in pi-calculus. It also contains facilities

for offering and accepting choices in the protocol.

Subsequent work added a plethora of features to the original

system. One strand of ongoing work considers session-typed em-

beddings of communication primitives in functional and object-

oriented languages, both theoretically and practically oriented [15,

19, 22, 24, 32]. These embeddings impose particular programming

styles, following the structure of session types. For example, em-

beddings in linear functional languages [15, 22] impose writing

code in what we call channel-passing style as demonstrated in List-

ing 1.

let (x, c2) = receive c1 in

let (y, c3) = receive c2 in

let c4 = send (x + y, c3) in ...

Listing 1: Channel-passing style

PPDP 2023, October 22–23, 2023, Lisboa, Portugal

2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

fun server u =

let x = receive u in

let y = receive u in

send x + y on u

Listing 3: Example server

fun server ' () =

let x = receive u in

let y = receive u in

send x + y on u

Listing 4: Example server

with capture

Weenter this codewith the typing c1 : ?Int.?Int.!Int.s0, which

means that c1 is a channel ready to receive two integers, then send

one, and continue the protocol according to session type s0. In

these systems, channels are linear resources, so c1 must be used

exactly once: it is consumed in line 1 and cannot be used there-

after. The operation receive has type ?) .( → () × (). When it

consumes c1, it returns c2 of type ?Int.!Int.s0, which is further

transformed to c3 of type !Int.s0 by the next receive, and finally

to c4 : s0 by the send operation of type () × !) .() → ( .

Writing a program in this style is cumbersome as programmers

have to thread the channel explicitly through the program. This

style is not safe for embedding session types in general program-

ming languages because most languages do not enforce the linear-

ity needed to avoid aliasing of channel ends at compile time (some

implementations check linear use at run time [24, 32]). Wrapping

the channel passing in a parameterized monad [4] would accom-

modate the typing requirements and ensure linearity by encapsu-

lation, but it is again cumbersome to scale the monadic style to

programs handling more than one channel at the same time. Never-

theless, Pucella and Tov [26] developed a Haskell implementation

of session types in this style. In object-oriented languages, fluent

interfaces enable the correct chaining of method calls according

to a session type [20], but have similar issues as channel-passing

stylewhen scaling tomultiple channels and new issues with receiv-

ing values which seems to require mutable references as shown in

Listing 2.

var x = new Ref <Int >();

var y = new Ref <Int >();

var c4 = c1.receive(x). receive(y)

.send(x.val + y.val);

Listing 2: Fluent interface with references

An alternative approach is inspired by systems with typestate

[34]. Vasconcelos et al. [37] proposed a multithreaded functional

language on this basis. Their language, which we call VGR, enables

programming in direct style; it does not require linear handling of

variables; and it scales to multiple channels. Listing 3 contains a

program fragment in VGR equivalent to the code in Listing 1. The

parameter u of the server function is a channel reference of type

Chan U , where U is a variable representing a channel identity. The
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operation receive takes a channel reference associated with ses-

sion type !Int.( and returns an integer. The association is main-

tained at compile time in a typestate Σ = {U ↦→ !Int.(} that maps

channel identities to session types. As a compile-time side effect,

receive changes the typestate to Σ
′
= {U ↦→ (}. Thus, we can

describe the action of receive by the typing:

receive : {U ↦→ !Int.(}; Chan U → (Chan U × Int); {U ↦→ (}

The general shape of a function type in VGR is thus: Σ1;)1 →

)2; Σ2. Here,)1 and)2 are argument and return type of the function.

The typestate environments Σ1 and Σ2 map channel identities to

session types. They reflect the state (session type) of the channels

before (Σ1) and after (Σ2) calling the function. Channels in)1 refer

to entries in Σ1 and channels in )2 refer to entries in Σ2.

Similarly, the function send_on_ takes an integer to transmit

and a channel reference associated with session type !Int.S. It

returns a unit value and updates the channel’s type to S. Putting

these typings together, we obtain the VGR type of the server func-

tion in Listing 3:

{U : ? Int.? Int.! Int.(}; Chan U → Unit; {U : (}, (1)

for some channel name U and session type ( . Listing 3 also demon-

strates that VGR does not impose linear handling of channel ref-

erences, as there are multiple uses of variable u. Instead, it keeps

track of the current state of every channel using the typestate Σ,

which is threaded linearly through the typing rules, at compile

time.

As VGR is based on simple types, the typing (1) is severely re-

stricted.

(1) The function server is tied to a single continuation session

type ( , a restriction shared with many functional systems

[12, 15].

(2) The function server can only be called on the single chan-

nel identified by U .

The language PolyVGR that we propose here fixes all those draw-

backs, and more. The PolyVGR type for server abstracts over con-

tinuation sessions and channel identities:1

∀(f : Session). ∀(U : Dom(X)).

{U : ? Int.? Int.! Int.f}; Chan U → ∃ · .{U : f}; Unit (2)

Quantification over session types, as in ∀(f : Session), has been

considered and analyzed in other recent work [1, 22].

The quantification of U is novel to PolyVGR. Its kind, Dom(X),

indicates thatU ranges over all channel identities. We callX a shape.

Shapes allow us to talk about and quantify over the (channel) re-

sources embedded in a value in PolyVGR. For example, X # X is

the shape to describe a value with two embedded channels. This

facility enables PolyVGR to provide a single typing rule for the op-

erations receive and send_on_: In VGR, there are two separate

typing rules, one to transmit data values and another to transmit

one single channel. Shapes also facilitate an extension of PolyVGR

with algebraic datatypes like lists, which was not considered in

previous work.

1Boxes with a frame highlight types and expressions of PolyVGR.

A final ingredient of the function type in PolyVGR is the innocu-

ous existential right of the function arrow in (1). The existential

addresses another shortcoming exhibited by this VGR type:

{}; Unit → Chan U ; {U : (} (3)

A function of type (3) must create a new channel of session type ( .

But lacking polymorphism, each invocation of this function has to

create a channel with the same identity U . To avoid this limitation,

PolyVGR handles newly created channels (and other resources) us-

ing existential quantification:

{}; Unit → ∃(U : Dom(X)). {U : (}; Chan U (4)

Every use of a function of this type gives rise to a new channel iden-

tity. Thanks to the existential, this identity is renamed as needed

to avoid clashes with any existing channel identity in the context.

Coming back to the examples, let us have a look at function

server' in Listing 4. This function contains a free variable u with

a channel reference of type Chan U . It can only be used in a context

that provides the same channel U , which is somewhat hidden in the

VGR type of server':

{U : ? Int.? Int.! Int.(}; Unit → Unit; {U : (}, (5)

but which becomes very clear in its PolyVGR type:

∀(f : Session).

{U : ? Int.? Int.! Int.f}; Unit → ∃ · . {U : f}; Unit. (6)

The lack of quantification over U indicates that it is not safe to use

this function with any other channel, because it is not possible to

replace a channel reference captured in the closure for server'. In

any case, we can invoke a function of type (5) or of type (1) any

time the channel U is in a state matching the “before” session type

of the function.

Contributions

• We define PolyVGR, a novel session type system based on

polymorphic typestate that lifts all restrictions imposed by

earlier related systems, but still operates on the basis of the

same semantics. Our type system exhibits a novel use of

higher-kinded polymorphism to enable quantification over

types that contain an a-priori unknown number of channel

references.

• We establish type preservation and progress for PolyVGR on

the basis of a standard synchronous semantics for session

types (see Section 4).

• Type checking for PolyVGR is decidable and implemented

(see Section 5). We plan to submit the implementation for

artifact evaluation.

• We informally sketch an extension of PolyVGR for sum types

that may contain channels (see Section 6).

Proofs and some extra examples may be found in the supplement.

2 MOTIVATION

We demonstrate how polymorphism in the form of universal and

existential quantification lifts various restrictions of the VGR cal-

culus. In particular, VGR is monomorphic with respect to channel

2
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names and states and it requires different operations (with differ-

ent types) to transmit data and (single) channels. All these restric-

tions disappear in PolyVGR. Moreover, universal and existential

quantification gives us fine grained control over channel identity

management, channel passing between processes as well as chan-

nel creation.

The next few subsections systematically explain the innovations

of PolyVGR compared to VGR. Types and code fragments for the

new calculus PolyVGR appear in boxes with a frame. PolyVGR of-

fers the following key benefits over previous work.

• A function can be applied to different channel arguments if

its type is polymorphic over channel names (see (1) and (5);

Section 2.2).

• A function can abstract over the creation of an arbitrary

number of channels because the names of newly created

channels are existentially quantified (see (7) and (12); Sec-

tion 2.1).

• Arbitrary data structures can be transmitted. Ownership of

all channels contained in the data structure is transferred to

the receiver (see (10); Section 2.3).

• Abstraction over transmission operations is possible. In par-

ticular, a type can be given to a fully flexible send or receive

operation (see (10)).

2.1 Channel Creation

Channel creation in VGR works in two steps. First, we create an ac-

cess point of type [(], where ( is a session type. This access point

needs to be known to all threads that wish to communicate and it

can be shared freely. Second, the client thread requests a connec-

tion on the access point and the server must accept it on the same

access point. This rendezvous creates a communication channel

with one end of type ( on the server and the other end of type (

(the dual type of () on the client.

C-Accept

Γ; E ↦→ [(] fresh 2

Γ; Σ; accept E ↦→ Σ; Chan 2; {2 : (}

C-Reqest

Γ; E ↦→ [(] fresh 2

Γ; Σ; request E ↦→ Σ; Chan 2; {2 : (}

In the VGR typing rules for these operations, new channels just

show up with a fresh name in the outgoing state of the expression

typing. Similarly, if a function of type Σ1;)1 → )2; Σ2 creates a

new channel, then its name and session type just appear in Σ2.

Incoming channels described in Σ1 are either passed through to

Σ2 or they are closed in the function. All channels mentioned in

Σ2 , but not in Σ1 are considered new.

As the channel names in states must all be different, the num-

ber of simultaneously open channels in a VGR program is bounded

by the number of occurrences of the C-Accept and C-Reqest rules.

VGR has recursive functions, but they are monomorphic with re-

spect to incoming and outgoing states. In consequence, abstraction

over channel creation is not possible.

In contrast, PolyVGR’s function type indicates channel creation

explicitly using existential quantification. As an example, consider

abstracting over the accept operation:

acc = Λ(f : Session)._( · ; G : [f]).accept G

: ∀(f : Session).( · ; [f] → ∃W : Dom(X).W ↦→ f ; ChanW)
(7)

The core of this type still has a shape like the VGR type Σ1;)1 →

)2; Σ2, but with some additions and changes. The most prominent

change is that the outgoing type and state are swapped in a func-

tion type resulting in a structure like this:

(Σ1; )1 → ∃U : Dom(=).Σ2 ; )2). (8)

The incoming state Σ1 specifies the part of the state that is needed

by the function; it can be applied in any state Σ that provides the

required channels or more. On return, a function can provide new

entries in the state, which are disjointly added to the calling state,

by way of the existential ∃U : Dom(=).

The type of acc in (7) is universally quantified over a session

type, f : Session, to work with arbitrary access points. Left of the

arrow, the required incoming state is empty · and argument of

type [f] is an access point for f . Right of the arrow, the existen-

tial quantification ∃W : Dom(X) abstracts over the created channel.

The kind Dom(X) indicates abstraction over exactly one channel

name.2 Hence, the variable W can be used like a channel name in

constructing a state. The returned value is a channel reference for

W . The existential serves as a modular alternate of the fresh 2 con-

straint. So we can invoke acc multiple times and obtain different

channels from every invocation.

2.2 Channel Abstraction

The discussion of VGR’s function type Σ1 ;)1 → )2; Σ2 in the intro-

duction shows that a function that takes a channel as a parameter

can only be applied to a single channel. A function like server

(Listing 3) must be applied to the channel of type Chan U , for some

fixed name U .

To lift this restriction, we apply the standard recipe of universal

quantification, i.e., polymorphism over channel identities as out-

lined in the introduction. Thus, the type of server generalizes as

shown in (1) so that it can be applied to any channel of type Chan U

regardless of the name U and the type of server', which captures

a channel, is shown in (5).

2.3 Data Transmission vs. Channel
Transmission

VGR can pass channels from one thread to another. The session

type !(′ .( classifies a channel on which we can send a channel of

type (′ . Here is the VGR typing rule for the underlying operation:

C-SendS

Γ; E ↦→ Chan V Γ; E′ ↦→ Chan U

Γ; Σ, U : !(′ .(, V : (′; send E on E′ ↦→ Σ; Unit;U : (

The premises are value typings that indicate that E and E′ are refer-

ences to fixed channels V and U under variable environment Γ. The

2We defer further discussion of other shapes = and the meaning of Dom (=) to Sec-
tions 2.3.3 and 2.3.4.

3
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conclusion is an expression typing of the form Γ; Σ; 4 ↦→ Σ1;) ; Σ2
where Σ is the incoming state, Σ1 is the part of Σ that is passed

through without change, and Σ2 is the outgoing state after execut-

ing expression 4 which returns a result of type ) . The rule states

that channels V and U have session type (′ and !(′ .( , respectively.

The channel V is consumed (because it is sent to the other end of

channel U) and U gets updated to session type ( .

Compared to the function type, sending a channel is more flex-

ible. Any channel of type (′ can be passed because V is not part

of channel U’s session type. If the sender still holds references to

channel V , then these references can no longer be exercised as V

has been removed from Σ. So one can say that rule C-SendS passes

ownership of channel V to the receiver.

In addition, VGR implicitly transmits a channel reference which

is captured in a closure. To study this phenomenon, we look at

VGR’s rules for sending and receiving data of type � .

C-SendD

Γ; E ↦→ � Γ; E′ ↦→ Chan U

Γ; Σ, U : !�.( ; send E on E′ ↦→ Σ; Unit;U : (

C-ReceiveD

Γ; E ↦→ Chan U

Γ; Σ, U : ?�.( ; receive E ↦→ Σ;�;U : (

One possibility for type � is a function type like

�1 = {V : (′}; Unit → Unit; {V : (′′}.

A function of this type captures a channel named V which may or

may not occur in Σ. It is instructive to see what happens at the

receiving end in rule C-ReceiveD. If we receive a function of type

�1 and Σ already contains channel V of appropriate session type,

then we will be able to invoke the function.

If channel V is not yet present at the receiver, we may want to

send it along later. However, we find that this is not possible as the

received channel gets assigned a fresh name 3 :

C-ReceiveS

Γ; E ↦→ Chan U fresh3

Γ; Σ, U : ?(′ .( ; receive E ↦→ Σ; Chan 3 ;3 : (′, U : (

For the same reason, it is impossible to send channel V first and

then the closure that refers to it: V gets renamed to some fresh 3

while the closure still refers to V . Sending the channel effectively

cuts all previous connections.

To address this issue, PolyVGR abstracts over states in session

types and lifts all restrictions on the type of transmitted values (aka

the payload type), so that a channel and a function that refers to it

can be transmitted at the same time. Here is the revised grammar

of session types:

( ::= !(∃U : Dom(# ).Σ; ) ).( | ?(∃U : Dom(# ).Σ; ) ).( | . . .

A channel package can be instantiated by a state Σ and a payload

type ) . All channels referenced in ) must be bound in Σ so that

the sending and the receiving end of the channel agree about the

channels sent along with the value of type) . That is, sending any

value that contains channel references also transfers the underly-

ing referenced channels to the receiver. Thus, sending a reference

transfers ownership of the underlying channel. Moreover, a value

may contain several channel references.

The “size” of Σ is gauged with U which determines its domain

as indicated in its kind Dom(# ) where # is the shape of the do-

main. Shapes range over I (the empty shape), X (the shape with

one binding), and #1 ##2 which forms the disjoint combination of

shapes #1 and #2.

2.3.1 No channels. To gain some intuitionwith this type construc-

tion, we start with a type for sending a primitive value of type Int.

In the general pattern !(∃U : Dom(# ).Σ; ) ).( we find that

• ) = Int;

• Σ = · , the empty state, as an Int value contains no channels;

• the type variable U specifies the domain of · , which is also

empty, indicated with # = I.

Here is the resulting term and type, where we quantify over a

continuation session typef and a channel name 2 (its kindDom(X)

indicates that it is a single channel):

send0 = Λ(2 : Dom(X)).Λ(f : Session).

_( · ; G : Int)._(2 ↦→ !(∃U : Dom(I). · ; Int).f ; ~ : Chan 2).

sendG on~

: ∀(2 : Dom(X)).∀(f : Session).

( · ; Int → · ;

(2 ↦→ !(∃U : Dom(I) . · ; Int).f ; Chan 2 → 2 ↦→ f ; Unit))
(9)

2.3.2 One channel. We instantiate the general pattern

!(∃U : Dom(# ).Σ; ) ).(

as follows to send a channel of type (′ .

