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ABSTRACT
This work is part of a larger project exploring how affective com-
puting can support the design of player-adaptive video games. We
investigate how controlling some of the game mechanics using
biofeedback affects physiological reactions, performance, and the
experience of the player. More specifically, we assess how differ-
ent game speeds affect player physiological responses and game
performance. We developed a game prototype with Unity1 which
includes a biofeedback loop system based on the level of physiologi-
cal activation through skin resistance (SKR) measured with a smart
wristband. In two conditions, the player moving speed was driven
by SKR, to increase (respectively decrease) speed when the player
is less activated (SKR decreases). A control condition was also used
where player speed is not affected by SKR. We collected and syn-
chronized biosignals (heart rate [HR], skin temperature [SKT] and
SKR), and game information, such as the total time to complete a
level, the number of ennemy collisions, and their timestamps. Ad-
ditionally, emotional profiling (TIPI, I-Panas-SF), measured using a
Likert scale in a post-task questionnaire, and semi-open questions
about the game experience were used. The results show that SKR
was significantly higher in the speed down condition, and game
performance improved in the speed up condition. Study collected
data involved 13 participants (10 males, 3 females) aged from 18 to
50 (M = 24.30, SD = 9.00). Most of the participants felt engaged with
the game (M = 6.46, SD = 0.96) and their level of immersion was not
affected by wearing the prototype smartband. Thematic analysis
(TA) revealed that the game speed impacted the participants stress
levels such as high speed was more stressful than hypothesized;
many participants described game level-specific effects in which
they felt that their speed of movement reflected their level of stress
or relaxation. Slowing down the participants indeed increased the
participant stress levels, but counter intuitively, more stress was
detected in high speed situations.

CCS CONCEPTS
• Computer systems organization→ Sensors and actuators;
• Human-centered computing → Activity centered design;

1https://unity.com/
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1 INTRODUCTION
In recent years, research on the use of physiological signals in video
game design has increased in popularity. The use of biofeedback
loops in game design, where players use physiological input about
their emotional state while playing, is a growing field of research
[19]. This work is part of a larger project investigating how biofeed-
back loops can be used in video game design and how they impact
the player experience (see figure 1).

Figure 1: Diagram for the biofeedback loop

Emotions impact the physiology, electrodermal activity (EDA)
can be used as indicator for activation [15]. The primary research
questions in this study were about how varied game speeds using
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an EDA feedback loop influenced players’ physiological reactions,
affected players’ performance, user experience (UX), taking into ac-
count player gaming skills. To study these questions, we developed
a time-restricted labyrinth game, a type of game known to affect the
activation of players [24]. The study also sought to discover how
game design and, in particular, biofeedback loops can be leveraged
to generate a range of emotional responses and new experiences
in players. The quality of the overall gaming experience can be im-
proved by customizing the game to the player’s present emotional
state.

2 RELATEDWORK
2.1 Emotion assessment with biosignals
Awell-established finding is that emotions affect human physiology
and, consequently, related biosignals. For example, stress detection
is possible using biosignals. Wearable systems such as Shimmer32
or Empatica3 are now effective and can accurately measure stress
( 81.82%)[21]. Furthermore, the nature of emotions generates dif-
ferent physiological reactions. Multimodal emotional classification
using biosignals has been demonstrated to be effective with various
emotions producing various physiological effects [7].

EDA, which monitors variations in sweat gland activity that
reflect the level of activation [20], is one of the biosignals most
commonly used for emotional forecasting. The tonic EDA compo-
nent, which is more constant and acts as a baseline indicator of a
person’s level of vigilance or general arousal, is different from the
phasic EDA component, which causes rapid and fleeting variations
in skin conductance in response to specific stimuli.

Another important biosignal for emotional evaluation is photo-
plethysmography (PPG), which is often available on smart bands or
smartwatch devices. PPG is an optically obtained plethysmogram
that can be used to detect changes in blood volume in the microvas-
cular bed of the tissue. Gil et al. (2010) analyzed HRV using PPG
and pulse rate variability (PRV) and obtained in rest conditions
a 99% correlation between heart rate variability (HRV) estimated
with electrocardiogram (ECG) which is the gold standard, and PRV
estimated with PPG [11]. Results were confirmed by Schafer (2013)
and his review of studies [22].

Body temperature and skin temperature (SKT) are also important
features for emotional assessment [18]. Nummenmaa et al. (2014)
stated that emotions trigger topographic changes in human body
temperature.

Other biosignals such as electrocardiogram (ECG), electromyog-
raphy (EMG), and respiration (RSP) have been used for emotional
evaluation with varying degrees of success. For example, Scherer
(2005) used these biosignals which yielded a recognition accuracy
of 92% for joy, anger, sadness, and pleasure (music stimulation) [23].

Furthermore, multimodal classification and regression using
biosignals [7] is a promising method to assess emotions, with signal
processing and characteristic estimation used to extract meaningful
characteristics from raw data. Self-assessment is generally used
to obtain ground truth in multimodal classification studies [13].
Multimodal deep learning classification [25] is also commonly used

2https://shimmersensing.com/
3https://www.empatica.com/

to further enhance the accuracy of emotional assessment using
biosignals.

2.2 Affective games
Current studies on human-computer interaction (HCI) in video
games frequently ignore the impact of player emotions. According
to Bontchev (2016), playing video games is more emotional than
cognitive, and research on interface design issues may not take this
into account because video games are software and games with spe-
cific goals and rules at the same time [5]. Video games, according
to Barr et al. (2007), integrate player-adopted value systems that
influence how the game is played. They observed that in order to
win a game, players must accept certain morals, such as "shooting
alien attackers" in Space Invaders (Taito, 1978) [2]. Video games also
have the ability to generate emotions and emotions are involved
the learning process [6] by motivating players to accomplish tasks
or goals. A technique to identify the feelings that players feel while
playing is missing from the current generation of HCI in video
games. Kim and Doh (2017) examined emotional transitions from
different emotional states (fear, anger etc.) in popular games and
discovered that they occur 3.3 times more frequently in the com-
mercially successful games [14]. In a study on emotionally-charged
video games, Nogueira et al. (2016) created a horror game with
adaption rules [12] that alter the player’s experience based on phys-
iological responses. The study found that attributes characterizing
the player experience including immersion, tension induced by the
music (see [3] for a review of music and emotions studies) and
soundscape, and valence, were significantly affected by biofeedback
functionality, several versions of the game were proposed and they
integrated varying biofeedback mechanisms [17].

Several methods can be used in order to collect biosignals with
different devices such as wired electrodes, finger clips, or wearable
devices. Ferreira et al. (2023) used a sock form factor for measuring
PPG and EDA and the results support the feasibility of sock form
factor for unobtrusive EDA and PPGmonitoring [10]. Cantento et al.
(2011) obtained recognition rates for emotions of 81% to distinguish
between positive and negative emotion with multimodal biosignal
sensor data only [7].

In light of this, this research suggests that integrating emotion
recognition in HCI systems for video games and using player emo-
tions as part of the game design may improve player experience.
Games that offer a more immersive and engaging experience for
players might be designed by examining emotional reactions and
identifying the emotions that drive players [8]. This study expands
on previous research and sets the foundations for future studies on
the function of emotions in HCI for video games.

3 METHODOLOGY
For the purpose of identifying players’ emotional states, we col-
lected and analyzed data from player biosignals from research and
mass market devices. In this study, an Ovomind-developed smart
wristband that includes real-time(RT) biosignal analysis technol-
ogy4 is used to predict the player’s arousal. We also used Biosemi
Active-Two for the reference EDA signal5.

4www.ovomind.com
5https://www.biosemi.com/products.htm
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3.1 Hypotheses
This study aims to examine how the game character speed affects
the performance of the player and affects their physiological levels
(heart rate, skin temperature, and SKR). In this study, two main
conditions were proposed: speed up (to facilitate the game) and
speed down (to make it more difficult); to control the effects, we also
have a control condition without a biofeedback loop.We formulated
research hypotheses on the impact of game character speed on SKR
and player game performance. the impact of game speed on SKR
and game performance in players. The following hypotheses are
advanced in relation to the control condition:

(1) H1: The first hypothesis suggests that player SKR would
decrease in the speed down condition. This theory is based
on the premise that slowing down the game character makes
it more difficult for the player to advance and complete the
level in the allotted time. This increased difficulty is pre-
dicted to increase the levels of arousal, since the player is
likely to feel dissatisfied and agitated as a result of the chal-
lenge. This notion is supported by earlier studies on arousal,
which indicate that higher arousal levels are associated with
difficult activities and high levels of stress [1].

(2) H2: The second hypothesis suggests that player SKR would
increase in the speed up scenario. This theory is based on
the premise that increasing the speed of the game makes it
easier for the player to manoeuvre and complete the level
in the allotted time. This reduced difficulty is predicted to
result in lower levels of arousal, as the player is likely to feel
more confident and calm. This notion is also supported by
earlier studies on arousal, which indicate that lower levels
of arousal are related to simple activities and low levels of
stress.

(3) H3: The third hypothesis implies that player game perfor-
mance would be reduced under the speed down condition.
This theory is based on the premise that slowing down the
game makes it more difficult for the player to manoeuvre,
avoid adversaries, and complete the level in the allotted time.
This increased difficulty expected to result in poorer game
performance, since the player is more likely tomakemistakes
and take longer to complete the level. Previous research on
performance supports this concept [16], indicating that in-
creased work demands and stress levels are related to worse
performance.

(4) H4: The fourth hypothesis suggests that player game per-
formance would be improved under the speed up condition.
This theory is based on the premise that increasing the pace
of the game character makes it easier for the player to ma-
noeuvre, escape adversaries, and complete the level in the
allotted time. This improved ease of use is predicted to re-
sult in higher game performance, since the player will make
fewer mistakes and complete the level faster. Morgeson &
Humphrey (2006) stated that lower task demands and stress
levels are related to better performance.