• Σ is now a state with a single binding, so that U must range

over Dom(X);

• consequently, Σ has the form U ↦→ (′; and

• ) = ChanU ;

We omit the term, which is similar to the one in (9), and just spell

out the type. We quantify over the continuation session type and

the names of the two channels involved. There is one novelty: we

declare that the channels U and 2 are different, so that they can be

used as keys in the state. The disjointness constraint (U # 2) speci-

fies that names in U are disjoint from names in 2 .

send1 : ∀(U : Dom(X) ) .∀(2 : Dom(X) ) . (U # 2 ) ⇒ ∀(f : Session) .

( · ; ChanU → · ;

(U ↦→ ( ′, 2 ↦→ !(∃U : Dom(X) .U ↦→ ( ′; ChanU ) .f ; Chan2 →

2 ↦→ f ; Unit) )

2.3.3 Two channels. Sending two channels of type (′ and (′′ re-

quires new ingredients and illustrates the general case. The instan-

tiation of the pattern !(∃U : Dom(# ).Σ; ) ).( is as follows:

• the state Σ must have two bindings, one for each payload

channel, so that U must range over a two element domain,

e.g., Dom(X # X);

4
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• to write down Σ, we need notation to address the X-shaped

components of U as in c1 U and c2 U , so that we have Σ =

c1 U ↦→ (′, c2 U ↦→ (′′;

• to send a pair of channels: ) = Chan (c1 U) × Chan (c2 U).

let ( (f) = !(∃U : Dom(X # X) .c1 U ↦→ (′, c2 U ↦→ (′′;

Chan (c1 U) × Chan (c2 U)).f in

∀(U : Dom(X)).∀(V : Dom(X)). (U # V) ⇒

∀(2 : Dom(X)). (U # 2, V # 2) ⇒ ∀(f : Session).

( · ; ChanU × Chan V → · ;

(U ↦→ (′, V ↦→ (′′, 2 ↦→ ( (f); Chan 2 → 2 ↦→ f ; Unit))

We use the let-notation informally to improve readability. It is not

part of the type system. Close study of the type reveals a discrep-

ancy between the “curried”way to pass the arguments U : Dom(X)

and V : Dom(X) and the “uncurried” kind Dom(X # X) expected

by the existential. To rectify this discrepancy, the term pairs the

two domains to obtain some W = (U, V) with W : Dom(X # X) as

needed for the existential. This definition ofW implies that U = c1 W

and V = c2 W which are needed to obtain the correct state and type

for the body of the existential.

2.3.4 The general case. In general a value can refer to an arbitrary

number of channels, which should not be fixed a priori. We exhibit

and discuss the type of a general send function gsend and show

how to obtain the previous examples by instantiation.

gsend : ∀(= : Shape).∀(U : Dom(=)).

∀(Σ̂ : Dom(=) → State).∀()̂ : Dom(=) → Type).

∀(2 : Dom(X)). (U # 2) ⇒ ∀(f : Session).

( · ; )̂ U → · ;

(Σ̂ U, 2 ↦→ !(∃U : Dom(=).Σ̂ U ; )̂ U).f ; Chan 2 → 2 ↦→ f ;

Unit)) (10)

We abstract over the shape, =, and the corresponding domain. As

the state depends on the domainU , we supply it as a closed function

Σ̂ from the domain so that its components can only be constructed

from the domain elements. We supply the type in the same way

as a closed function )̂ from the domain. The remaining quantifi-

cation over the channel name and the continuation session is as

usual. The disjointness constraint forces the channel name to be

different from any name in U . In the body of the type we have a

function that takes an argument of type )̂ U . It returns a function

that takes a channel 2 along with the resources provided by the

state Σ̂ U . It returns the updated channel type and removes the re-

sources which are on the way to the receiver.

The previous examples correspond to the following instantia-

tions of gsend:

• send0 = gsend I ∗ (__. · ) (__. Int)

where ∗ : Dom(I) is the unique value of this type;

• send1 = Λ(U : Dom(X)).

gsend X U (_U.U ↦→ (′) (_U.ChanU);

• send2 = Λ(U : Dom(X)).Λ(V : Dom(X)).

gsend (X # X) (U, V) (_W.c1 W ↦→ (′, c2 W ↦→ (′′)

(_W.Chan (c1 W) × Chan (c2 W))

Kinds  ::= Type | Session | State | Shape |

Dom(# ) |  →  

Labels ℓ ::= 1 | 2

Types ), (, # , �, Σ ::= U | ) ) | _(U : Dom(# )).) |

Expression Types ∀(U :  ). C⇒ ) | (Σ; ) → ∃Γ.Σ; ) ) |

Chan� | [(] | Unit | ) ×) |

Session Types !(∃U : Dom(# ).Σ; ) ).( |

?(∃U : Dom(# ).Σ; ) ).( |

( ⊕ ( | ( & ( | End | ( |

Shapes I | X | # # # |

Domains ∗ | �, � | cℓ � |

Session State · | � ↦→ ( | Σ, Σ

Type Environments Γ ::= · | Γ, G : ) | Γ, U :  | Γ, � #�

Constraints C ::= · | Γ, � #�

Expressions 4 ::= E | letG = 4 in 4 | E E | cℓ E | E [) ] |

fork E | new ( accept E | requestE |

send E on E | receive E | select ℓ on E |

case E of{4 ; 4} | close E

Values E ::= G | chanU | unit | (E, E) |

_(Σ; G : ) ).4 | Λ(U :  ). C⇒ E

Configurations � ::= 4 | (� ‖�) | aU, U ↦→ (. � | aG : [(] . �

Expression Contexts E ::= � | letG = E in 4

Configuration Contexts C ::= � | aU, U ↦→ (. C | aG : [(] . C | (C ‖�)

Figure 1: Syntax of PolyVGR

3 FORMAL SYNTAX AND SEMANTICS OF
POLYVGR

3.1 Syntax

Figure 1 defines the syntax of PolyVGR starting with kinds and

types. Different metavariables for types indicate their kinds with)

as a fallback. Kinds  distinguish between plain types (Type), ses-

sion types (Session ranged over by metavariable (), states (State

ranged over by Σ), shapes (Shape ranged over by # ), domains

(Dom(# ) ranged over by �), and arrow kinds. The kind for do-

mains depends on shapes. This dependency as well as the intro-

duction rules for arrow kinds are very limited as they are tailored

to express channel references as discussed in Section 2.3.

The type language comprises variables U , application, and ab-

straction over domains to support arrow kinds. Universal quan-

tification over types of any kind is augmented with constraints C,

function types contain pre- and post-states as well as existential

quantification as explained in Section 2.1. There are channel refer-

ences that refer to a domain, access points that refer to a session

type, the unit type (representing base types), and products to char-

acterize the values of expressions. Session type comprise sending

and receiving (cf. Section 2.3), as well as choice and branch types

limited to two alternatives, End to indicate the end of a protocol,
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and ( to indicate the dual of a session type (which flips sending

and receiving operations as well as choice and branch). Shapes

comprise the empty shape I, the single-channel shape X, and the

combination of two shapes _ # _. The corresponding domains are

the empty domain ∗, the combination of two domains _, _, and the

first/second projection of a domain. The latter selects a component

of a combined domain. A session state can be empty, a binding of a

single-channel domain to a session type, or a combination of states.

Most of the time, the domain in the binding is a variable.

Type environments Γ contain bindings for expression variables

and type variables, as well as disjointness constraints between do-

mains. Constraints C are type environments restricted to bindings

of disjointness constraints.

Following VGR [37], the expression language is presented in

A-normal form [11], which means that the subterms of each non-

value expression are syntactic values E and sequencing of execu-

tion is expressed using a single let expression. This choice simpli-

fies the dynamics as there is only one kind of evaluation context

E, which selects the header expression of a let. The type system

performs best (i.e., it is most permissive) on expressions in strict

A-normal form, where the body of a let is either another let or

a syntactic value. Any expression can be transformed into strict

A-normal form with a simple variation of the standard transfor-

mation from the literature. Strict A-normal form is closed under

reduction.

Besides values and the let expression, there is function appli-

cation, projecting a pair, type application, fork to start processes,

accepting and requesting a channel, sending and receiving, selec-

tion (i.e. sending) of a label and branching on a received label, and

closing a channel.

Values are variables, channel references, the unit value, pairs of

values, lambda abstractions, and type abstractionswith constraints

— their body is restricted to a syntactic value to avoid unsoundness

in the presence of effects.

Configurations� describe processes. They are either expression

processes, parallel processes, channel abstraction— it abstracts the

two ends of a channel at once, and access point creation.

We already discussed expression contexts. Configuration con-

texts C enable reduction in any configuration context, also under

channel and access point abstractions.

3.2 Statics for types

Many of the judgments defining the type-level statics are mutually

recursive. We start with

• context formation ⊢ Γ,

• kind formation Γ ⊢  ,

• type formation Γ ⊢ ) :  .

All judgments depend on context formation, which depends on

kind and type formation. Based on these notions we define

• type conversion ) ≡ ) ,

• constraint entailment Γ ⊢ C,

• context restriction operators ⌊Γ⌋ and ⌈Γ⌉,

• disjoint context extension operator Γ ,# Γ.

Context formation (Figure 2) is standard up to the case for dis-

jointness constraints. For those, we have to show that each domain

CF-Empty

⊢ ·

CF-ConsKind

⊢ Γ Γ ⊢  U ∉ dom(Γ)

⊢ Γ, U :  

CF-ConsType

⊢ Γ Γ ⊢ ) : Type G ∉ dom(Γ)

⊢ Γ, G : )

CF-ConsCstr

⊢ Γ Γ ⊢ �1 : Dom(#1) Γ ⊢ �2 : Dom(#2)

⊢ Γ, �1 #�2

Figure 2: Context formation (⊢ Γ)

KF-Type

Γ ⊢ Type

KF-Session

Γ ⊢ Session

KF-State

Γ ⊢ State

KF-Shape

Γ ⊢ Shape

KF-Dom

Γ ⊢ # : Shape

Γ ⊢ Dom(# )

KF-Arr

Γ ⊢  1 Γ ⊢  2

Γ ⊢  1 →  2

Figure 3: Kind formation (Γ ⊢  )

is wellformed with respect to the current context Γ, which may be

needed to construct the shape and then the domain.

Kind formation is in Figure 3. Most kinds are constants, domains

must be indexed by shapes, arrow kinds are standard.

Figures 4 and 5 contain the rules for type formation and kinding.

The rules for variables and application are standard. Abstractions

(rule K-Lam) are severely restricted. Their argument must be a do-

main and their result must be Type or Shape. Moreover, the body

can only refer to the argument domain; all other domains are re-

moved from the assumptions. Constrained universal quantification

(rule K-All) is standard.

To form a function type, rule K-Arr asks that the argument state

and type are wellformed with respect to the assumptions. The re-

turn state and typemust be wellformedwith respect to the assump-

tions extended with the state Γ2 of channels created by the func-

tion. This state must be disjoint from the assumptions as indicated

by Γ1 ,# Γ2 (see Figure 8). We also make sure that Γ2 only contains

domains.

A channel type can be formed from any single-channel domain

of shape X (rule K-Chan). The rules for access points, unit, and

pairs are straightforward and standard.

The rule K-Send and K-Recv control wellformedness of sending

and receiving types. In both cases, we require that both the state

and the type describing the transmitted value can only reference

the domain abstracted in the existential. This restriction is nec-

essary to enforce proper transfer of channel ownership between

sender and receiver.

The remaining rules for session types are standard.

Figure 5 contains the rules for shapes, domains, and states. We

discussed shapes with their syntax already. The domain rules are

similar to product rules with the additional disjointness constraint

6
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K-Var

Γ, U :  ⊢ U :  

K-App

Γ ⊢ )1 :  1 →  2 Γ ⊢ )2 :  1

Γ ⊢ )1 )2 :  2

K-Lam

Γ ⊢ # : Shape

⌊Γ⌋, U : Dom(# ) ⊢ ) :   ∈ {Type, State}

Γ ⊢ _(U : Dom(# )).) : Dom(# ) →  

K-All

⊢ Γ, U :  ,C Γ, U :  ,C ⊢ ) : Type

Γ ⊢ ∀(U :  ). C⇒ ) : Type

K-Chan

Γ ⊢ � : Dom(X)

Γ ⊢ Chan� : Type

K-Arr

Γ1 ⊢ Σ1 : State Γ1 ⊢ )1 : Type

Γ1 ,# Γ2 ⊢ Σ2 : State Γ1 ,# Γ2 ⊢ )2 : Type

⊢ Γ1 ,# Γ2 Γ2 = ⌈Γ2⌉

Γ1 ⊢ (Σ1; )1 → ∃Γ2.Σ2 ; )2) : Type

K-AccessPoint

Γ ⊢ ( : Session

Γ ⊢ [(] : Type

K-Unit

Γ ⊢ Unit : Type

K-Pair

Γ ⊢ )1 : Type Γ ⊢ )2 : Type

Γ ⊢ )1 ×)2 : Type

K-Send

Γ ⊢ # : Shape ⌊Γ⌋, U : Dom(# ) ⊢ Σ : State

⌊Γ⌋, U : Dom(# ) ⊢ ) : Type Γ ⊢ ( : Session

Γ ⊢ !(∃U : Dom(# ).Σ; ) ).( : Session

K-Recv

Γ ⊢ # : Shape ⌊Γ⌋, U : Dom(# ) ⊢ Σ : State

⌊Γ⌋, U : Dom(# ) ⊢ ) : Type Γ ⊢ ( : Session

Γ ⊢ ?(∃U : Dom(# ).Σ; ) ).( : Session

K-Branch

Γ ⊢ (1 : Session Γ ⊢ (2 : Session

Γ ⊢ (1 & (2 : Session

K-Dual

Γ ⊢ ( : Session

Γ ⊢ ( : Session

K-Choice

Γ ⊢ (1 : Session Γ ⊢ (2 : Session

Γ ⊢ (1 ⊕ (2 : Session

K-End

Γ ⊢ End : Session

Figure 4: Type formation, Part I (Γ ⊢ ) :  )

on the components of the combined domain. Empty states are triv-

ially wellformed. A single binding is wellformed if it maps a single-

channel domain to a session type.

Figure 6 defines type conversion, where we omit the standard

rules for reflexivity, transitivity, symmetry, and congruence. Con-

version comprises beta reduction for functions and pairs, and sim-

plification of the dual operator: End is self-dual, the dual operator

is involutory, for sending/receiving as well as for choice/branch

the dual operator flips the direction of the communication.

Conversion is needed in the context of the dual operator, be-

cause a programmer may use the dual operator in a type. If this

type is polymorphic over a session-kinded type variable U , then

K-ShapeEmpty

Γ ⊢ I : Shape

K-ShapeChan

Γ ⊢ X : Shape

K-ShapePair

Γ ⊢ #1 : Shape Γ ⊢ #2 : Shape

Γ ⊢ #1 # #2 : Shape

K-DomEmpty

Γ ⊢ ∗ : Dom(I)

K-DomMerge

Γ ⊢ �1 : Dom(#1) Γ ⊢ �2 : Dom(#2) Γ ⊢ �1 #�2

Γ ⊢ �1, �2 : Dom(#1 # #2)

K-DomProj

Γ ⊢ � : Dom(#1 # #2)

Γ ⊢ cℓ � : Dom(#ℓ )

K-StEmpty

Γ ⊢ · : State

K-StChan

Γ ⊢ � : Dom(X) Γ ⊢ ( : Session

Γ ⊢ � ↦→ ( : State

K-StMerge

Γ ⊢ Σ1 : State

Γ ⊢ Σ2 : State Γ ⊢ dom(Σ1) # dom(Σ2)

Γ ⊢ Σ1, Σ2 : State

Figure 5: Type formation, Part II (Γ ⊢ ) :  )

TC-TApp

(_(U : Dom(# )).)1) )2 ≡ {)2/U})1

TC-Proj

cℓ (�1, �2) ≡ �ℓ

TC-DualEnd

End ≡ End

TC-DualVar

U ≡ U

TC-DualSend

!(∃U : Dom(# ).Σ; ) ).( ≡ ?(∃U : Dom(# ).Σ; ) ).(

TC-DualRecv

?(∃U : Dom(# ).Σ; ) ).( ≡ !(∃U : Dom(# ).Σ; ) ).(

TC-DualChoice

(1 ⊕ (2 ≡ (1 & (2

TC-DualBranch

(1 & (2 ≡ (1 ⊕ (2

Figure 6: Type conversion () ≡ ) )

the operator cannot be fully eliminated as in U . Once a type appli-

cation instantiates U , we invoke conversion to enable pushing the

dual operator further down into the session type.

The conversion judgment does not destroy the simple inversion

properties of the expression and value typing rules as it is explic-

itly invoked in just two expression typing rules: T-Send for the

send · on · operation and T-TApp for type application (see Figure 10).

Constraint entailment is defined structurally in Figure 7. Dis-

jointness of domains can hold by assumption. Disjointness is sym-

metric. The empty domain is disjoint with any other domain. Dis-

jointness distributes over combination of domains and is compat-

ible with projections. It extends to conjunctions of constraints in

the obvious way.
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CE-Axiom

Γ, �1 #�2 ⊢ �1 #�2

CE-Sym

Γ ⊢ �2 #�1

Γ ⊢ �1 #�2

CE-Empty

Γ ⊢ � # ∗

CE-Split

Γ ⊢ � # (�1, �2)

Γ ⊢ � #�1 Γ ⊢ � #�2

CE-Merge

Γ ⊢ � #�1 Γ ⊢ � #�2

Γ ⊢ � # (�1, �2)

CE-ProjMerge

Γ ⊢ �1 # c1 �2 Γ ⊢ �1 # c2 �2

Γ ⊢ �1 #�2

CE-ProjSplit

Γ ⊢ �1 #�2

Γ ⊢ �1 # cℓ �2

CE-Empty

Γ ⊢ ·

CE-Cons

Γ ⊢ C Γ ⊢ �1 #�2

Γ ⊢ C, �1 #�2

Figure 7: Constraint entailment (Γ ⊢ C)

Γ1 ,# Γ2 = Γ1, Γ2,C2,C12 where

C2 = {U1 # U2 | U1, U2 ∈ dom(⌈Γ2⌉), U1 ≠ U2}

C12 = {U1 # U2 | U1 ∈ dom(⌈Γ1⌉), U2 ∈ dom(⌈Γ2⌉)}

Figure 8: Disjoint context extension (Γ ,# Γ)

T-Var

Γ, G : ) ⊢ G : )
T-Unit

Γ ⊢ unit : Unit

T-Pair

Γ ⊢ E1 : )1 Γ ⊢ E2 : )2

Γ ⊢ (E1, E2) : )1 ×)2

T-TAbs

Γ ⊢ ∀(U :  ). C⇒ ) : Type Γ, U :  ,C ⊢ E : )

Γ ⊢ Λ(U :  ). C⇒ E : ∀(U :  ). C⇒ )

T-Chan

Γ ⊢ � : Dom(X)

Γ ⊢ chan� : Chan�

T-Abs

Γ1 ⊢ (Σ1; )1 → ∃Γ2.Σ2 ; )2) : Type

Γ1, G : )1; Σ1 ⊢ 4 : ∃Γ2.Σ2 ;)2

Γ1 ⊢ _(Σ1 ; G : )1).4 : (Σ1; )1 → ∃Γ2.Σ2 ; )2)

Figure 9: Value typing (Γ ⊢ E : ) )

The context restriction operators, ⌊Γ⌋ and ⌈Γ⌉, are a technical

device. Both operators keep only bindings of type variables. One re-

moves all domain bindings and the other removes all non-domain

bindings.

Figure 8 defines the operator Γ1 ,# Γ2. The assumption is that Γ1
is known to contain disjoint bindings. The generated constraints

C2 make sure that Γ2’s bindings are also disjoint and C12 ensures

that they are also disjoint from Γ1’s bindings.

3.3 Statics for expressions and processes

As the syntax of expressions obeys A-normal form, there are three

main judgments

• value typing Γ ⊢ E : ) ,

• expression typing Γ; Σ ⊢ 4 : ∃Γ.Σ;) , and

• configuration typing Γ; Σ ⊢ � .

The rules in Figure 9 define the value typing judgment that applies

to syntactic values. The most notable issue with these rules is that

they do not handle states. As syntactic values have no effect, they

cannot affect the state and this restriction is already stated in the

typing judgment.

The rules for variables, unit, pairs, and type abstraction are stan-

dard. Channel values refer to single-channel domains. Rule T-Abs

for lambda abstraction checks wellformedness of the function type

and invokes expression typing to obtain the return state and type.

Figure 10 contains the rules for expression typing. We concen-

trate on the state-handling aspect as the value level is mostly stan-

dard. Recall that we assume expressions are in strict A-normal

form, which means that every expression consists of a cascade of

let expressions that ends in a syntactic value. Rule T-Val embeds

values in expression typing. It is special as it threads the entire

state Σ even though it makes no use of it. This special treatment

is needed at the end of a let cascade because rule T-Let splits the

incoming state for letG = 41 in 42 into the part Σ1 required by the

header expression 41 and Σ2 for the continuation 42, but then it

feeds the entire outgoing state of 41 combined with Σ2 into the

continuation 42. All remaining rules only take the portion of the

incoming state that is processed by the operation, so they are de-

signed to be applied in the header position 41 of a let. Thankfully,

this use is guaranteed by strict A-normal form.

The remaining rules all assume the expression is used in header

position of a let. Projection (rule T-Proj) requires no state. Type

application (rule T-TApp) checks the constraints after instantiation

and enables conversion of the instantiated type. Conversion is needed

(among others) to expose the session type operators (see discussion

for Figure 6).

Function application (rule T-App) just rewrites the function type

to an expression judgment. The existential part of this judgment is

reintegrated into the state in the T-Let rule, which inserts the neces-

sary disjointness constraints via the disjoint append-operator _ ,# _.

As the T-Let rule presents the function application exactly with the

state it can handle, we must delay the creation of the constraints

to the let-expression because it is here that the return state must

be merged with the state for the continuation, which may contain

additional domains. Given that the existentially bound domains

are subject to U-renaming, we can freely impose the correspond-

ing disjointness constraints to force local freshness of the domains.

Explicit disjointness is required because of the axiomatic nature of

our constraint system.

The new expression creates an access point which requires no

state (rule T-New). The rules T-Reqest and T-Accept type the estab-

lishment of a connection via an access point. They return one end

of the freshly created channel, so that the channel’s domain is ex-

istentially quantified. The kind of this domain isDom(X) (omitted

in the rules as it is implied by the binding).

The rule T-Send for sending is particularly interesting. It splits

the incoming state into the channel � on which the sending takes

place and the state Σ, which will be passed along with the value.

The rule guesses a domain �′ such that the state expected in the

8
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T-Let

Γ1; Σ1 ⊢ 41 : ∃Γ2.Σ
′
2 ;)1 Γ1 ,# Γ2, G : )1; Σ2, Σ

′
2 ⊢ 42 : ∃Γ3 .Σ3 ;)2

Γ1 ,# Γ2, G : )1 ⊢ Σ2, Σ
′
2 : State

Γ1; Σ1, Σ2 ⊢ letG = 41 in 42 : ∃Γ2, Γ3 .Σ3 ;)2

T-Val

Γ ⊢ E : )

Γ; Σ ⊢ E : ∃·.Σ;)

T-Proj

Γ ⊢ E : )1 ×)2

Γ; · ⊢ cℓ E : ∃·.·;)ℓ

T-New

Γ ⊢ ( : Session

Γ; · ⊢ new ( : ∃·.·; [(]

T-App

Γ1 ⊢ E1 : (Σ1; )1 → ∃Γ2.Σ2 ; )2) Γ1 ⊢ E2 : )1

Γ1; Σ1 ⊢ E1 E2 : ∃Γ2.Σ2 ;)2

T-TApp

Γ ⊢ E : ∀(U :  ). C⇒ )

Γ ⊢ ) ′ :  Γ ⊢ {) ′/U}C {) ′/U}) ≡ ) ′′

Γ; · ⊢ E [) ′] : ∃·.·;) ′′

T-Reqest

Γ ⊢ E : [(]

Γ; · ⊢ requestE : ∃U : Dom(X).U ↦→ (;ChanU

T-Accept

Γ ⊢ E : [(]

Γ; · ⊢ accept E : ∃U : Dom(X).U ↦→ (;ChanU

T-Send

Γ ⊢ �′ : Dom(# ) {�′/U′}Σ′ ≡ Σ {�′/U′}) ′ ≡ )

Γ ⊢ � : Dom(X) Γ ⊢ E1 : ) Γ ⊢ E2 : Chan�

Γ; Σ, � ↦→ !(∃U′ : Dom(# ).Σ′ ; ) ′).( ⊢ send E1 on E2 : ∃·.� ↦→ ( ;Unit

T-Recv

Γ ⊢ � : Dom(X) Γ ⊢ E : Chan�

Γ;� ↦→ ?(∃U′ : Dom(# ).Σ′ ; ) ′).( ⊢ receive E :

∃(U′ : Dom(# )).Σ′ , � ↦→ ( ;) ′

T-Fork

Γ ⊢ E : (Σ; Unit → ·; Unit)

Γ; Σ ⊢ fork E : ∃·.·;Unit

T-Close

Γ ⊢ E : Chan�

Γ;� ↦→ End ⊢ close E : ∃·.·;Unit

T-Select

Γ ⊢ E : Chan�

Γ;� ↦→ (1 ⊕ (2 ⊢ select ℓ on E : ∃·.� ↦→ (ℓ ;Unit

T-Case

Γ1 ⊢ E : Chan� (∀ℓ) Γ1; Σ1, � ↦→ (ℓ ⊢ 4ℓ : ∃Γ2 .Σ2 ;)

Γ1; Σ1, � ↦→ (1 & (2 ⊢ case E of{41; 42} : ∃Γ2.Σ2 ;)

Figure 10: Expression typing (Γ; Σ ⊢ 4 : ∃Γ.Σ;) )

session type matches the state Σ and the type expected by the ses-

sion type matches the type of the provided argument. This match-

ing is achieved with a type conversion judgment that implements

reduction for functions and pairs at the type level (see Figure 6).

The outgoing state only retains the channel � bound to the contin-

uation session ( .

T-Exp

Γ; Σ ⊢ 4 : ∃Γ′ .·;)

Γ; Σ ⊢ 4

T-Par

Γ; Σ1 ⊢ �1 Γ; Σ2 ⊢ �2

Γ; Σ1, Σ2 ⊢ �1 ‖�2

T-NuChan

U, U′ not free in Γ Γ ⊢ ( : Session

Γ ,# U : Dom(X) ,# U
′ : Dom(X); Σ, U ↦→ (, U′ ↦→ ( ⊢ �

Γ; Σ ⊢ aU, U′ ↦→ (. �

T-NuChanClosed

U, U′ not free in Γ Γ ,# U : Dom(X) ,# U
′ : Dom(X); Σ ⊢ �

Γ; Σ ⊢ aU, U′ ↦→ End. �

T-NuAccess

G not free in Γ Γ ⊢ ( : Session Γ, G : [(]; Σ ⊢ �

Γ; Σ ⊢ aG : [(] . �

Figure 11: Configuration typing (Γ; Σ ⊢ �)

ER-BetaFun

(_(Σ; G : ) ).41) E2 ↩→4 {E2/G}41

ER-BetaPair

cℓ (E1, E2) ↩→4 Eℓ

ER-BetaAll

(Λ(U :  ). C⇒ E) [) ] ↩→4 {) /U}E

ER-BetaLet

letG = E1 in 42 ↩→4 {E1/G}42

ER-Lift

41 ↩→4 42

letG = 41 in 4 ↩→4 letG = 42 in 4

Figure 12: Expression reduction (4 ↩→4 4)

Receiving (rule T-Recv) is much simpler: we treat the received

channels like new created one in the existential component of the

typing judgment.

Forking (rule T-Fork) starts a new process from a Unit → Unit

function. The new process takes ownership of all incoming state.

Closing a channel (rule T-Close) just requires a single channel with

type End and returns an empty state.

Rule T-Select performs the standard rewrite of the session type

for selecting a branch in the protocol. The dual ruleT-Case is slightly

more subtle. It requires that both branches end in the same state,

that is, they must create channels and operate on open channels in

the same way (or close them before returning from the branch).

Figure 11 contains the typing rules for %>;~+�' processes. They

are straightforward with one exception. In rule T-NuChan, we need

to make sure that the newly introduced channel ends are disjoint

(i.e., different) from each other and from previously defined do-

mains. Rule T-NuChanClosed replaces T-NuChan after the channel

is closed. The difference is that it no longer places the channels in

the state Σ. This way, operations on the closed channel are disabled,

but it is still possible to have references to it in dead code.
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CC-Null

� ‖ unit ≡ �

CC-Comm

�1 ‖�2 ≡ �2 ‖�1

CC-Lift

�1 ≡ �2

C[�1] ≡ C[�2]

CC-Assoc

�1 ‖ (�2 ‖�3) ≡ (�1 ‖�2) ‖�3

CC-Swap

aU, U′ ↦→ (. � ≡ aU′, U ↦→ (. �

CC-Scope-Chan

U, U′ not free in �1

�1 ‖ (aU, U
′ ↦→ (. �2) ≡ aU, U

′ ↦→ (. (�1 ‖�2)

CC-Scope-Access

G not free in �1

�1 ‖ (aG : [(] . �2) ≡ aG : [(] . (�1 ‖�2)

Figure 13: Configuration congruence (� ≡ �)

CR-Fork

C[E[fork E]] ↩→� C[(E unit) ‖ E[unit]]

CR-New

G fresh

C[E[new (]] ↩→� C[aG : [(] . E[G] ]

CR-Expr

41 ↩→4 42

C[41] ↩→� C[42]

CR-ReqestAccept

U, U′ fresh

� ≡ C[aG : [(] . (E1 [requestG] ‖ E2 [accept G] ‖�
′)]

� ↩→� C[aG : [(] . aU, U′ ↦→ (. (E1 [chanU] ‖ E2 [chan U
′] ‖�′)]

CR-SendRecv

� ≡ C[aU, U′ ↦→ !(∃U : Dom(# ).Σ; ) ).( . ( E1 [send E on chanU]

‖ E2 [receive chanU
′] ‖�′)]

� ↩→� C[aU, U′ ↦→ (. (E1 [unit] ‖ E2 [E] ‖�
′)]

CR-SelectCase

� ≡ C[aU, U′ ↦→ (1 ⊕ (2. ( E1 [select ℓ on chanU]

‖ E2 [case chanU
′ of{41; 42}] ‖�

′)]

� ↩→� C[aU, U′ ↦→ (ℓ . (E1 [unit] ‖ E2 [4ℓ ] ‖�
′)]

CR-Close

� ≡ C[aU, U′ ↦→ End. (E1 [close chanU] ‖ E2 [close chanU
′] ‖�′)]

� ↩→� C[aU, U′ ↦→ End. (E1 [unit] ‖ E2 [unit] ‖�
′)]

Figure 14: Configuration reduction (� ↩→� �)

3.4 Dynamics

Figure 12 defines expression reduction, which is standard for a

polymorphic call-by-value lambda calculus. Recall that an evalu-

ation context just selects the header of a let expression.

Figure 13 defines a congruence relation on processes. This stan-

dard relation (process composition is commutative, associativewith

the unit process as a neutral element, and compatible with channel

and scope abstractions) enables us to reorganize processes such

that process reductions are simple to state. Channel abstraction

may swap the channel names.

Figure 14 defines reduction for processes. Rules CR-Fork and

CR-New apply to an expression process. The fork expression cre-

ates a new process that applies the fork’s argument to unit while

the old process continues with unit. The new expression creates a

new access point and leaves its name in the evaluation context.

The remaining rules all concern communication between two

processes. Our rules have explicit assumptions that congruence

rearranges processes as needed for the reductions to apply. All

these rules involve binders and assume an additional process �′

running in parallel with the processes participating in the redex,

which keeps the processes with references to the binder.

Rule CR-ReqestAccept creates a channel when there is a re-

quest and an accept on the same access point. The reduction cre-

ates the two ends of the new channel and passes them to the pro-

cesses.

Rules CR-SendRecv and CR-SelectCase are standard. They could

be blocked without the congruence rule CC-Swap in place.

RuleCR-Close is slightly unusual for readers familiar with linear

session type calculi. The rule does not remove the closed channel

from the configuration because the process under the binder may

still contain (dead) references to the channel. This design makes

reasoning about configurations in final state slightlymore involved.

4 METATHEORY

We establish session fidelity and type soundness by applying the

usual syntactic methods based on subject reduction and progress.

Our subject reduction result for expressions applies in any context.

As the type system of PolyVGR includes a conversion judgment,

we can only prove subject reduction up to conversion. Subject re-

duction also holds for configurations.

All proofs along with additional lemmas etc may be found in

the supplemental material.

Lemma 4.1 (Subject Reduction).

(1)

⊢ Γ1
Γ1 ⊢ Σ1 : State Γ1; Σ1 ⊢ 4 : ∃Γ2.Σ2 ;) 4 ↩→4 4

′

∃) ′ . Γ1; Σ1 ⊢ 4
′ : ∃Γ2.Σ2 ;)

′ ∧) ′ ≡ )

(2)
⊢ Γ Γ ⊢ Σ : State Γ; Σ ⊢ � � ↩→� �

′

∃Σ′ . Γ; Σ′ ⊢ �′

As configuration reduction is applied modulo the congruence

relation, we also need to show that congruence preserves typing.

Lemma 4.2 (Subject Congruence).

⊢ Γ Γ ⊢ Σ : State Γ; Σ ⊢ � � ≡ �′

Γ; Σ ⊢ �′

It is tricky to state a progress property in the context of pro-

cesses, in particular when deadlocks may occur. Hence, we define

several predicates on expressions to state progress concisely. The

Value4 predicate should be self explanatory. The Comm4 predi-

cate characterizes expressions that cannot reduce at the expression

level, but require reduction at the level of configurations. Of those,

the fork _ case is harmless, but the other cases require interaction

with other processes to reduce.