3.2 Physiological measures
In order to integrate physiological reactions in the video game me-
chanics we used the Ovomind smart band. To analyze the impact

of biofeedback interactivity, we used a reference EDA signal mea-
sured with the Biosemi system6. The biosensor specifications and
sampling rates for the Ovomind prototype are:

• PPG signal with a 50 Hz sampling rate
• SKR signal with a 8 Hz sampling rate (refreshing at 1 Hz)
• Accelerometer 3-axis with a 8 Hz sampling rate
• SKT signal with a 0.5 Hz sampling rate
• Heart rate (HR) data with a 0.5 Hz sampling rate (buffer of 4
seconds).

The current prototype uses a Nordic single board development
kit supporting Bluetooth Low Energy7. Smart band data is received
on the gaming computer using an emulated serial port.

The Biosemi reference biosensor system has the following speci-
fications:

• PPG signal with a 2048 Hz sampling rate,
• SKR signal with a 2048 Hz sampling rate,
• SKT signal with a 2048 Hz sampling rate,

The skin conductance (SKC) was obtained by taking the inverse
of the skin resistance multiplied by a factor of 1M to obtain micro
Siemens (`𝑆 ).

The library used is Neurokit28 was used to extract the EDA tonic
component (trend) and the phasic components (number of peaks
and amplitude of peaks). A peak represents a sudden change in
participant physiological activation. The number of peaks and their
amplitude indicate the short-term activity and the tonic (trend)
component represents a longer activity.

The tonic component is the mean value of the tonic compo-
nent (signal trend) without the phasic component (peaks) of all
participants.

We used EDA as dependent variables in our statistical analyzes:
• SKR finger position (Biosemi)
• SKC finger position phasic number of peaks (Biosemi)
• SKC finger position phasic peaks amplitude (Biosemi)
• SKC finger position tonic (Biosemi)

The current version of the Ovomind software algorithm yields a
arousal component out of the Ovomind smart band SKR raw data
as a float between 0 (most activated) and 1 (less activated) that can
be used as an arousal coefficient game variable (ACGV) directly in
Unity.

3.3 Adaptive game prototype
3.3.1 Conditions. The goal was to make the game reactive to the
EDA signal in a synchronous way. We chose to impact the game
speed in different ways across three conditions:

(1) speed up: In this condition, we expect an increase in player
performance due to a higher game character speed; this af-
fects their ability to increase the player’s performance by
increasing the speed of the player’s movement and their
ability to dodge enemies (fewer collisions) and to finish the
level in time (success or failure). To achieve this, we imple-
mented a speed modifier variable which was added to the
default speed. The speed modifier was empirically set to 5

6https://www.biosemi.com
7https://www.nordicsemi.com/Products/Development-hardware/nrf52-dk
8https://neurokit2.readthedocs.io/
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times the ACGV. After pilot tests, the default game character
speed value was set to 10 (float) and the maximum increase
in speed value allowed by the loop was 5 while ACGV was
reaching 1. The increase in movement speed should make it
easier to find the key and exit door.

(2) speed down: In this condition, we expect a decrease in
player performance due to the slower game character speed;
this affects the ability to decrease the player’s performance
by decreasing the speed of their movement and ability to
dodge enemies (more collisions) and to finish levels on time.
In this condition the speed modifier is subtracted to the
default speed. The speed modifier was empirically set to 5
times the ACGV. The maximum reduction possible in the
moving speed was 5 points to stay within realistic gameplay
controls. The decrease in speed should make the goal of
finding the key and exit door more difficult.

(3) Control: Under this condition which acts as control, we
maintained a constant moving speed value of 10 speed units.

Figure 2: Game user interface and enemy

3.3.2 Game Design. Our adaptive game prototype takes into ac-
count the emotional condition of the player and adjusts the mechan-
ics of the game and the difficulty level accordingly. This strategy
uses biofeedback technology to collect objective measures about
players’ physiological reactions, which may then be used to modify
the game’s mechanics, music, or even visual effects. An adaptive
game design should also take the player skills into account. To avoid
feelings of irritation or boredom that may result from a game that is
either too easy or too challenging, an adaptive game could modify
its mechanics in accordance with the player’s competence. This
may represent a more individualized and entertaining experience
that meets each player’s unique emotional responses and cognitive
demands. Participants had 120 seconds to complete each level using
only an analog stick to navigate the levels. The 120 seconds time
limit was chosen after the pilot tests sessions. To complete and
succeed in a level, each participant needs to find a key and exit door
while avoiding moving enemies (see figure 2). The collisions with
the enemies are not lethal, but a sound evoking that the game char-
acter has been hurt is played each time to act on the player arousal.

The order of passage of the conditions (game levels) across partici-
pants were defined using the Latin square method. This approach
ensures a balanced order of the conditions to minimize any bias
due to order effects. The level number is displayed in the main user
interface (UI) (see figure 1), for the participant to link the condition
with a level and to be able to fill the post-task questionnaires. In
the game prototype, level 2 was the speed up condition, level 3 the
speed down and level 4 was the control condition.