Definition 4.3. The predicates Value4 and Comm4 are defined

inductively.

10
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• Value4 if exists E such that 4 = E .

• Comm4 if one of the following cases applies

– 4 = fork _(Σ; G : ) ).41 ,

– 4 = new ( ,

– 4 = accept E ,

– 4 = requestE ,

– 4 = send E on chan� ,

– 4 = receive chan� ,

– 4 = select ℓ on chan� ,

– 4 = case chan� of{41; 42},

– 4 = close chan� , or

– 4 = letG = 41 in 42
where Comm 41.

We also need a predicate that characterizes contexts built in

a configuration. Besides type variables and constraints, they can

only bind access points.

Definition 4.4. The predicate Outer Γ is defined by

• Outer ·,

• Outer (Γ, U :  ) if Outer Γ,

• Outer (Γ, G : ) ) if Outer Γ and ) = [(] , and

• Outer (Γ, �1 ,# �2) if Outer Γ.

We are now ready to state progress for expressions. A typed

expression is either a value, stuck on a communication (or fork),

or it reduces.

Lemma 4.5 (Progress for expressions).

⊢ Γ Outer Γ Γ ⊢ Σ : State Γ; Σ ⊢ 4 : ∃Γ′ .Σ′ ;) ′

Value4 ∨ Comm4 ∨ ∃4′ . 4 ↩→4 4
′

We also need to characterize configurations. A final configura-

tion cannot reduce in a good way: All processes are reduced to

values, all protocols on channels have concluded as indicated by

their session type End, and there may be access points.

Definition 4.6. The predicate Final� is defined inductively by

the following cases:

• Final E (an expression process reduced to a value),

• Final (�1 ‖�2) if Final�1 and Final�2,

• Final (aG : [(] . �1) if Final�1, or

• Final (aU, U′ ↦→ End. �1) if Final�1.

The other possibility is that a configuration is deadlocked. The

following definition lists all the ways in which reduction of a con-

figuration may be disabled.

Definition 4.7. The predicate Deadlock� holds for a configura-

tion � iff:

(1) For all configuration contexts C, if � = C[4], then either

Value4 or Comm 4 and 4 ≠ fork E and 4 ≠ new ( .

(2) For all configuration contexts C, if� = C[aG : [(] . �′], then

• if �′
= C1 [E1 [requestG]], then there is no C2, E2 such

that �′
= C2 [E2 [acceptG]],

• if �′
= C1 [E1 [accept G]], then there is no C2, E2 such

that �′
= C2 [E2 [requestG]].

(3) For all configuration contexts C, if � = C[aU1, U2 ↦→ (. �′],

then

• if�′
= C1 [E1 [send E on chanUℓ ]], then there is no C2, E2

such that �′
= C2 [E2 [receive chanU3−ℓ ]],

• if �′
= C1 [E1 [receive chanUℓ ]], then there is no C2, E2

such that �′
= C2 [E2 [send E on chanU3−ℓ ]],

• if �′
= C1 [E1 [select ℓ

′ on chanUℓ ]], then there is no C2,

E2 such that �′
= C2 [E2 [case chanU3−ℓ of{41; 42}]],

• if �′
= C1 [E1 [case chanUℓ of{41; 42}]], then there is no

C2, E2 such that �′
= C2 [E2 [select ℓ

′ on chanU3−ℓ ]],

• if �′
= C1 [E1 [close chanUℓ ]], then there is no C2, E2

such that �′
= C2 [E2 [close chanU3−ℓ ]].

Lemma 4.8 (Progress for configurations).

⊢ Γ Outer Γ Γ ⊢ Σ : State Γ; Σ ⊢ �

Final� ∨ Deadlock� ∨ ∃�′. � ↩→� �
′

5 IMPLEMENTATION

Wehave implemented a type checker and an interpreter for PolyVGR

in Haskell. The syntax accepted by the implementation is exactly

as presented in this paper, i.e., type annotations are required at

lambda abstractions for input type and input state.

The implementation of the type checker requires an algorith-

mic formulation of the typing. We briefly sketch how to make the

declarative typing presented in this paper algorithmic.

• The rules for type conversion give rise to a type normal-

ization function. Type conversion can then be decided by

checking alpha-equivalence of normalized types.

• Constraint solving Γ ⊢ C is decidable by normalizing and

decomposing Γ and C into closed sets of atomic constraints

�Γ and �C and checking �Γ ⊇ �C. Decomposition is done

according to CE-Split and CE-Sym, yielding constraints of

form 31 #32 where 38 = cℓ1 . . . cℓ=8 U . Then the closure is

taken with respect to CE-ProjMerge, CE-ProjSplit, and

CE-Sym.

• The T-Let and T-Par rules non-deterministically split the in-

put state Σ1, Σ2 between the subterms. The implementation

threads the entire input state through the first subterm and

uses the resulting output state as the input for the second

subterm.

• In T-Casewe have to check if the existential parts ∃Γ8 .Σ8 ;)8
of both branch typings are equal. This equality should be up

to alpha-renaming and reordering of the variables bound in

Γ1 and Γ2 and up the reordering of the bindings in Σ1 and

Σ2. This equality can be decided by computing a renaming

d on type variables such that d)1 = )2. If all variables in the

domain of d are bound in Γ1 and dΓ1 = Γ2 and dΣ1 = Σ2

up to reordering, then both existential packages are equal.

A similar approach is used in T-Send, where the existential

package of the session type needs to be matched against the

current context and state.

6 EXTENSIONS

Typestate is notoriously difficult to scale up to sum types or, more

generally, to algebraic datatypes. In this section, we sketch our ap-

proach to add sum types to PolyVGR and offer some insights into

the additional problems involved in handling recursive datatypes

like lists.

To understand the issues arising with sum types, consider the

type Chan U + Chan V in the context of state Σ. The situation is

clear at run time: we either have a channel described by U or one

described by V . But which channel should be described in the state

11
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Σ? Clearly, Σ = U ↦→ (1; V ↦→ (2 does not work because it does not

express themutual exclusiveness of the presence of U and V . In fact,

if we matched against a value of type Chan U + Chan V , we would

only consume one of U or V and leave the other channel identity

dangling in the outgoing state.

Instead, we propose to add new shapes and domains to the type

system along with the sum type. As we will see, the remaining

features needed to deal with sum types are already provided for.

Types ), # ,� ::= · · · | ) +) | # + # | � + � | iℓ �

Expressions 4 ::= · · · | injℓ E | match E of{G : 4; G : 4}

Sum types comewith the usual introduction and elimination forms,

a sum shape # + # , the domain of a sum shape, and two sum

extractorsi1 � and i2 � pronounced “from”. The domain of a sum

shape is a pair of the domains of the two alternatives of the sum.

The extractors are only applicable to domains of sum shape and

behave like projections as becomes clear from the formation rules

(extending Figure 4):

K-Sum

Γ ⊢ )1 : Type Γ ⊢ )2 : Type

Γ ⊢ )1 +)2 : Type

K-DomFrom

Γ ⊢ � : Dom(#1 + #2)

Γ ⊢ iℓ � : Dom(#ℓ )

K-ShapeSum

Γ ⊢ #1 : Shape Γ ⊢ #2 : Shape

Γ ⊢ #1 + #2 : Shape

K-DomSum

(∀ℓ) Γ ⊢ �ℓ : Dom(#ℓ )

Γ ⊢ �1 + �2 : Dom(#1 + #2)

The typing of sum introduction and elimination needs to be adapted

to account for shapes.

T-Inj1

(∀ℓ) Γ ⊢ Σ̂ℓ : Dom(#ℓ ) → State (∀ℓ) Γ ⊢ )̂ℓ : Dom(#ℓ ) → Type

Γ ⊢ E : ) Γ ⊢ � : Dom(#1) Σ̂1 � ≡ Σ )̂1 � ≡ )

Γ; Σ ⊢ inj1 E : ∃V : Dom(#2) .Σ̂1 �, Σ̂2 V; )̂1 � + )̂2 V

In rule T-Inj1, we are given a value E : ) along with some Σ that

describes the channels contained in E . We assume that the shape

of Σ is described by #1 and corresponding domain � . We further

assume that the alternatives of the sum are described by type func-

tions Σ̂1, )̂1 and Σ̂2, )̂2. The point is that the pair labeled 1 describes

the real resources in E represented by Σ and the pair labeled 2 de-

scribes virtual resources that serve as placeholders to describe the

(non-existent) other alternative of the sum. The two conversions

determine the connection to the real resources.

Injecting the value into the sum type creates a virtual resource

for the non-existing alternative, which is represented by domain V .

The real part—labeled 1—continues to refer to the same resources

� , so that the sharing semantics of further channel references for

those resources is preserved. The virtual part—labeled 2—is never

exercised because the run-time value has the form inj1 E .

The alert reader might wonder why we do not treat inj1 E as a

value. Indeed, inj1 E comes with a reduction to create the virtual

resource V , which returns a syntactic value vinj1 E . We elide the

corresponding value typing rule, which is obtained from T-Inj1 by

stripping the Σ components and assuming the presence of both

domains in Γ.
T-Match

Γ ⊢ � : Dom(#1 + #2) (∀ℓ) Γ ⊢ Σ̂ℓ : Dom(#ℓ ) → State

(∀ℓ) Γ ⊢ )̂ℓ : Dom(#ℓ ) → Type (∀ℓ) )̂ℓ (iℓ �) ≡ )ℓ
Γ ⊢ E : )1 +)2 (∀ℓ) Γ, Gℓ : )̂ℓ (iℓ �); Σ, Σ̂ℓ (iℓ �) ⊢ 4ℓ : ∃Γ

′ .Σ′ ;)

Γ; Σ, Σ̂1 (i1 �), Σ̂2 (i2�) ⊢ match E of{G1 : 41; G2 : 42} : ∃Γ
′ .Σ′ ;)

To match on a value E of sum type the elimination rule T-Match

requires a corresponding domain � of sum shape and we must be

able to partition the incoming state according to its two alterna-

tives. (If one of the alternatives carries no channels, then its shape

is I and the corresponding state is empty.) As in the introduction

rule, the type and state functions )̂ℓ and Σ̂ℓ describe the partition-

ing. The match keeps the selected part of the state, which corre-

sponds to the real resources, and drops the other part, which cor-

responds to the virtual resources.

The same general approach would also work for lists. However,

due to the recursion in the list type, we cannot allow sharing be-

tween values in the list and outside of it. Essentially, a channel

value that is incorporated in a list has to give up its identity, but

at the same time the identity has to be remembered so that the

channel can be reconnected when extracted from the list.

7 RELATED WORK

We do not attempt to survey the vast amount of work in the session

type community, but refer the reader to recent survey papers and

books [3, 6, 13, 21]. Instead we comment on the use of polymor-

phism in session types, the modeling of disjointness in the context

of polymorphism, and potential connections to other work.

7.1 Polymorphism and Session Types

Polymorphism for session types was ignored for quite a while, al-

though there are low-hanging fruit like parameterizing over the

continuation session. The story startswith an investigation of bounded

polymorphism over the type of transmitted values to avoid prob-

lems with subtyping in a c-calculus setting [14].

Wadler [38] includes polymorphism on session types where the

quantifiers ∀ and ∃ are interpreted as sending and receiving types,

similar to Turner’s polymorphic c-calculus [36]. Caires et al. [7],

Pérez et al. [25] consider impredicative quantifiers with session

types using the same interpretation.

Dardha et al. [9] extend an encoding of session types into c-

types with parametric and bounded polymorphism. Lindley and

Morris [22] rely on row polymorphism to abstract over the irrele-

vant labels in a choice, thereby eliding the need for supporting sub-

typing. Their calculus FST (lightweight functional session types)

supports polymorphism over kinded type variables U ::  (.,/ )

where  = Type, . = ◦, and / = c indicates a variable rang-

ing over session types; choosing  = Row yields a row variable.

Almeida et al. [1] consider impredicative polymorphism in the con-

text of context-free session types. Their main contribution is the

integration of algorithmic type checking for context-free sessions

with polymorphism.

All practically oriented works [1, 22] rely on an elaborate kind

system to distinguish linear from non-linear values, session types

from non-session types, and rows from types (in the case of FST).

PolyVGR follows suit in that its kinds distinguish session types and

12
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non-session types. Linearity is elided, but kinds for states, shapes,

and domains are needed to handle channels. As a major novelty,

PolyVGR includes arrow kinds and type-level lambda abstraction,

but restricted such that abstraction ranges solely over domains.

7.2 Polymorphism and Disjointness

Alias types [33] is a type system for a low-level language where the

type of a function expresses the shape of the store on which the

function operates. For generality, function types can abstract over

store locations U and the shape of the store is described by alias-

ing constraints of the form {U ↦→ ) }. Constraint composition re-

sembles separating conjunction [27] and ensures that locations are

unique. Analogous to the channel types in our system, pointers in

the alias types system have a singleton type that indicates their (ab-

stract) store location and they can be duplicated. Alias types also

include non-linear constraints, which are not required in our sys-

tem. Alias types do not provide the means to abstract over groups

of store locations as is possible with our domain/shape approach.

It would be interesting to investigate such an extension to alias

types.

Low-level liquid types [28] use a similar setup as alias typeswith

location-sensitive types to track pointers and pointer arithmetic as

well as to enable strong updates in a verification setting for a C-like

language. They also provide a mechanism of unfolding and folding

to temporarily strengthen pointers so that they can be strongly up-

dated. Such a mechanism is not needed for our calculus as channel

resources are never aliased.

Disjoint intersection types [8] have been conceived to address

the coherence problem of intersection type systems with an ex-

plicit merge operator: if the two “components” of the merge have

the same type, then it is not clear which value should be chosen

by the semantics. They rule out this scenario by requiring differ-

ent types for all components of an intersection. Disjoint polymor-

phism [2] lifts this idea to a polymorphic calculus where type vari-

ables are introduced with disjointness constraints that rule out

overlapping instantiations. Xie et al. [39] show that calculi for dis-

joint polymorphic intersection types are closely related to poly-

morphic record calculi with symmetric concatenation [16].

Disjointness constraints for record types are related to our set-

ting, but the labels in the records types are fixed and two records

are still deemed disjoint if they share labels, as long as the corre-

sponding field types are disjoint. In contrast, we have universal

and existential quantification over domains (generalizing channel

names) and single-channel domains disjoint by our axiomatic con-

struction when composing states.

Morris andMcKinna [23] propose a generic system Rose for typ-

ing features based on row types. Its basis is a partial monoid of

rows, which is chosen according to the application. Using rows for

record types, Rose can be instantiated to support symmetric con-

catenation of records, shadowing concatenation, or even to allow

several occurrences of the same label. While channel names are

loosely related to record label and states might be represented as

records, our axiomatic approach to maintaining disjointness is sig-

nificantly different from their Rose system.

7.3 Diverse Topics

Pucella and Tov [26] give an embedding of a session type calcu-

lus in Haskell. Their embedding is based on Atkey’s parameter-

ized monads [4], layered on top of the IO monad using phantom

types. Their phantom type structure resembles our states where

de Bruijn indices serve as channels names. Linear handling of the

state is enforced by the monad abstraction, while channel refer-

ences can be handled freely. The paper comes with a formalization

and a soundness proof of the implementation. Sackman and Eisen-

bach [29] also encode session types for a single channel in Haskell

using an indexed (parameterized) monad.

A similar idea is the basis for work by Saffrich and Thiemann

[30, 31], which is closely related to our investigation. They also

start from VGR, point out some of its restrictions, but then con-

tinue to define a translation into a linear parameterized monad,

which can be implemented in an existing monomorphic functional

session type calculus [15], extended with some syntactic sugar in

the form of linear records. They prove that there are semantics-

and typing-preserving translations forth and back, provided the

typing of the functional calculus is severely restricted. Our work

removes most of the restrictions of VGR’s type system by using

higher-order polymorphism. It remains to complete the diagram

and identify a polymorphic functional session type calculus (most

likely FST) which is suitable as a translation target.

Hinrichsen et al. [17] describe semantic session typing as an al-

ternative way to establish sound session type regimes. Instead of

delving into syntactic type soundness proofs, they suggest to de-

fine a semantic notion of types and typing on top of an untyped

semantics. Their proposal is based on (step-indexed) logical rela-

tions defined in terms of a suitable program logic [10] and it is

fully mechanized in Coq. Starting from a simple session type sys-

tem, they add polymorphism, subtyping, recursion, and more. It

seems plausible that their model would scale to provide mecha-

nized soundness proofs for PolyVGR.

Balzer and Pfenning [5] considers a notion of manifest shar-

ing in session types. Their notion is substantially different from

our work. PolyVGR facilitates (local) variables, not constrained by

linearity, bound to channel references. Thanks to typestate, the

same reference can refer to a channel in different states at different

points in a program. In manifest sharing, there are globally shared

channels which always offer the same state. Processes can pick up

a shared channel, run an unshared protocol on it, and return it in

the same shared state as before.