3.3.3 Game learning and controls. First, it was crucial that players
could understand the game’s rules quickly. There was a tutorial
level available to help with this. Second, especially under the cir-
cumstance of the speed down condition, we had the challenge to
establish attainable goals. Finally, because Biosemi equipment ren-
dered players’ non-playing hand immobile, the game had to be
playable with the left hand due to the position of the analog stick
on the game controller used.

3.3.4 Affective adaptation mechanism. SKR was used as a RT in-
put for game settings (movement speed) through dynamic game
mechanics that responded to the player’s EDA levels. Each partic-
ipant’s gaming experience was customized using their SKR data.
The parameter to be controlled in this particular research was the
player’s movement speed which is a key parameter in time limited
tasks and in video games.

3.4 Experimental protocol
3.4.1 Participants. All participants were recruited for the study
through an invitation letter distributed through a mailing list at the
University of Geneva (UNIGE) and through posters. Participants
were offered a reward of CHF 10 in the form of a game coupon for
their participation in the 1-hour experiment. 16 participants (12
males and 4 females), of 18 to 50 years of age (M = 23.93, SD = 8.25),
completed the study. We were only able to use data from 13 of the
16 participants due to defective collected data. We evaluated the
video game expertise of the participants, in order to understand the
habits and motivations of the panel, as proposed in [4]. Most of the
participants (15) were students and there was one researcher in the
group. Regarding video game expertise, 10 of the participants were
classified as experts, 4 as casual players, and 2 as beginners.

3.4.2 Ethical approval / consent forms. This study was approved by
the QMUL Electronic Engineering and Computer Science Devolved
School Research Ethics Committee (EECS DSREC) with the follow-
ing reference: QMERC20.565.DSEECS22.073. Participants gave their
informed written consent to participate in this study.

3.4.3 Structure of the experiment. Four primary components made
up the experiment: introduction, training, tasks, and post-task ques-
tionnaires. Participants were seated and data collection tools were
set during the introduction. Participants signed consent forms,
received detailed instructions and guidelines during the training
phase, and followed a tutorial level to become familiar with the
game. Three game levels (one for each condition) each lasting max-
imum 120 seconds each had to be finished during the tasks phase.
Participants were then asked to submit a post-task questionnaire
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using the Google Forms platform once all the sensors and equip-
ment had been removed. The whole experiment took between 50
and 60 minutes for each participant.

3.4.4 Questionnaires. We used several questionnaires to collect
information about individual factors, including the Ten-Item Person-
ality Inventory (TIPI), the short form of the Positive and Negative
Affect Schedule (I-PANAS-SF), a custom-designed User Experience
(UX) 7-item Likert scale, and open-ended questions about the con-
trols and feedback of the game. TIPI was used to gain an under-
standing of the personality traits present within the participants.
To analyze the collected data, the responses were coded accord-
ingly with numbers from "Strongly disagree": 1 to "Strongly agree":
7, 4 representing a neutral statement. The TIPI measures the five
major dimensions of personality as outlined by the Big Five person-
ality theory, namely: extraversion, agreeableness, conscientious-
ness, emotional stability, and openness to experience. It is a widely
used assessment tool with demonstrated reliability and validity.
I-PANAS-SF was used to measure both positive and negative affect,
providing a picture of the affective states of the participants at the
beginning of the experiment. The UX 7-item Likert scale allowed
the collection of subjective experiences. Open-ended questions
were also used to collect qualitative data to obtain insights into the
emotional and cognitive processes behind the game experience. In
general, the collected data was analyzed to gain a comprehensive
understanding of the participant’s physiological and psychologi-
cal responses to the experimental task, as well as their subjective
experience of the task.

3.4.5 Thematic analysis. We conducted a thematic analysis (TA)
[9] to examine the responses of the participants obtained in post-
task questionnaires (open-ended questions). As outlined by Braun &
Clarke (2014), TA is a systematic approach to identify, organize, and
interpret patterns of meaning (themes). As a qualitative research
method, TA aims to extract meaning from data rather than uncover
phenomenological insights about individual participants. The goal
is to identify patterns or recurring phenomena within the data. TA
is well suited for this type of research, as it allows the identification
of shared sentiments among participants.

3.5 Statistical analyses
For our analysis, we chose to use a linear mixed-effects model
(LMEM) to analyze the fixed effects induced by each condition
(speed up, speed down and control) and taking into account the
random effect generated by the participants (13) for each dependent
variable. LMEM is an effective method to study the dynamics of
physiological responses related to task demands. It can account
for individual variations in SKR patterns, as well as variability
associated with an experimental treatment, by adding fixed and
random factors. In the context of a biofeedback game study in which
participants experience different game character speed conditions,
LMEM can help identify the effects of game speed on physiological
responses and game performance while controlling for confounders
such as game expertise.