8 CONCLUSION

We started this work on two premises:

• We believe it is important to map the unexplored part of the

design space of session type systems based on typestate.

• We believe that there are practical advantages in being able

to write programs with session types in direct style as in

Listing 3.

Looking back, we find that the direct style is scalable, it should be

on the map as it more easily integrates with imperative program-

ming styles and languages, and PolyVGR explains in depth the type

system ingredients needed to decently programwith session types

in direct style. On the other hand, the amount of parameterization
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required in PolyVGR is significant andmay be burdensome for pro-

grammers. We are just starting to gather practical experience with

our implementation of PolyVGR, so we cannot offer a final verdict

at this point.
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A APPENDIX

A.1 Channel Aliasing

The VGR paper proposes the following function sendSend.

fun sendSend u v = send 1 on u; send 2 on v

It takes two channels and sends a number on each. This use is reflected in the following typing.

sendSend : Σ1; Chan D → (Σ1; Chan E → Unit; Σ2); Σ1 (11)

with Σ1 = {D : ! Int.(D , E : ! Int.(E } and Σ2 = {D : (D , E : (E}.

Ignoring the types we observe that it would be semantically sound to pass a reference to the same channel w, say, of session type

!Int.!Int.End for u and v. However, sendSend w w does not type check with the type in (11) because w would have to have identity D

and E at the same time, but state formation mandates they must be different.

In PolyVGR, the type for sendSend would be universally quantified over the channel names:

∀(U : Dom(X)).∀(V : Dom(X)). (U # V) ⇒ ∀(f1 : Session).∀(f2 : Session).

( · ; ChanU → · ; (

{
U ↦→ !(∃U : Dom(I). · ; Int).f1,

V ↦→ !(∃U : Dom(I). · ; Int).f2

}
; Chan V →

{
U ↦→ f1,

V ↦→ f2

}
; Unit))

Wellformedness of states requires that U and V are different because they index the same state. Hence, sendSend w w does not type check

in PolyVGR, either.

Another VGR typing of the same code would be sendSend : Σ1; Chan F → (Σ1; Chan F → Unit; Σ2); Σ1 with Σ1 = {F : ! Int.! Int.(F}

and Σ2 = {F : (F}. With this typing, sendSend w w type checks. Indeed, the typing forces the two arguments to be aliases!

A similar type could be given in PolyVGR:

∀(U : Dom(X) ) .∀(f : Session) .

( · ; ChanU → · ; (U ↦→ !(∃U : Dom(I) . · ; Int) .! (∃U : Dom(I) . · ; Int) .f ; ChanU → U ↦→ f ; Unit) )

Presently it is not possible to give a single type to both aliased and unaliased uses of the function.

A.2 Higher-Order Functions

Section 2 has shown that VGR lacks facilities for abstraction. In this subsection, we give further indication of the flexibility of our system

by discussing different typings for a simple higher-order function.

Consider a higher-order function that is a prototype for a protocol adapter. Given an argument function that runs a protocol, the adapter

adds a prefix to the protocol, perhaps for authentication or accounting. To keep our example simple, the prefix consists of sending a single

number, but more elaborate protocols are possible. The implementation is straightforward:

fun adapter f c =

send 32168 on c;

f c

The first type for f combines the channel creation pattern from Section 2.1 with the flexibility of supporting arbitrarily many channels as

in Section 2.3.4.

∀(= : Shape).∀(Σ̂ : Dom(=) → State).∀()̂ : Dom(=) → Type).

∀(W : Dom(X)).∀(f : Session).∀(f′ : Session).

( · ; (W ↦→ f ; ChanW → ∃U : Dom(=).Σ̂ U,W ↦→ f′ ; )̂ U) →

· ; (W ↦→ !(∃U : Dom(I). · ; Int).f ; ChanW → ∃U : Dom(=).Σ̂ U,W ↦→ f′ ; )̂ U))

(12)

With this PolyVGR type, the function parameter f can create arbitrary many channels and it can return arbitrary values that may or may

not include channels. In the degenerate case where = is I, the universal quantification ∀()̂ : Dom(I) → Type). . . . quantifies over types that

do not contain channel references. Existentially quantified variables, like U , carry an implicit disjointness constraint with any other domain

variable in scope. This constraint ensures that Σ̂ U,W ↦→ f′ is wellformed.

However, there is an issue that the type in (12) does not address. The function parameter f cannot be closed over further channels! To

address that shortcoming requires another style of parameterization over the incoming and the outgoing state of f. The shapes of these

states are unknown and the may be different, so we need two shape parameters. Moreover, these two states never mix, so their domains U′

and U′′ need not be disjoint. For simplicity, we first consider functions that do not create new channels, although both parameterizations

can be combined.
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Removing bindings, which might contain free domain variables

⌊Γ⌋ =




· if Γ = ·

⌊Γ′⌋, U :  if Γ = Γ
′, U :  ∧  ∈ {Shape, Session,Dom(# ) → Type,Dom(# ) → State}

⌊Γ′⌋ if Γ = Γ
′, U :  ∧  ∈ {Dom(# ), State, Type}

⌊Γ′⌋ if Γ = Γ
′, G : )

⌊Γ′⌋ if Γ = Γ
′, �1 #�2

Removing non-domain bindings

⌈Γ⌉ =





· if Γ = ·

⌈Γ′⌉, U : Dom(# ) if Γ = Γ
′, U : Dom(# )

⌈Γ′⌉ if Γ = Γ
′, U :  ∧  ≠ Dom(# )

⌈Γ′⌉ if Γ = Γ
′, G : )

⌈Γ′⌉ if Γ = Γ
′, �1 #�2

Figure 15: Context restriction (⌊Γ⌋ and ⌈Γ⌉)

∀(=′ : Shape).∀(Σ̂′ : Dom(=′) → State).

∀(=′′ : Shape).∀(Σ̂′′ : Dom(=′′) → State).∀()̂ ′′ : Dom(=′′) → Type).

∀(U′ : Dom(=′)).∀(U′′ : Dom(=′′)).∀(W : Dom(X)). (U′ #W, U′′ #W) ⇒

∀(f : Session).∀(f′ : Session).

( · ; (Σ̂′ U′, W ↦→ f ; ChanW → Σ̂
′′ U′′,W ↦→ f′ ; )̂ ′′ U′′) →

· ; (Σ̂′ U′, W ↦→ !(∃U : Dom(I). · ; Int).f ; ChanW → Σ̂
′′ U′′,W ↦→ f′ ; )̂ ′′ U′′))

(13)

To parameterize over functions with arbitrary free channels and which may create channels, we need one more ingredient to describe

the shape of the new state that contains the descriptions of the newly created channels. This extra shape and its use is highlighted in the type.

∀(=′ : Shape) .∀(Σ̂′ : Dom(=′ ) → State) .

∀(=′′ : Shape) .

∀(= : Shape) .∀(Σ̂′′ : Dom(= # =′′ ) → State) .∀()̂ ′′ : Dom(= # =′′ ) → Type) .

∀(U ′ : Dom(=′ ) ) .∀(U ′′ : Dom(=′′ ) ) .∀(W : Dom(X) ) . (U ′ # W, U ′′ # W ) ⇒

∀(f : Session) .∀(f′ : Session) .

( · ; (Σ̂′ U ′, W ↦→ f ; ChanW → ∃U : Dom(=) .Σ̂′′ (U, U ′′ ), W ↦→ f′ ; )̂ ′′ (U, U ′′ ) ) →

· ; (Σ̂′ U ′, W ↦→ !(∃U : Dom(I) . · ; Int) .f ; ChanW → ∃U : Dom(=) .Σ̂′′ (U, U ′′ ), W ↦→ f′ ; )̂ ′′ (U, U ′′ ) ) )

(14)

This example relies on shape combination with the _ # _ operator: in this case, the shape of the state captured in the closure and the shape

of the state of newly created channels. Domain variables are combined accordingly using the _, _ operator.

A remaining restriction is that the number of channels that are handled is always fixed at compile time. Lifting this restriction would go

along with support for recursive datatypes, a topic of future work.

A.3 Context Restriction Operators

Figure 15 contains the definition of the context restriction operators, which are mainly technical. Both operators keep only bindings of type

variables. One removes all domain bindings and the other removes all non-domain bindings.

A.4 Metatheory

In this formalization we use inference rule notation to state lemmas and use proved lemmas in proof trees. While this notation is uncon-

ventional, we found that it significantly improves readability.

Lemma A.1 (Context Restriction preserves Kind Formation).

(1)
Γ ⊢ ) : Shape

⌊Γ⌋ ⊢ ) : Shape
(2)

Γ ⊢  

⌊Γ⌋ ⊢  
(3)

⊢ Γ

⊢ ⌊Γ⌋

Proof.
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(1) Straightforward induction on the derivations with kind Shape. The case of type application is not possible, since type lambdas cannot

have codomain Shape.

(2) Straightforward induction on the kind formation using (1) in the case KF-Dom.

(3) Straightforward induction on ⊢ Γ. Since ⌊Γ⌋ removes all value-level and constraint bindings, only the well-kindedness of bound

type-variables needs to be preserved, which follows via (2). �

Definition A.2 (Order Preserving Embedding (OPE)). Γ2 is an Order Preserving Embedding of Γ1, written as Γ1
OPE
⇒ Γ2, iff

(1) ⊢ Γ1
(2) ⊢ Γ2
(3) ∀1 ∈ Γ1 .1 ∈ Γ2

Lemma A.3 (Context Restriction Preserves OPE).

Γ1
OPE
⇒ Γ2

⌊Γ1⌋
OPE
⇒ ⌊Γ2⌋

Proof. Axioms (1) and (2) follow via Lemma A.1.3; axiom (3) holds, because if ⌊·⌋ removes a binding from Γ2, then that binding is either

not present in Γ1 or also removed in ⌊Γ1⌋. �

Lemma A.4 (Context Extension Preserves OPE).

(1)
Γ1

OPE
⇒ Γ2 ⊢ Γ1, Γ3 ⊢ Γ2, Γ3

(Γ1, Γ3)
OPE
⇒ (Γ2, Γ3)

(2)
Γ1

OPE
⇒ Γ2 ⊢ Γ1 ,# Γ3 ⊢ Γ2 ,# Γ3

(Γ1 ,# Γ3)
OPE
⇒ (Γ2 ,# Γ3)

Proof.

(1) Same as (2) but without the additional complication of constraints.

(2) OPE Axiom (1) and (2) follow by assumption. For Axiom (3) we need to show that

∀1 ∈ Γ1, Γ3,C13,C3 . 1 ∈ Γ2, Γ3,C23,C3

where the C8 are defined as in Figure 8. Any binding from Γ1 is also contained in Γ2, due to Axiom (3) of Γ1
OPE
⇒ Γ2. Hence, it also

holds that dom(Γ1) ⊆ dom(Γ2), which implies C13 ⊆ C23. �

Lemma A.5 (Context Formation and Concatenation). ⊢ Γ1, Γ2 ⇐⇒ ⊢ Γ1 ,# Γ2

Proof.

⇐: Straightforward, because Γ1 ,# Γ2 = Γ1, Γ2,C12,C2, so we can just split off the constraints from the context formation by repeated case

analysis.

⇒: To append the constraints C12 and C2 to the context formation, we need to repeatedly apply CF-ConsCstr, which requires all

constraint axioms to use well-kinded domains. By definition of C12 and C2, all domains are type variables from dom(Γ1) ∪ dom(Γ2),

and are hence well-kinded. �

Lemma A.6 (Weakening). If Γ1
OPE
⇒ Γ2 then

(1)
Γ1 ⊢ C

Γ2 ⊢ C
(2)

⊢ Γ1, Γ3

⊢ Γ2, Γ3
(3)

⊢ Γ1 ,# Γ3

⊢ Γ2 ,# Γ3
(4)

Γ1 ⊢  

Γ2 ⊢  
(5)

Γ1 ⊢ ) :  

Γ2 ⊢ ) :  

(6)
Γ1 ⊢ E : )

Γ2 ⊢ E : )
(7)

Γ1; Σ1 ⊢ 4 : ∃Γ3.Σ2 ;)2

Γ2; Σ1 ⊢ 4 : ∃Γ3.Σ2 ;)2
(8)

Γ1; Σ ⊢ �

Γ2; Σ ⊢ �

Proof. By mutual induction on the derivation to be weakened:

(1) • Case CE-Axiom. Direct consequence of Axiom (3) of Γ1
OPE
⇒ Γ2.

• All other cases are immediate by the induction hypotheses.

(2) By induction on Γ3:

• Case Γ3 = ·. Immediate from Axiom (2) of Γ1
OPE
⇒ Γ2.
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• Case Γ3 = Γ
′
3 , U :  . In this case we have

⊢ Γ1, Γ
′
3 Γ1, Γ

′
3 ⊢ U :  

⊢ Γ1, Γ
′
3 , U :  

CF-ConsKind

and need to show

(a)
⊢ Γ2, Γ

′
3 Γ2, Γ

′
3 ⊢ U :  

(b)

⊢ Γ2, Γ
′
3 , U :  

CF-ConsKind

(a) follows from the inner induction hypothesis; (b) follows from the outer induction hypothesis for (5).

• The cases for value-level and constraint bindings are analogous to the previous case.

(3) Follows by applying Lemma A.5 to both the premise and conclusion of (2).

(4) All cases are immediate by the induction hypotheses.

(5) • Case K-Var. Follows directly from Axiom (3) of Γ1
OPE
⇒ Γ2.

• Case K-Lam, K-Send, K-Recv. Here we have assumptions using context restriction, like ⌊Γ1⌋, U : Dom(# ) ⊢ Σ : State. In order to

apply the induction hypothesis on those assumptions, we rely on Lemma A.3, which given Γ1
OPE
⇒ Γ2 yields ⌊Γ1⌋

OPE
⇒ ⌊Γ2⌋ .

• Case K-Arr. Here we have assumptions using disjoint context concatenation, like Γ1 ,# Γ
′
2 ⊢ Σ2 : State. In order to apply the

induction hypothesis on those assumptions, we rely on Lemma A.4.(2), which given Γ1
OPE
⇒ Γ2 yields (Γ1 ,# Γ

′
2 )

OPE
⇒ (Γ2 ,# Γ

′
2 ).

• All other cases are immediate by the induction hypotheses. Going under binders requires theBarendregt Convention and LemmaA.4.(1)

to extend the OPE.

(6) • Case T-Var. Same as K-Var.

• All other cases are immediate by the induction hypotheses. Going under binders requires theBarendregt Convention and LemmaA.4.(1)

to extend the OPE.

(7) • Case T-Let. Same as K-Arr.

• All other cases are immediate by the induction hypotheses.

(8) • Case T-NuChan. Same as K-Arr.

• All other cases are immediate by the induction hypotheses. Going under binders requires theBarendregt Convention and LemmaA.4.(1)

to extend the OPE. �

Definition A.7 (Substitution Typing). We write ⊢ f : Γ1 ⇒ Γ2 iff

(1) ⊢ Γ1
(2) ⊢ Γ2
(3) ∀(G : ) ) ∈ Γ1. Γ2 ⊢ fG : f) ,

(4) ∀(U :  ) ∈ Γ1. Γ2 ⊢ fU : f , and

(5) ∀(�1 #�2) ∈ Γ1. Γ2 ⊢ f�1 #f�2 .

Lemma A.8 (Typing of the Identity Substitution). If ⊢ Γ, then ⊢ id : Γ ⇒ Γ.

Proof. (1) and (2) follow by assumption.

(3), (4), and (5) follow via T-Var, K-Var, and CE-Axiom, respectively. �
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Lemma A.9 (Extending Substitution Typings).

(1)
⊢ f : Γ1 ⇒ Γ2 Γ1 ⊢ ) : Type Γ2 ⊢ E : f) G ∉ dom(Γ1)

⊢ (f, G ↦→ E) : (Γ1, G : ) ) ⇒ Γ2

(2)
⊢ f : Γ1 ⇒ Γ2 Γ1 ⊢  Γ2 ⊢ ) : f U ∉ dom(Γ1)

⊢ (f, U ↦→ ) ) : (Γ1, U :  ) ⇒ Γ2

(3)
⊢ f : Γ1 ⇒ Γ2 ⊢ Γ1,C Γ2 ⊢ fC

⊢ f : (Γ1,C) ⇒ Γ2

Proof. Straightforward case analysis and rule applications. �

Lemma A.10 (Weakening Substitution Typings).

⊢ f : Γ1 ⇒ Γ2 ⊢ Γ2, Γ
′
2

⊢ f : Γ1 ⇒ Γ2, Γ
′
2

Proof. By Definition A.7, we have to prove:

(1) ⊢ Γ1, which follows by ⊢ f : Γ1 ⇒ Γ2.

(2) ⊢ Γ2, Γ
′
2 , which follows by assumption.