We treated participants as random effects, considering different
intercepts for each participant, which means that the intercepts
may differ between individuals. Furthermore, LMEM provided for

the estimate of fixed effects (effects of the independent variable)
and random effects (effects of participant-specific intercepts). This
study, which attempts to assess the link between character speed in
the game, player performance, and physiological reactions (heart
rate, skin temperature, and SKR), is based on hypothesis testing.
The study offers three separate conditions: a control condition with-
out biofeedback, a speed-up condition, and a speed-down condition.
The main focus of the study is to understand how differences in
game character speed affect both SKR/SKC and player game per-
formance. To better understand how game design affects player
experiences, this study uses hypothesis testing to explore the com-
plex interactions between game mechanics, physiological reactions,
and player performance. Hypothesis H1 suggests that slowing the
character of the game will result in a decrease in SKR or an increase
in SKC, which will represent an increased arousal caused by greater
difficulty. On the contrary, H2 claims that speeding up the game
would result in higher SKR (lower SKC), which corresponds to a
decreased arousal given that the game becomes less challenging.
H3 suggests that slowing down the game will impede player per-
formance, creating errors and delays. H4 suggests that increasing
game speed would improve player performance by reducing errors
and completion time.

We used a Python library9 from Statsmodels to fit the LMEMs
with fixed and random effects specified as variables in the data
frame. MixedLM is a Python library to fit linear mixed effects mod-
els. It is used to analyze data subject to fixed and random effects.
The library works using maximum likelihood estimation (MLE)
(more complex than for models only based on fixed effects because
it includes both fixed and random effects) to fit the models. The
model was fitted using the well-established Restricted Maximum
Likelihood (REML), REML technique, which allows the estimation
of both fixed and random effects in the model. As a comparative
study within subjects, we assessed the effects of game character
speed on the following dependent variables:

Biosignals
• SKR finger position (Biosemi)
• SKC finger position phasic number of peaks (Biosemi)
• SKC finger position phasic peaks amplitude (Biosemi)
• SKC finger position tonic (Biosemi)

Game performance
• Number of enemy collisions (Unity)
• Completion of the level (Unity)
• Duration of the level/condition (Unity)

The sample size (number of observations) for the Biosemi SKR
LMEM model was 7,858,570 (game level completion times for the
13 participants ranged between about 90s to 120s across the three
conditions and the Biosemi SKR signal was sampled at 2048 Hz).
The sample size for the all the other LMEM models was 39 as there
was one observation per participant (13 in total) for each of the
three conditions.

4 RESULTS
4.1 Effect of speed on EDA

9https://www.statsmodels.org/stable/index.html
5



ICMI ’23 Companion, October 9–13, 2023, Paris, France Yann Frachi, Guillaume Chanel, and Mathieu Barthet

Name Coef. Std.Err. z P>|z| 0.025 0.975
Intercept(Control) 1976.536 256.808 7.697 0.000 1473.202 2479.870

C(Condition)[speed up] -72.582 0.420 -172.962 0.000 -73.404 -71.759
C(Condition)[speed down] 248.545 0.394 630.176 0.000 247.772 249.318

Group Var 857352.025 151.247

Table 1: LMEM raw SKR in ohms

4.1.1 Impact on SKR. The data set has 7,858,570 observations, with
a minimum group size of 455,873 and a maximum group size of
693,837, serving as the basis for the study. With a standard error of
0.420, the coefficient for the condition speed up is 1903.95 Ω, while
one with a standard error of 0.394 is for the condition speed down
(positive coefficient of 2225.08 Ω) compared to the intercept. The
fact that both coefficients are highly significant (p <0.001) shows
that the various situations differ significantly. The intercept repre-
sents the control condition without speed modification (intercept)
and has a coefficient of 1976.53 Ω.

Our main hypothesis (H1) suggested higher stress and arousal in
the speed down condition (this would mean a lower SKR). However,
the speed down condition yielded a significantly higher SKR com-
pared to the control condition. Similarly, in the speed up condition,
the SKR is lower (higher stress) than in the control condition and
what we hypothesized (H2). This is partially explained by the pos-
sibility that the moving speed value was sometimes inappropriate
to properly navigate the map (M = 12.29, SD = 1.22) and probably
made the game controls even more stressful than in the control
condition. The variance component analysis shows group-level
variability, with a group variance estimated to be 857,352.025 with
a standard error of 151.247. This suggests that the differences be-
tween the groups are rather large. According to the model output,
the intercept coefficient is 1976.536 with a 256.808 standard devia-
tion. The intercept is considerably different from zero, as shown
by the matching z-value of 7.697 (p <0.001). The intercept’s 95%
confidence interval is between 1473.202 and 2479.870.

We evaluated the goodness-of-fit of the model using a number
of measures. The R-squared value, which gauges the amount of
variation described by the model, is 0.9791, showing that the model
provides a significant amount of the variability of the dependent
variable. In general, the findings point to a substantial correlation
between the condition variable and the dependent variable Biosemi
SKR. Substantial impacts on intercept and condition levels suggest
that the various conditions have an impact on the dependent vari-
able. The study also shows significant group-level variation. The
data is well matched by the model, which accounts for a large per-
centage of the variability. It seems that this result is disapproving
our hypothesis (H1) with a higher SKR in the speed down condition.
The significant decrease of SKR in the speed up condition indicates
that increasing game character speed following their player EDA
variations overall increased the arousal of the participants com-
pared to a fixed game character speed (control condition).