(3) ∀(G : ) ) ∈ Γ1. Γ2, Γ
′
2 ⊢ fG : f) . Let (G : ) ) ∈ Γ1, then by ⊢ f : Γ1 ⇒ Γ2 it follows that

Γ2 ⊢ fG : f)

which by weakening via Lemma A.6 yields

Γ2, Γ
′
2 ⊢ fG : f)

(4) ∀(U :  ) ∈ Γ1. Γ2, Γ
′
2 ⊢ fU : f , which follows similarly by weakening.

(5) ∀(�1 #�2) ∈ Γ1. Γ2, Γ
′
2 ⊢ f�1 # f�2 , which follows similarly by weakening. �

Lemma A.11 (Lifting Substitution Typings).

(1)
⊢ f : Γ1 ⇒ Γ2 Γ1 ⊢ ) : Type Γ2 ⊢ f) : Type G ∉ dom(Γ1) G ∉ dom(Γ2)

⊢ (f, G ↦→ G) : (Γ1, G : ) ) ⇒ (Γ2, G : f) )

(2)
⊢ f : Γ1 ⇒ Γ2 Γ1 ⊢  Γ2 ⊢ f U ∉ dom(Γ1) U ∉ dom(Γ2)

⊢ (f, U ↦→ U) : (Γ1, U :  ) ⇒ (Γ2, U : f )

(3)
⊢ f : Γ1 ⇒ Γ2 ⊢ Γ1,C ⊢ Γ2, fC

⊢ f : (Γ1,C) ⇒ (Γ2,C)

(4)
⊢ f : Γ1 ⇒ Γ2 ⊢ Γ1, Γ ⊢ Γ2, fΓ

⊢ (f, id) : (Γ1, Γ) ⇒ (Γ2, fΓ)

(5)
⊢ f : Γ1 ⇒ Γ2 ⊢ Γ1 ,# Γ ⊢ Γ2 ,# fΓ

⊢ (f, id) : (Γ1 ,# Γ) ⇒ (Γ2 ,# fΓ)

Proof.

(1) First, we weaken the substitution typing

⊢ f : Γ1 ⇒ Γ2

⊢ Γ2 Γ2 ⊢ f) : Type G ∉ dom(Γ2)

⊢ Γ2, G : f)
CF-ConsType

⊢ f : Γ1 ⇒ Γ2, G : f)
Lemma A.10

Then we extend the weakened substitution typing

⊢ f : Γ1 ⇒ Γ2, G : f) Γ1 ⊢ ) : Type Γ2, G : f) ⊢ G : f)
T-Var

G ∉ dom(Γ1)

⊢ f, G ↦→ G : Γ1, G : ) ⇒ Γ2, G : f)
Lemma A.9

(2) Same as (1).

(3) First, we weaken the substitution typing

⊢ f : Γ1 ⇒ Γ2 ⊢ Γ2, fC

⊢ f : Γ1 ⇒ Γ2, fC
Lemma A.10
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Then we extend the weakened substitution typing

⊢ f : Γ1 ⇒ Γ2, fC ⊢ Γ1,C Γ2, fC ⊢ fC

⊢ f, G ↦→ G : Γ1,C⇒ Γ2, fC
Lemma A.9

where Γ2, fC ⊢ fC follows via repeated applications of CE-Split, CE-Axiom, and CE-Merge.

(4) Follows from (1) to (3) by induction on Γ.

(5) In this case we have

Γ1 ,# Γ = Γ1, Γ,C1,C
′
1

Γ2 ,# fΓ = Γ2, fΓ,C2,C
′
2

with

C1 = {U1 # U2 | U1, U2 ∈ dom(⌈Γ⌉), U1 ≠ U2}

C2 = {U1 # U2 | U1, U2 ∈ dom(⌈fΓ⌉), U1 ≠ U2}

C
′
1 = {U1 # U2 | U1 ∈ dom(⌈Γ1⌉), U2 ∈ dom(⌈Γ⌉)}

C
′
2 = {U1 # U2 | U1 ∈ dom(⌈Γ2⌉), U2 ∈ dom(⌈fΓ⌉)}

Via (4) follows

⊢ f : Γ1, Γ ⇒ Γ2, fΓ

We have fC1 = C1, because C1 contains by definition only variables from Γ, so f behaves as the identity. Furthermore, we have

C1 = C2, because dom(⌈fΓ⌉) = dom(⌈Γ⌉). Hence, we can apply (3) to the previous result and rewrite fC1 to C2, which yields

⊢ f : Γ1, Γ,C1 ⇒ Γ2, fΓ,C2

To conclude with

⊢ f : Γ1, Γ,C1,C
′
1 ⇒ Γ2, fΓ,C2,C

′
2

we need to show that for any (�1 #�2) ∈ Γ1, Γ,C1,C
′
1 it holds that

Γ2, fΓ,C2,C
′
2 ⊢ f�1 # f�2

If the constraint axiom is in Γ1, Γ,C1, then the result follows by the previous substitution typing and weakening. If the constraint

axiom is in C′1, then f�1 contains only variables from ⌈Γ2⌉ and f�2 contains only variables from ⌈fΓ⌉, so (f�1 # f�2) is part of C
′
2

and can be proved via CE-Axiom. �

Lemma A.12 (Context Restriction preserves Substitution Typing).

⊢ f : Γ1 ⇒ Γ2

⊢ f : ⌊Γ1⌋ ⇒ ⌊Γ2⌋

Proof.

• Axioms (1) and (2) follow via Lemma A.1.3.

• Axiom (3) and (5) hold trivially, since ⌊·⌋ removes all value-level and constraint bindings.

• For Axiom (4), let (U :  ) ∈ ⌊Γ1⌋. From ⊢ f : Γ1 ⇒ Γ2 we know Γ2 ⊢ fU : f , but we need to prove ⌊Γ2⌋ ⊢ fU : f . By definition of

⌊·⌋, we know that

 ∈ {Shape, Session,Dom(# ) → Type,Dom(# ) → State}.

Types of those kinds, like fU , have free type variables only at positions, which are themselves restricted with ⌊·⌋, so ⌊Γ2⌋ ⊢ fU : f 

is a valid strenghtening of Γ2 ⊢ fU : f . �

Lemma A.13 (Substitution Preserves Derivations). If ⊢ f : Γ1 ⇒ Γ2, then

(1)
Γ1 ⊢ C

Γ2 ⊢ fC
(2)

⊢ Γ1, Γ3

⊢ Γ2, fΓ3
(3)

⊢ Γ1 ,# Γ3

⊢ Γ2 ,# fΓ3
(4)

Γ1 ⊢  

Γ2 ⊢ f 
(5)

Γ1 ⊢ ) :  

Γ2 ⊢ f) : f 

(6)
Γ1 ⊢ E : )

Γ2 ⊢ fE : f)
(7)

Γ1 ⊢ Σ1 : State Γ1; Σ1 ⊢ 4 : ∃Γ3.Σ2 ;)

Γ2;fΣ1 ⊢ f4 : ∃fΓ3 .fΣ2 ;f)
(8)

)1 ≡ )2

f)1 ≡ f)2

Proof. By mutual induction on the derivations subject to substitution:

(1) By induction on Γ1 ⊢ C:
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• Case CE-Axiom. Here we have Γ1 = Γ
′
1 , �1 #�2 and

Γ
′
1 , �1 #�2 ⊢ �1 #�2

We need to show

Γ2 ⊢ f�1 #f�2

which follows immediately from Axiom (5) of the substitution typing:

∀(�1 #�2) ∈ Γ1 . Γ2 ⊢ f�1 # f�2

• Case CE-Sym, CE-Empty, CE-Split, CE-Merge, CE-Empty, CE-Cons. Immediate from the induction hypotheses.

(2) Analogous to the corresponding case in Lemma A.6 (Weakening).

(3) Follows by applying Lemma A.5 to both the premise and conclusion of (2).

(4) • Case KF-Type, KF-Session, KF-State, KF-Shape. Trivial.

• Case KF-Dom, KF-Arr. Immediate from the induction hypotheses.

(5) • Case K-Var. Immediate from Axiom (4) of the substitution typing.

• Case K-App. Immediate from the induction hypotheses.

• Case K-Lam. We first apply the induction hypothesis to the first subderivation

Γ1 ⊢ # : Shape

which yields

Γ2 ⊢ f# : Shape.

To be able to apply the induction hypothesis to the second subderivation, we first lift the substitution typing and kindings over

the context restriction

⊢ f : Γ1 ⇒ Γ2

⊢ f : ⌊Γ1⌋ ⇒ ⌊Γ2⌋
Lemma A.12

Γ1 ⊢ # : Shape

Γ1 ⊢ Dom(# )
KF-Dom

⌊Γ1⌋ ⊢ Dom(# )
Lemma A.1

Γ2 ⊢ f# : Shape

Γ2 ⊢ Dom(f# )
KF-Dom

⌊Γ2⌋ ⊢ Dom(f# )
Lemma A.1

and then lift the substitution typing over the new domain binding

⊢ f : ⌊Γ1⌋ ⇒ ⌊Γ2⌋ ⌊Γ1⌋ ⊢ Dom(# ) ⌊Γ2⌋ ⊢ Dom(f# ) U ∉ dom(Γ1), dom(Γ2)

⊢ f : ⌊Γ1⌋, U : Dom(# ) ⇒ ⌊Γ2⌋, U : Dom(f# )
Lemma A.11

where the fourth assumption follows via the Barendregt convention.

The result then follows by reconstructing the K-Lam rule.

• Case K-All. For the first subderivation, we can directly apply the induction hypotheses and obtain ⊢ Γ2, U : f , fC. For the second

subderivation, we have to lift the substitution typing

⊢ f : Γ1 ⇒ Γ2 ⊢ Γ1, U :  ,C ⊢ Γ2, U : f , fC U ∉ dom(Γ1), dom(Γ2)

⊢ f : Γ1, U :  ,C⇒ Γ2, U : f , fC
Lemma A.11

where the fourth assumption follows from the Barendregt Convention.

The result then follows by reconstructing the K-All rule.

• Case K-Arr. For the premises

Γ1 ⊢ Σ1 : State Γ1 ⊢ )1 : Type ⊢ Γ1 ,# Γ

we directly apply the induction hypothesis and obtain

Γ2 ⊢ fΣ1 : State Γ2 ⊢ f)1 : Type ⊢ Γ2 ,# fΓ

For the premises

Γ1 ,# Γ ⊢ Σ2 : State Γ1 ,# Γ ⊢ )2 : Type

we first lift the substitution typing

⊢ f : Γ1 ⇒ Γ2 ⊢ Γ1 ,# Γ ⊢ Γ2 ,# fΓ

⊢ f : Γ1 ,# Γ ⇒ Γ2 ,# fΓ
Lemma A.11.5

and then apply the induction hypothesis to obtain

Γ2 ,# fΓ ⊢ fΣ2 : State Γ2 ,# fΓ ⊢ f)2 : Type

Finally, we reconstruct the K-Arr rule from the above results.

• Case K-Send, K-Recv. Same as K-Lam.

• The other cases follow immediately from the induction hypotheses.
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(6) • Case T-Var. Immediate from Axiom (3) of the substitution typing.

• The other cases follow immediately from the induction hypotheses using Lemma A.11 and the Barendregt convention to lift the

substitution typing when going under binders.

(7) • Case T-TApp. In this case we have the premise {) ′/U}) ≡ ) ′′ for which the induction hypothesis yields f ({) ′/U}) ) ≡ f) ′′ which

is equivalent to the required conclusion {f) ′/U}(f) ) ≡ f) ′′ due to the Barendregt convention.

• Case T-Send. Same as T-TApp.

• Case T-Case. Here we have the assumption Γ1 ⊢ Σ1, � ↦→ (1 & (2 : State. In order to apply the induction hypothesis to the branch

expressions, we need to prove

Γ1 ⊢ Σ1, � ↦→ (1 : State Γ1 ⊢ Σ1, � ↦→ (2 : State

which follow by simple case analysis of the assumption and K-StMerge.

• The other cases follow immediately from the induction hypotheses using Lemma A.11 and the Barendregt convention to lift the

substitution typing when going under binders.

(8) Straightforward induction due to the Barendregt convention. �

Lemma A.14 (Removal of Implied Constraints). If Γ ⊢ C, then

(1)
Γ,C ⊢ C′

Γ ⊢ C′
(2)

Γ,C ⊢  

Γ ⊢  
(3)

Γ,C ⊢ ) :  

Γ ⊢ ) :  
(4)

Γ,C ⊢ E : )

Γ ⊢ E : )
(5)

Γ,C; Σ1 ⊢ 4 : ∃Γ2 .Σ2 ;)

Γ; Σ1 ⊢ 4 : ∃Γ2.Σ2 ;)

Proof. This is a corollary of Lemma A.13 due to the substitution typing ⊢ id : Γ,C⇒ Γ �

Lemma A.15 (Evaluation Context Typings for Expressions).

(1)
Γ1; Σ1 ⊢ E[4] : ∃Γ3.Σ3 ;)

∃Σ11, Σ12, Γ21, Γ22, Σ2,)
′

Σ1 = Σ11, Σ12 Γ3 = Γ21, Γ22
Γ1; Σ11 ⊢ 4 : ∃Γ21.Σ2 ;)

′
Γ1 ,# Γ21, G : ) ′; Σ12, Σ2 ⊢ E[G] : ∃Γ22.Σ3 ;)

(2)
Γ1; Σ11 ⊢ 4 : ∃Γ21.Σ2 ;)

′
Γ1 ,# Γ21, G : ) ′; Σ12, Σ2 ⊢ E[G] : ∃Γ22.Σ3 ;)

Γ1; Σ11, Σ12 ⊢ E[4] : ∃Γ21, Γ22.Σ3 ;)

Proof.

(1) By induction on the evaluation context E:

• Case �. The assumption is

Γ1; Σ1 ⊢ 4 : ∃Γ3.Σ3 ;)

By choosing Σ11 = Σ1 , Σ12 = ·, Γ21 = Γ3, Γ22 = ·, Σ2 = Σ3, )
′
= ) the goals become

Σ1 = Σ1 (1)

Γ3 = Γ3 (2)

Γ1; Σ1 ⊢ 4 : ∃Γ3.Σ3 ;) (3)

Γ1 ,# Γ3, G : ) ; Σ3 ⊢ G : ∃·.Σ3 ;) (4)

(1) and (2) are trivial, (3) follows by assumption, and (4) by T-Var and T-Val.

• Case letG = E in 4 . The assumption is

T-Let

Γ1; Σ11 ⊢ E[4] : ∃Γ21 .Σ2 ;)
′

Γ1 ,# Γ21, G : ) ′; Σ12, Σ2 ⊢ 4
′ : ∃Γ22.Σ3 ;) Γ1 ,# Γ21, G : ) ′ ⊢ Σ12, Σ2 : State

Γ1; Σ11, Σ12 ⊢ letG = E[4] in 4′ : ∃Γ21, Γ22 .Σ3 ;)

From the induction hypothesis follows

IH
Γ1; Σ11 ⊢ E[4] : ∃Γ21 .Σ2 ;)

′

∃Σ111, Σ112, Γ21, Γ22, Σ
′
2,)

′′
Σ11 = Σ111, Σ112 Γ21 = Γ211, Γ212

Γ1; Σ111 ⊢ 4 : ∃Γ211.Σ
′
2 ;)

′′
Γ1 ,# Γ211, ~ : ) ′′; Σ112, Σ

′
2 ⊢ E[~] : ∃Γ212 .Σ2 ;)

′
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By choosing Σ11 = Σ111 , Σ12 = Σ112, Σ12 , Γ21 = Γ211, Γ22 = Γ212, Γ22, Σ2 = Σ
′
2, )

′
= ) ′′ the goals become

Σ11, Σ12 = Σ111, Σ112, Σ12 (1)

Γ21, Γ22 = Γ211, Γ212, Γ22 (2)

Γ1; Σ111 ⊢ 4 : ∃Γ211 .Σ
′
2 ;)

′′ (3)

Γ1 ,# Γ211, ~ : ) ′; Σ112, Σ12, Σ
′
2 ⊢ letG = E[4] in~ : ∃Γ212, Γ22.Σ3 ;) (4)

(1), (2) and (3) are direct consequences of the IH; (4) follows via

T-Let

Γ1 ,# Γ211, ~ : ) ′′; Σ112, Σ
′
2 ⊢ E[~] : ∃Γ212 .Σ2 ;)

′
Γ1 ,# Γ21, ~ : ) ′′, G : ) ′; Σ12, Σ2 ⊢ 4

′ : ∃Γ22.Σ3 ;)

Γ1 ,# Γ21, ~ : ) ′′, G : ) ′ ⊢ Σ12, Σ2 : State

Γ1 ,# Γ211, ~ : ) ′′; Σ112, Σ12, Σ
′
2 ⊢ letG = E[4] in~ : ∃Γ212, Γ22 .Σ3 ;)

where the typing of 4′ and the kinding of Σ12, Σ2 follow by weakening for ~ : ) ′′ via Lemma A.6.