4.1.2 Impact on number of EDA peaks. We extracted the number of
skin conductance peaks to estimate the phasic activity of the partic-
ipants. Peaks were extracted from the converted SKR to SKC signal
and we used the neurokit2 python library and the eda process func-
tion to find peaks and their respective amplitudes. 39 observations
(3 conditions for each 13 participants) were analyzed.

Name Coef. Std.Err. z P>|z| 0.025 0.975
Intercept(Control) 8.846 0.972 9.099 0.000 6.941 10.752

C(Condition)[speed up] -0.077 1.260 -0.061 0.951 -2.547 2.393
C(Condition)[speed down] -0.615 1.260 -0.488 0.625 -3.085 1.855

Group Var 1.964 0.841

Table 2: LMEM SKC number of peaks

The model scale was 10.3227 and represents the variance of the
random effects in the model. The results of the LMEM regression
findings are reported in Table 2.

The predicted number of EDA peaks in the control condition is
represented by the intercept coefficient. The intercept’s predicted
value is 8.846, with a 0.972 standard deviation. The baseline level
of the EDA peaks is significantly higher than 0.

There are no statistical differences in the number of EDA peaks
between the control and the speed up or speed down conditions.

The model’s goodness-of-fit metrics are also presented. The
model explains around 26.64% of the variance in the number of
peaks in the EDA, according to the R-squared value of 0.266. These
results indicate that the number of SKC peaks has a limited associ-
ation with the game speed variations.

4.1.3 Impact on the amplitude of the EDA peaks. We used the eda
process method to estimate a second component of the phasic EDA
activity of the participants, which is the amplitude of the peaks. 39
observations of the mean peak amplitude value were analyzed (3
conditions for each of the 13 participants).

Name Coef. Std.Err. z P>|z| 0.025 0.975
Intercept(Control) 29.860 47.360 0.630 0.528 -62.964 122.683

C(Condition)[speed up] 67.377 49.092 1.372 0.170 -28.842 163.597
C(Condition)[speed down] 71.683 49.092 1.460 0.144 -24.536 167.902

Group Var 13492.793 74.763

Table 3: LMEM SKC peaks amplitude mean in µS

The intercept coefficient provides the estimated mean value
of the amplitude of the EDA peaks in the control condition. The
intercept estimate is 29.860 µS with a standard error of 47.360 µS.
Themean EDA peak amplitude does not differ statistically from zero
at the reference level, neither speed up nor speed down significantly
deviate from the reference level in terms of the mean value of the
amplitude of EDA peaks. According to the R-squared value of 0.607,
the model accounts for around 60.76% of the variation in the mean
amplitude of EDA peaks. The MSE, RMSE, and MAE are 10985.1863,
104.8102, and 54.8075, respectively. These results indicate that the
amplitude of the EDA peaks is relatively associated with the game
speed variations.

4.1.4 Impact on tonic EDA. We extracted the number of skin con-
ductance tonic components to estimate the overall skin conduc-
tance activity of the participants. 39 observations of the mean of
the tonic EDA value were analyzed (3 conditions for each of the 13
participants).

The tonic EDA in the control condition is given by the intercept.
With a standard error of 58.833, the intercept’s predicted value
is 367.962. The baseline of the level of EDA tonic is substantially
greater than zero, and there are no statistically significant differ-
ences in the mean value of EDA tonic between the control and
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Name Coef. Std.Err. z P>|z| 0.025 0.975
Intercept(Control) 367.962 58.833 6.254 0.000 252.652 483.271

C(Condition)[speed up] 60.358 43.228 1.396 0.163 -24.368 145.084
C(Condition)[speed down] 42.561 43.228 0.985 0.325 -42.164 127.287

Group Var 32850.044 167.401

Table 4: LMEM SKC tonic mean in µS

the speed up condition. The model accounts for around 81.31% of
the variation in the mean value of the EDA tonic, according to the
R-squared value of 0.813. The MSE, RMSE, and MAE are 7884.8155,
88.7965, and 47.0531, respectively.

4.1.5 Impact on game performance: collisions with enemies. In the
current study, in which participants navigated the game levels, it
was hypothesized that increasing the speed of movement would
lead to an increase in the success rate, reduce the duration of lev-
els, and potentially reduce the number of collisions, particularly
in cases where a time constraint limited the participant. Several
lines of reasoning support this hypothesis. Increasing the speed of
movement allows the participant to cover more ground in a shorter
period of time, increasing the probability of successfully completing
the labyrinth before time runs out. Furthermore, faster movement
can also lead to a more efficient use of cognitive resources, as the
participant can process more information and make decisions more
quickly. There is also evidence that individuals tend to perform
better on tasks that are self-paced than those that are externally
paced. This suggests that increasing the speed of movement can
potentially increase or decrease the performance of the task. Ta-
ble 5 reports the LMEM analysis of the number of collisions per
condition.