(2) Analogous to (1). �

Lemma A.16 (Evaluation Context Typings for Configurations).

Γ; Σ ⊢ C[�]

∃Γ′, Σ′ Γ
′; Σ′ ⊢ � ∀�′. (Γ′; Σ′ ⊢ �′) ⇒ (Γ; Σ ⊢ C[�′])

Proof. By induction on the evaluation context:

• Case C = �. We choose Γ′ = Γ and Σ
′
= Σ, which reduces our goals to assumptions and tautologies.

• Case C = aU, U′ ↦→ (. C. Here the assumption has the form

T-NuChan
U, U′ not free in Γ Γ ⊢ ( : Session ΓU ; ΣU ⊢ C[�]

aU, U′ ↦→ (. C[�]

where ΓU = Γ ,# U : Dom(X) ,# U
′ : Dom(X) and ΣU = Σ, U ↦→ (, U′ ↦→ ( .

From the induction hypothesis follows

∃Γ′, Σ′ Γ
′; Σ′ ⊢ � ∀�′. (Γ′; Σ′ ⊢ �′) ⇒ (ΓU ; ΣU ⊢ C[�′])

For the goal we choose the same Γ
′ and Σ

′ . Let �′ be some configuration such that Γ′ ; Σ′ ⊢ �′. From the result of the induction

hypothesis follows

ΓU ; ΣU ⊢ C[�′]

which allows us to reconstruct the T-NuChan rule.

• Case C = aG : [(] . C. Similar as the previous case.

• Case C = C ‖� . Similar as the previous case. �

Lemma A.17 (Wellformed Inputs imply Wellformed Outputs).

(1)
⊢ Γ Γ ⊢ ) :  

Γ ⊢  

(2)
⊢ Γ Γ ⊢ E : )

Γ ⊢ ) : Type

(3)
⊢ Γ Γ ⊢ Σ1 : State Γ; Σ1 ⊢ 4 : ∃Γ

′ .Σ2 ;)2

⊢ Γ ,# Γ
′

Γ ,# Γ
′ ⊢ Σ2 : State Γ ,# Γ

′ ⊢ )2 : Type

Proof.

(1) By induction on the kinding derivation:

• Case K-Var. Follows from the context formation due to CF-ConsKind.

• Case K-App. The induction hypothesis for Γ ⊢ )1 :  1 →  2 yields Γ ⊢  1 →  2 which by case-analysis yields Γ ⊢  2.

• Case K-Lam. From Γ ⊢ # : Shape follows Γ ⊢ Dom(# ). From  ∈ {Type, State} follows Γ ⊢  . Via KF-Arr follows Γ ⊢

Dom(# ) →  .

• Case K-DomMerge. Applying the induction hypothesis to Γ ⊢ �8 : Dom(#8) yields Γ ⊢ Dom(#8), which by case analysis on

KF-Dom yields Γ ⊢ #8 : Shape. The result then follows from the following proof tree:

Γ ⊢ #1 : Shape Γ ⊢ #2 : Shape

Γ ⊢ #1 # #2 : Shape
K-ShapePair

Γ ⊢ Dom(#1 # #2)
KF-Dom
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• Case K-DomProj. By induction hypothesis we know Γ ⊢ Dom(#1 # #2), which by case analysis gives us Γ ⊢ #1 # #2 : Shape,

which by further case analysis gives us Γ ⊢ #1 : Shape and Γ ⊢ #2 : Shape, which via KF-Dom gives us Γ ⊢ Dom(#ℓ ).

• All other cases follow immediately via KF-Type, KF-Session, KF-State, or KF-Shape.

(2) By induction on the value typing derivation:

• Case T-Var. Follows from the context formation due to CF-ConsType.

• Case T-Unit. Follows directly from K-Unit.

• Case T-Pair. The induction hypothesis yields Γ ⊢ )1 : Type and Γ ⊢ )2 : Type, which via K-Pair yields Γ ⊢ )1 ×)2 : Type.

• Case T-Abs, T-TAbs. Follows directly from the first assumption of their case’s rule.

• Case T-Chan. Follows directly from the assumption via K-Chan.

(3) By induction on the expression typing derivation:

• Case T-Val. Follows from (2) and the assumption Γ1 ⊢ Σ1 : State.

• Case T-Let. From the assumption Γ1 ⊢ Σ1, Σ2 : State follows by case analysis Γ1 ⊢ Σ1 : State and Γ1 ⊢ Σ2 : State.

We then apply the induction hypothesis on the typing of 41:

⊢ Γ1 Γ1 ⊢ Σ1 : State Γ1; Σ1 ⊢ 41 : ∃Γ2.Σ
′
2 ;)1

⊢ Γ1 ,# Γ2 Γ1 ,# Γ2 ⊢ Σ
′
2 : State Γ1 ,# Γ2 ⊢ )1 : Type

IH

and extend the context formation as follows:

⊢ Γ1 ,# Γ2 Γ1 ,# Γ2 ⊢ )1 : Type

⊢ Γ1 ,# Γ2, G : )1
CF-ConsType

We then apply the induction hypothesis on the typing of 42:

⊢ Γ1 ,# Γ2, G : )1 Γ1 ,# Γ2, G : )1 ⊢ Σ2, Σ
′
2 : State Γ1 ,# Γ2, G : )1; Σ2, Σ

′
2 ⊢ 42 : ∃Γ3.Σ3 ;)2

⊢ Γ1 ,# Γ2, G : )1 ,# Γ3 Γ1 ,# Γ2, G : )1 ,# Γ3 ⊢ Σ3 : State Γ1 ,# Γ2, G : )1 ,# Γ3 ⊢ )2 : Type
IH

As value-level bindings do neither affect context formation nor kinding relations, we can safely remove the G : )1 binding from

the conclusion and obtain

⊢ Γ1 ,# Γ2 ,# Γ3 Γ1 ,# Γ2 ,# Γ3 ⊢ Σ3 : State Γ1 ,# Γ2 ,# Γ3 ⊢ )2 : Type

Since (Γ1 ,# Γ2) ,# Γ3 is equivalent to Γ1 ,# (Γ2, Γ3) up to the order of the constraints (which is irrelevant) the result follows.

• Case T-Proj. The first two results follow trivially. The third result follows from the induction hypothesis and subsequent case

analysis.

• Case T-App. Applying the induction hypothesis on E1 yields Γ1 ⊢ (Σ1; )1 → ∃Γ2.Σ2 ; )2) : Type, which by inversion yields the

results.

• Case T-TApp. From the induction hypothesis on the typing of E and subsequent case analysis follows Γ, U :  ,C ⊢ ) : Type. By

Lemma A.13.5 and Lemma A.14.3 then follows Γ ⊢ {) ′/U}) : Type. By Lemma A.13.8 for {) ′/U}) ≡ ) ′′ then follows our result

Γ ⊢ ) ′′ : Type.

• Case T-Send, T-Select. The first and third results follow trivially. Repeated case analysis on the kinding of the input state yields

Γ ⊢ � : Dom(X) and Γ ⊢ ( : Session, which allows to construct the second result Γ ⊢ � ↦→ ( : State via K-StChan.

• Case T-Recv. Repeated case analysis on the kinding of the input state yields

Γ ⊢ � : Dom(X) Γ ⊢ ( : Session Γ ⊢ # : Shape ⌊Γ⌋, U′ : Dom(# ) ⊢ Σ
′ : State ⌊Γ⌋, U′ : Dom(# ) ⊢ ) ′ : Type

The first result ⊢ Γ ,# U
′ : Dom(# ) follows via CF-ConsKind and CF-ConsCstr.

Applying Lemma A.6 (Weakening) on the kindings of Σ′ and ) ′ yields

Γ, U′ : Dom(# ) ⊢ Σ
′ : State Γ, U′ : Dom(# ) ⊢ ) ′ : Type

Further weakening yields

Γ ,# U
′ : Dom(# ) ⊢ Σ

′ : State Γ ,# U
′ : Dom(# ) ⊢ ) ′ : Type

fromwhich the second result Γ ,# U
′ : Dom(# ) ⊢ Σ′, � ↦→ ( : State and third result Γ ,# U

′ : Dom(# ) ⊢ ) ′ : Type can be constructed.

• Case T-Case. From Γ ⊢ Σ, U ↦→ (1 & (2 : State follows Γ ⊢ Σ, U ↦→ (1 : State via case analysis and kinding rules. The results then

follow by the induction hypothesis on 41.

• Case T-Fork, T-Close. Follows immediately from K-StEmpty and K-Unit. �
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Lemma A.18 (Subject Congruence).

⊢ Γ Γ ⊢ Σ : State Γ; Σ ⊢ � � ≡ �′

Γ; Σ ⊢ �′

Proof. By induction on the congruence derivation:

• Case CC-Lift. Follows from the induction hypothesis in combination with Lemma A.16 to reach into the evaluation context.

• All other cases are straightforward by reordering the derivation trees of the configuration typings.

�

Lemma A.19 (Subject Reduction).

(1)
⊢ Γ1 Γ1 ⊢ Σ1 : State Γ1; Σ1 ⊢ 4 : ∃Γ2.Σ2 ;) 4 ↩→4 4

′

∃) ′ . Γ1; Σ1 ⊢ 4
′ : ∃Γ2.Σ2 ;)

′ ∧) ′ ≡ )

(2)
⊢ Γ Γ ⊢ Σ : State Γ; Σ ⊢ � � ↩→� �

′

∃Σ′ . Γ; Σ′ ⊢ �′

Proof.

(1) By induction on the 4 ↩→4 4
′ derivation:

• Case ER-BetaFun. The assumptions have the following structure:

ER-BetaFun
(_ (Σ1 ; G : ) ) .41 ) E2 ↩→4 {E2/G }41

T-App

T-Abs
Γ1 ⊢ (Σ1 ; )1 → ∃Γ2.Σ2 ; )2 ) : Type Γ1, G : )1; Σ1 ⊢ 41 : ∃Γ2 .Σ2;)2

Γ1 ⊢ _ (Σ1; G : )1 ) .41 : (Σ1; )1 → ∃Γ2 .Σ2; )2 ) Γ1 ⊢ E2 : )1

Γ1; Σ1 ⊢ (_ (Σ1 ; G : )1 ) .41 ) E2 : ∃Γ2 .Σ2 ;)2

The result follows via Lemma A.13:

Lemma A.13

Lemma A.6
Γ1 ⊢ Σ1 : State

Γ1, G : )1 ⊢ Σ1 : State Γ1, G : )1; Σ1 ⊢ 41 : ∃Γ2 .Σ2;)2 ⊢ {E2/G } : Γ1, G : )1 ⇒ Γ1

Γ1; Σ1 ⊢ {E2/G }41 : ∃Γ2 .Σ2;)2

• Case ER-BetaAll. The assumptions have the following structure:

ER-BetaAll
(Λ(U :  ) . C⇒ E) [) ′ ] ↩→4 {) ′/U }E

T-TApp

T-TAbs

T-KAll
⊢ Γ1, U :  ,C Γ1, U :  ,C ⊢ ) : Type

Γ1 ⊢ ∀(U :  ) . C⇒ ) : Type Γ1, U :  ,C ⊢ E : )

Γ1 ⊢ Λ(U :  ) . C⇒ E : ∀(U :  ) . C⇒ ) Γ1 ⊢ ) ′ :  Γ1 ⊢ {) ′/U }C {) ′/U }) ⇓ ) ′′

Γ1; · ⊢ (Λ(U :  ) . C⇒ E) [) ′ ] : ∃·.·;) ′′

The result follows via Lemma A.13 and A.14:

T-Val

Lemma A.14
Γ1 ⊢ {) ′/U }C

Lemma A.13
Γ1, U :  ,C ⊢ E : ) ⊢ {) ′/U } : (Γ1, U :  ,C) ⇒ (Γ2, {)

′/U }C)

Γ1, {)
′/U }C ⊢ {) ′/U }E : {) ′/U })

Γ1 ⊢ {) ′/U }E : {) ′/U })

Γ1; · ⊢ {) ′/U }E : ∃·.·; {) ′/U })

• Case ER-BetaLet. The assumptions have the following structure:

ER-BetaLet
letG = E1 in42 ↩→4 {E1/G }42

T-Let

T-Val
Γ1 ⊢ E1 : )1

Γ1; · ⊢ E1 : ∃·.·;)1 Γ1, G : )1; Σ2 ⊢ 42 : ∃Γ3 .Σ3;)2 Γ1, G : )1 ⊢ Σ2 : State

Γ1; Σ2 ⊢ letG = E1 in42 : ∃Γ3 .Σ3;)2

The result follows via:

Lemma A.13

Lemma A.6
Γ1 ⊢ Σ2 : State

Γ1, G : )1 ⊢ Σ2 : State Γ1, G : )1; Σ2 ⊢ 42 : ∃Γ3 .Σ3;)2 ⊢ {E1/G } : Γ1, G : )1 ⇒ Γ1

Γ1; Σ2 ⊢ {E1/G }42 : ∃Γ3 .Σ3;)2

• Case ER-BetaPair. The assumptions have the following structure:

ER-BetaPair
cℓ (E1, E2 ) ↩→4 Eℓ

T-Proj

T-Pair
Γ ⊢ E1 : )1 Γ ⊢ E2 : )2

Γ ⊢ (E1, E2 ) : )1 × )2

Γ; · ⊢ cℓ (E1, E2 ) : ∃·.·;)ℓ

The result follows via

T-Val
Γ ⊢ Eℓ : )ℓ

Γ; · ⊢ Eℓ : ∃·.·;)ℓ
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• Case ER-Lift. The assumptions have the following structure:

ER-Lift
41 ↩→4 42

letG = 41 in4 ↩→4 letG = 42 in4
Γ1; Σ1 ⊢ E[41] : ∃Γ3.Σ3 ;)

We first extract the typing of 41 from the evaluation context:

Lemma A.15.1
Γ1; Σ1 ⊢ E[41 ] : ∃Γ3 .Σ3 ;)

∃Σ11, Σ12, Γ21, Γ22, Σ2,)
′

Σ1 = Σ11, Σ12 Γ3 = Γ21, Γ22 Γ1; Σ11 ⊢ 41 : ∃Γ21 .Σ2 ;)
′

Γ1 ,# Γ21, G : ) ′ ; Σ12, Σ2 ⊢ E[G ] : ∃Γ22 .Σ3;)

From Σ1 = Σ11, Σ12 and Γ1 ⊢ Σ1 : State follows via inversion

Γ1 ⊢ Σ11 : State Γ1 ⊢ Σ12 : State

Then we apply the induction hypothesis:

IH
⊢ Γ1 Γ1 ⊢ Σ11 : State Γ1; Σ11 ⊢ 41 : ∃Γ21 .Σ2;)

′ 41 ↩→4 42

Γ1; Σ11 ⊢ 42 : ∃Γ21 .Σ2 ;)
′

Then we plug the typing of 42 back into the evaluation context:

Lemma A.15.2
Γ1; Σ11 ⊢ 42 : ∃Γ21 .Σ2 ;)

′
Γ1 ,# Γ21, G : ) ′ ; Σ12, Σ2 ⊢ E[G ] : ∃Γ22 .Σ3;)

Γ1; Σ1 ⊢ E[42 ] : ∃Γ3 .Σ3 ;)2

(2) By induction on the � ↩→� �′ derivation. For the sake of readability, we apply Lemma A.15 and A.16 informally to talk about the

typings inside evaluation contexts.

• Case CR-Expr. Immediate from (1).

• Case CR-Fork. The assumptions have the following structure:

CR-Fork
C[E[fork E] ] ↩→� C[ (E unit) ‖ E[unit] ]

Γ ⊢ E : (Σ1 ; Unit → ·; Unit)

Γ; Σ1 ⊢ fork E : ∃·.·;)
T-Fork

Γ; Σ1, Σ2 ⊢ E[fork E] : ∃Γ′ .·;)
Lemma A.15

Γ; Σ1, Σ2 ⊢ E[fork E]
T-Exp

Γ0; Σ0 ⊢ C[E[fork E] ]
Lemma A.16

The result follows via

Lemma A.16

T-Par

T-Exp

T-App
Γ ⊢ E : (Σ1 ; Unit → ·; Unit) Γ ⊢ unit : Unit

T-Unit

Γ; Σ1 ⊢ E unit : ∃·.·;Unit

Γ; Σ1 ⊢ E unit Γ; Σ2 ⊢ E[G ]
Lemma A.15

Γ; Σ1, Σ2 ⊢ E unit ‖ E[G ]

Γ0; Σ0 ⊢ C[E unit ‖ E[G ] ]

• Case CR-New. The assumptions have the following structure:

CR-New
G fresh

C[E[new( ] ] ↩→� C[aG : [( ] . E[G ] ]

Lemma A.16

T-Exp

Lemma A.15

T-New
Γ ⊢ ( : Session

Γ; Σ1 ⊢ new( : ∃·.·; [( ]

Γ; Σ ⊢ E[new( ] : ∃Γ′ .·;)

Γ; Σ ⊢ E[new( ]

Γ0; Σ0 ⊢ C[E[new( ] ]

The result follows via

Lemma A.16

T-NuAccess
G fresh Γ ⊢ ( : Session

Γ, G : [( ] ⊢ G : [( ]
T-Var

Γ, G : [( ] ; · ⊢ G : ∃·.·; [( ]
T-Val

Γ, G : [( ] ; Σ ⊢ E[G ] : ∃Γ′ .·;)
Lemma A.15

Γ, G : [( ] ; Σ ⊢ E[G ]
T-Exp

Γ; Σ ⊢ aG : [( ] . E[G ]

Γ0; Σ0 ⊢ C[aG : [( ] . E[G ] ]

• Case CR-ReqestAccept. The assumptions have the following structure:

CR-ReqestAccept
U, U′ fresh � ≡ C[aG : [( ] . (E1 [request G ] ‖ E2 [accept G ] ‖�

′ ) ]

� ↩→� C[aG : [( ] . aU, U′ ↦→ (. (E1 [chanU ] ‖ E2 [chanU
′ ] ‖�′ ) ]

Γ; Σ ⊢ aG : [( ] . �

Γ0; Σ0 ⊢ C[aG : [( ] . � ]
Lemma A.16

Applying Lemma A.18 to the configuration typing and the congruency yields a configuration typing, which by inversion has the

the following structure, where Σ = Σ1, Σ2, Σ3 are the channels used by E1 , E2 and �
′, respectively:

G not free in Γ Γ ⊢ ( : Session

T-Par
(1) (2)

Γ, G : [( ] ; Σ1, Σ2 ⊢ (E1 [request G ] ‖ E2 [acceptG ] ) Γ, G : [( ] ; Σ3 ⊢ �′

Γ, G : [( ] ; Σ1, Σ2, Σ3 ⊢ (E1 [request G ] ‖ E2 [accept G ] ‖ �
′ )

T-Par

Γ; Σ1, Σ2, Σ3 ⊢ aG : [( ] . (E1 [request G ] ‖ E2 [accept G ] ‖�
′ )

T-NuAccess

where

28



Polymorphic Typestate for Session Types PPDP 2023, October 22–23, 2023, Lisboa, Portugal

(1) Γ, G : [( ] ⊢ G : [( ]

Γ, G : [( ] ; · ⊢ request G : ∃U : Dom(X) .U ↦→ ( ;ChanU
T-Reqest

Γ, G : [( ] ; Σ1 ⊢ E1 [request G ] : ∃Γ
′
1 , U : Dom(X) .·;)

Lemma A.15

Γ, G : [( ] ; Σ1 ⊢ E1 [request G ]
T-Exp

(2) Γ, G : [( ] ⊢ G : [( ]

Γ, G : [( ] ; · ⊢ acceptG : ∃U : Dom(X) .U ↦→ ( ;ChanU
T-Accept

Γ, G : [( ] ; Σ1 ⊢ E2 [accept G ] : ∃Γ
′
2, U : Dom(X) .·;)

Lemma A.15

Γ, G : [( ] ; Σ1 ⊢ E2 [acceptG ]
T-Exp

The result follows via

G not free in Γ Γ ⊢ ( : Session

U, U′ fresh Γ ⊢ ( : Session (3)

Γ, G : [( ] ; Σ1, Σ2, Σ3 ⊢ aU, U′ ↦→ (. (E1 [chanU ] ‖ E2 [chanU
′ ] ‖�′ )

T-NuChan

Γ; Σ1, Σ2, Σ3 ⊢ aG : [( ] . aU, U′ ↦→ (. (E1 [chanU ] ‖ E2 [chanU
′ ] ‖�′ )

T-NuAccess

Γ0; Σ0 ⊢ C[aG : [( ] . aU, U′ ↦→ (. (E1 [chanU ] ‖ E2 [chanU
′ ] ‖�′ ) ]

Lemma A.16

where

(3)

T-Par

T-Par
(4) (5)

Γ
′; Σ1, Σ2, U ↦→ (, U′ ↦→ ( ⊢ (E1 [chanU ] ‖ E2 [chanU

′ ] ) Γ
′; Σ3 ⊢ �′

Γ
′; Σ1, Σ2, Σ3, U ↦→ (, U′ ↦→ ( ⊢ (E1 [chanU ] ‖ E2 [chanU

′ ] ‖�′ )

for Γ′ = Γ, G : [(] ,# U : Dom(X) ,# U
′ : Dom(X)

(4)
Γ
′ ⊢ U : Dom(X)

T-TVar

Γ
′ ⊢ chanU : ChanU

T-Chan

Γ
′ ; · ⊢ chanU : ∃·.·;ChanU

T-Val

Γ
′ ; Σ1, U ↦→ ( ⊢ E1 [chanU ] : ∃Γ

′
1 .·;)

Lemma A.15

Γ
′ ; Σ1, U ↦→ ( ⊢ E1 [chanU ]

T-Exp

(5) Similar to (4).

Note that the channels, which in the pre-reduction tree are introduced existentially by the request · and accept · operations, are in

the post-reduction tree provided from the outside via the a-Binder. Lemma A.15 is strong enough to support this.

• Case CR-SendRecv. The assumptions have the following structure:

CR-SendRecv
� ≡ (E1 [send E on chanU ] ‖ E2 [receive chanU

′ ] ‖�′ )

aU, U′ ↦→ (′ . � ↩→� aU, U′ ↦→ (. (E1 [unit] ‖ E2 [E] ‖�
′ )

Lemma A.16

T-NuChan
U, U′ not free in Γ Γ ⊢ (′ : Session Γ

′; Σ, U ↦→ (′, U′ ↦→ (′ ⊢ �

Γ; Σ ⊢ aU, U′ ↦→ (′ . �

Γ0; Σ0 ⊢ C[aU, U′ ↦→ (′ . � ]

where Γ′ = Γ ,# U : Dom(X) ,# U
′ : Dom(X) and (′ = !(∃U′′ : Dom(# ).Σ′ ; ) ′).( .

Applying Lemma A.18 to the configuration typing of � and the congruency yields a configuration typing, which by inversion

reveals the following structure with Σ = Σ!, Σ1, Σ2, Σ3, where Σ! are the channels that are sent and received, and Σ1 , Σ2 , and Σ3

are the channels used in E1, E2 , and �
′, respectively:

(1) (2)

Γ
′; Σ!, Σ1, Σ2, U ↦→ (′, U′ ↦→ (′ ⊢ (E1 [send E on chanU ] ‖ E2 [receive chanU

′ ] )
T-Par

Γ
′ ; Σ3 ⊢ �′

Γ
′ ; Σ!, Σ1, Σ2, Σ3, U ↦→ (′ , U′ ↦→ (′ ⊢ (E1 [send E on chanU ] ‖ E2 [receive chanU

′ ] ‖�′ )
T-Par

where

(1) Γ ⊢ � : Dom(# ) {�/U′′ }Σ′ ≡ Σ! {�/U′′ }) ′ ≡ ) ′′
Γ ⊢ E : ) ′′

Γ ⊢ chanU : ChanU

Γ
′ ; Σ!, U ↦→ (′ ⊢ send E on chanU : ∃·.U ↦→ ( ;Unit

T-Send

Γ
′; Σ!, Σ1, U ↦→ (′ ⊢ E1 [send E on chanU ] : ∃Γ

′
1 .·;)1

Lemma A.15

Γ
′ ; Σ!, Σ1, U ↦→ (′ ⊢ E1 [send E on chanU ]

T-Exp

(2) Γ ⊢ U′ : Dom(X) Γ ⊢ chanU′ : ChanU′

Γ
′;U′ ↦→ (′ ⊢ receive chanU′ : ∃U′′ : Dom(# ) .Σ′, U′ ↦→ ( ;) ′

T-Recv

Γ
′ ; Σ2, U

′ ↦→ (′ ⊢ E2 [receive chanU
′ ] : ∃Γ′2 , U

′′ : Dom(# ) .·;)2
Lemma A.15

Γ
′ ; Σ2, U

′ ↦→ (′ ⊢ E2 [receive chanU
′ ]

T-Exp

The result follows via

U, U′ not free in Γ Γ ⊢ ( : Session

(3) (4)

Γ
′ ; Σ!, Σ1, Σ2, U ↦→ (, U′ ↦→ ( ⊢ E1 [unit] ‖ E2 [E]

T-Par
Γ
′; Σ3 ⊢ �′

Γ
′ ; Σ!, Σ1, Σ2, Σ3, U ↦→ (, U′ ↦→ ( ⊢ E1 [unit] ‖ E2 [E] ‖�

′
T-Par

Γ; Σ!, Σ1, Σ2, Σ3 ⊢ aU, U′ ↦→ (. (E1 [unit] ‖ E2 [E] ‖�
′ )

T-NuChan

Γ0; Σ0 ⊢ C[aU, U′ ↦→ (. (E1 [unit] ‖ E2 [E] ‖�
′ ) ]

Lemma A.16
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where

(3)
Γ
′ ⊢ unit : Unit

T-Unit

Γ
′; · ⊢ unit : ∃·.·;Unit

T-Val

Γ
′ ; Σ1, U ↦→ ( ⊢ E1 [unit] : ∃Γ

′
1 .·;)1

Lemma A.15

Γ
′ ; Σ1, U ↦→ ( ⊢ E1 [unit]

T-Exp

(4) Γ
′ ⊢ E : ) ′

Γ
′ ; · ⊢ E : ∃·.·;) ′ T-Val

Γ
′ ; Σ!, Σ2, U

′ ↦→ ( ⊢ E2 [E] : ∃Γ
′
2 .·;)2

Lemma A.15

Γ
′ ; Σ!, Σ2, U

′ ↦→ ( ⊢ E2 [E]
T-Exp

• Case CR-SelectCase, CR-Close. Similar to the previous cases.

�

Lemma A.20 (Context inversion).

⊢ Γ Outer Γ Γ ⊢ Σ : State Γ; Σ ⊢ C[4]

∃Γ′, Σ′,) . ⊢ Γ
′ Outer Γ′ Γ

′ ⊢ Σ′ : State Γ
′ ; Σ′ ⊢ 4 : ∃·.·;)

Proof. By induction on Γ; Σ ⊢ C[4] . �

Lemma A.21 (Canonical forms). Suppose that Γ ⊢ E : ) and Outer Γ.

• If ) is (Σ; ) → ∃Γ′ .Σ′ ; ) ′), then E is _(Σ; G : ) ).4 , for some 4 .

• If ) is)1 ×)2, then E is (E1, E2), for some E1 and E2.

• If ) is ∀(U :  ). C⇒ ) , then E is Λ(U :  ). C⇒ E1, for some E1.

• If ) is Unit, then E is unit.

• If ) is Chan� , then E is chan� , for some � .

• If ) is [(], then E is G , for some G ∈ dom(Γ).

Proof. By inversion of the value typing judgment Γ ⊢ E : ) . �

Lemma 4.5 (Progress for expressions).

⊢ Γ Outer Γ Γ ⊢ Σ : State Γ; Σ ⊢ 4 : ∃Γ′ .Σ′ ;) ′

Value4 ∨ Comm 4 ∨ ∃4′ . 4 ↩→4 4
′

Proof. The proof is by induction on the expression 4 .

Case E : Value E holds.

Case letG = 41 in 42: By the IH for 41 we have three cases:

• if Value41, then letG = 41 in 42 ↩→4 {41/G}42 by ER-BetaLet;

• if Comm41, then Comm (letG = 41 in 42);

• if 41 ↩→4 4
′
1, then the let reduces, too.

Case E1 E2: Inversion of Γ; Σ ⊢ E1 E2 : ∃Γ
′ .Σ′ ;) ′ yields

Γ ⊢ E1 : (Σ; ) → ∃Γ′ .Σ′ ; ) ′) (15)

Γ ⊢ E2 : ) (16)

By Lemma A.21, E1 = _(Σ; G : ) ).41 , for some 41. Hence, E1 E2 ↩→4 by ER-BetaFun.

Case cℓ E : Inversion of Γ; Σ ⊢ cℓ E : ∃Γ
′ .Σ′ ;) ′ yields

Γ ⊢ E : )1 ×)2 (17)

By Lemma A.21, E = (E1, E2), for some E1 and E2. Hence, cℓ E ↩→4 by ER-BetaPair.

Case E [) ′′]: Inversion of Γ; Σ ⊢ E [) ′′] : ∃Γ′ .Σ′ ;) ′ yields

Γ ⊢ E : ∀(U :  ). C⇒ ) (18)

Γ ⊢ ) ′′ :  (19)

Γ ⊢ {) ′′/U}C (20)

{) ′′/U}) ≡ ) ′ (21)

By Lemma A.21, E is Λ(U :  ). C⇒ E1, for some E1. Hence, E [)
′′] ↩→4 by ER-BetaAll.

Case fork E : Inversion of Γ; Σ ⊢ fork E : ∃Γ′ .Σ′ ;) ′ yields Γ′ = ·, Σ′ = ·,) ′
= Unit, and

Γ ⊢ E : (Σ; Unit → ·; Unit) (22)
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By Lemma A.21, E is _(Σ; G : Unit).41 , hence Comm (fork E).

Case new ( : Inversion of Γ; Σ ⊢ new ( : ∃Γ′ .Σ′ ;) ′ yields Σ = ·, Γ′ = ·, Σ′ = ·, and ) ′
= [(]. Hence Comm (new ().

Case accept E : Inversion of Γ; Σ ⊢ accept E : ∃Γ′ .Σ′ ;) ′ yields

Γ ⊢ E : [(] (23)

By Lemma A.21, E is G , hence Comm (accept E).

Case request E : by similar reasoning, E = G and Comm (request E).

Case send E1 on E2: Inversion of Γ; Σ ⊢ send E1 on E2 : ∃Γ
′ .Σ′ ;) ′ yields

• Σ = Σ1, � ↦→ !(∃U′ : Dom(# ).Σ′ ; ) ′′).( ,

• Γ
′
= ·,

• Σ
′
= � ↦→ ( ,

• ) ′
= Unit, and

Γ ⊢ �′ : Dom(# ) (24)

{�′/U′}Σ′ ≡ Σ1 (25)

{�′/U′}) ′′ ≡ ) (26)

Γ ⊢ � : Dom(X) (27)

Γ ⊢ E1 : ) (28)

Γ ⊢ E2 : Chan� (29)

By Lemma A.21, E2 is chan� , hence Comm (send E1 on E2).

Case receive E : by similar reasoning as in the previous case, E = chan� and Comm (receive E).

Case select ℓ on E : by similar reasoning, E = chan� and Comm (select ℓ on E).

Case case E of{41; 42}: by similar reasoning, E = chan� and Comm (case E of{41; 42}).

Case close E : by similar reasoning, E = chan� and Comm (close E). �

Lemma 4.8 (Progress for configurations).

⊢ Γ Outer Γ Γ ⊢ Σ : State Γ; Σ ⊢ �

Final� ∨ Deadlock� ∨ ∃�′. � ↩→� �
′

Proof. Suppose that ¬ Final� and ¬Deadlock� . Hence, one of the three items in Definition 4.7 must be violated and we show that �

reduces in each case.

Suppose item 1 is violated. Hence, there is some C such that � = C[4] and ¬Value4 and ¬Comm4 or 4 = E[fork E] or 4 = E[new (],

for some E, E , ( .

If 4 = E[fork E], then E = _(Σ; G : Unit).41 and � reduces as follows

C[E[fork _(Σ; G : Unit).41]] ↩→� C[E[unit] ‖ (_(Σ; G : Unit).41) unit]

If 4 = E[new (], then � reduces by CR-New.

Otherwise, by Lemma 4.5 (which is applicable because of context inversion, Lemma A.20), there exists some 4′ such that 4 ↩→4 4
′. Hence,

C[4] ↩→� C[4′].

Suppose item 2 is violated. That is, there are configuration and evaluation contexts C, C1, C2, E1, and E2 such that� = C[aG : [(] . �′]

and �′
= C1 [E1 [requestG]] and �

′
= C2 [E2 [accept G]]. Exploiting congruence we can find a configuration context C′ and process �′′

such that � ≡ C′ [aG : [(] . E1 [requestG] ‖ E2 [accept G] ‖�
′′], which reduces by CR-ReqestAccept.

Suppose item 3 is violated. Consider the case for send _ on _ and receive. That is, there are configuration and evaluation contexts C,

C1, C2, E1 , and E2 such that � = C[aU1, U2 ↦→ (. �′] and �′
= C1 [E1 [send E on chanUℓ ]] and �

′
= C2 [E2 [receive chanU3−ℓ ]]. Exploiting

congruence we can find a configuration context C′ and process �′′ such that

� ≡ C′ [aU1, U2 ↦→ (. E1 [send E on chanUℓ ] ‖ E2 [receive chanU3−ℓ ] ‖�
′′]

which reduces by CR-SendRecv.

The remaining cases are similar.

�
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