Name Coef. Std.Err. z P>|z| 0.025 0.975
Intercept(Control) 3.000 0.501 5.986 0.000 2.018 3.982

C(Condition)[speed up] -0.538 0.609 -0.883 0.377 -1.733 0.656
C(Condition)[speed down] -0.769 0.609 -1.262 0.207 -1.964 0.425

Group Var 0.850 0.533
Table 5: LMEM number of collisions with enemies

The results revealed that the intercept (that is, the predicted value
of collisions in the control condition) is 3.000. The model accounts
for around 40.7% of the variation in the number of collisions with
the game enemies, according to the R-squared value of 0.407. A
small reduction in enemy collision was found for the speed up
condition (0.2031) and a stronger reduction for the speed down
condition (-0.769) compared to the control condition.

4.1.6 Impact on game performance: time to complete the level. Par-
ticipants had a maximum of 120 seconds to complete a level. If the
time limit is passed, the next level is automatically loaded. Table 6
reports the LMEM analysis of the level duration per condition.

Name Coef. Std.Err. z P>|z| 0.025 0.975
Intercept(Control) 94.439 5.876 16.073 0.000 82.923 105.955

C(Condition)[speed up] -6.356 7.817 -0.813 0.416 -21.677 8.965
C(Condition)[speed down] 18.227 7.817 2.332 0.020 2.906 33.548

Group Var 51.607 4.616

Table 6: LMEM level duration in seconds

Participants spent on average 94.44 seconds to complete the
levels under the control conditions. Taking into account the speed
variation conditions, participants spent 6.35 seconds less per level
in the speed up condition and 18.22 seconds more per level in the
speed down condition. The model accounts for around 36.4% of the
variation in the duration in seconds by condition, according to the
R-squared value of 0.364.

4.1.7 Impact on game performance: level success. To assess success
which is recorded as Boolean output (true or false), Success implied
the participant finds the key and the exit door before the end of
the time limit. The coefficient for the variable game speed over the
conditions was found to be statistically significant, with a negative
effect (more successes) for the speed down compared to the control
condition. This result goes against our hypothesis (H3). In terms of
percentage of success rate per condition, in the control condition
with fixed speed, the participants successfully completed the level,
38.45% of the time. This percentage reaches 46.15% in the speed up
condition and 61.54% for the speed down condition.

4.2 Thematic analysis
4.2.1 Game controls: Open-ended questions. TA was based on the
responses of 13 participants to open-ended questions about their
game play experiences (UX). Participants described precise levels
at which they believed that their speed of movement represented
their level of tension or relaxation, which dealt with level-specific
experiences. Personal levels of stress that influenced speedwere also
discovered and 7 individuals noted that their own degree of tension
or worry affected how quickly theymoved. There was a relationship
between difficulty and speed, with 2 individuals discovering that a
level’s difficulty affected how quickly they moved. Last but not least,
2 participants stated that they did not believe that their movement
speed really indicated their degree of tension or relaxation. The
participants said that variations in speed had an impact on their
feelings of stress, and also whether they traveled at a faster or
slower pace. 8 participants saw that speed causes stress, while
others observed that speed causes tension when it decreases. Some
could pinpoint the exact points at which speed variations increased
or decreased their stress levels. 3 participants said that altering the
pace of the movement had no effect on how relaxed or stressed they
felt. Most of the participants (9 out of 13) indicated that changes in
movement speed had an impact on their degrees of relaxation when
asked about this. Due to the decrease in speed and the requirement
to reach the goal in a certain period of time, participants reported
feeling pressured. At high speeds, some participants also reported
feeling more at ease, but as speed reached a certain level, they
had more difficulty unwinding, this statement can explain the SKR
LMEM counter intuitive result. In general, the findings imply a
complicated and multifaceted link between movement speed and
tension or relaxation.

4.2.2 Feedback: Open-ended questions. The participantswere asked
their opinions on their experiences using the smart wristband and
participating in the game. They were also asked about the game’s
positives and negatives, any recommendations for enhancements,
and if they were interested in playing games that react to their emo-
tions. The first question in this section asked about the comfort of
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using the smart wristband for the task. The wristband was deemed
to be comfortable to wear for 8 participants, and 2 participants
even forgot that they had it on. The comfort of the electrodes and
other sensors affixed to the hands and fingers was the subject of
the second question. The sensors did not cause any problems for
most of the participants and had no impact on how they played.
The first theme that emerged was immersive audio, with 4 par-
ticipants noticing the ability of the game to create an immersive
experience through its sound design. The participants enjoyed the
atmospheric aspects to evoke fear and suspense, as well as level
design and movement, strategic components, creative direction,
and immersive soundtrack. The use of jump scares and loud sounds,
the monotony of the game’s locales and stages, its complexity and
challenge, its aesthetic and design features, its restrictive controls
and mechanics, and its sound design were all highlighted as dis-
likes. For example, 2 participants noting that jump scare noise and
screamers were disruptive and added unnecessary stress to the
game experience. One theme was the desire to add more context
and storytelling to the game. It could also be made more dynamic
and difficult by adding more stages with more varied features. Some
participants also call for a greater focus on calm states as a pro-
gressive condition because excitement often outweighs calming
emotions during play. Overall, participants reported an interest in
playing games that respond to their emotions.

5 DISCUSSION
Thematic analysis of open-ended questions revealed several key
themes related to game controls and the impact on players’ levels
of stress and relaxation. Regarding the impact of game controls,
participants described level-specific experiences in which they felt
that their movement speed accurately reflected their level of stress
or relaxation at certain levels and personal factors that influenced
their speed. Few participants did not connect the speed adjustment
to their own stress. However, when we asked about the effects
of changing their speed of movement, participants reported that
speed changes affected their stress levels, with levels 2 (speed up)
and 3 (speed down) being the most frequently cited. In terms of
the desire for games that respond to emotions, participants were
interested in playing such games, but some found the technology to
be useful for certain types of game, such as story-telling games but
not on a broader scale. Participants also suggested improvements
to such games, such as adding more context, storylines, interactive
elements, and a more dynamic and challenging game experience.
Furthermore, only one LMEM analysis showed that emotional con-
ditioning significantly affected SKR, with speed down and speed up
conditions having a positive influence on SKR. SKR changes in each
condition show that participants were more likely to be stressed in
the speed up condition with 46% of success rate and less stressed
in the speed down condition with a 61% of success rate, which is in
opposition to our main hypothesis, but the LMEM and TA results
converged to illustrate this statement.The SKR biofeedback loop
driving the game character speed adaptation used for this study
has shown some limitations and more adaptation rules need to be
tested, such as a smoothing of the speed augmentation following a
logarithmic growth instead of linear transitions to avoid the game
becoming uncontrollable and stressful.

6 CONCLUSION
We examined the effects of emotion-driven game character speed
on biosignals and the impact of the game controls and experience
on player stress and relaxation levels using linear mixed-effects
model analysis and thematic analysis. Linear mixed-effects model
analysis showed that emotion-driven game speed had a significant
effect on SKR, with speed up decreasing SKR (higher arousal) and
speed down increasing SKR (lower arousal). Thematic analysis re-
vealed several themes on how game controls and experience affect
stress and relaxation levels, including level-specific experiences and
changing moving speed. Participants expressed interest in playing
games that respond to emotions and provided constructive feed-
back for improvement. In conclusion, this work supports the use of
SKR/SKC in the biofeedback loop for video games. The results offer
new insights that can guide the creation of games that respond to
emotions or biosignals. The analyses did not confirm the H1 and
H2 hypotheses as contrary to what we expected, increasing the
game character speed led to an increase of arousal and decreasing
the speed led to a decrease of arousal. This corroborates the fact
that the majority of participants felt more stressed when character
speed increased. The H3 hypothesis was only partially confirmed
as reducing speed led to an increase in level completion time (re-
duced performance), but also led to a slight decrease in number
of collisions with enemies (improved performance), although the
latter was not significant. The analyses tend to support H4 since
increasing speed reduces both the number of collisions and com-
pletion time, hence improving player game performance (however,
the effects were not found to be significant). To be in a position of
using EDA in a biofeedback loop, the following limitations need
to be addressed: Individual differences in SKR reactions caused by
factors such as skin type and moisture levels could lead to uneven
emotional readings and possibly unwanted game responses. To
maintain player satisfaction and prevent undesired frustrations,
it is important to carefully design the integration of SKR-based
game mechanisms, especially when game controls are involved.
The present study was conducted with a fairly small number of
participants (13) which means that some significant effects may
have been missed. Larger sample size studies should be conducted
to reduce error in the determination of effects, taking into account
individual factors such as culture and gender. Our future work will
focus on affective gaming using biosensor-driven music. Future
studies will use musical cues for the biofeedback loop, such as
variations in the tension of the music with the assumption that
music can effectively alter the emotional state of the player during
gameplay.

7 ACKNOWLEDGMENTS
This work is supported by Ovomind with additional support from
the EPSRC and AHRC Centre for Doctoral Training in Media and
Arts Technology (EP/L01632X/1), the Social Intelligence and Multi-
Sensing (SIMS) member of the CVML laboratory, the Computer
Science department and the Swiss Center for Affective Sciences of
the University of Geneva.

8



Affective gaming using adaptive speed controlled by biofeedback ICMI ’23 Companion, October 9–13, 2023, Paris, France

REFERENCES
[1] Ian Nery Bandeira, Vitor F. Dullens, Thiago V. Machado, Rennê Ruan A. Oliveira,

Carla D. Castanho, Tiago B.P. e Silva, and Mauricio M. Sarmet. 2022. Dynamic
Difficulty Adjustment in Digital Games: Comparative Study Between Two Al-
gorithms Using Electrodermal Activity Data. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 13334 LNCS, 69–83. https://doi.org/10.1007/978-3-031-05637-6_5

[2] Pippin Barr, James Noble, and Robert Biddle. 2007. Video game values: Human-
computer interaction and games. Interacting with Computers 19, 2 (2007), 180–195.
https://doi.org/10.1016/j.intcom.2006.08.008

[3] Mathieu Barthet, György Fazekas, and Mark Sandler. 2013. Music emotion
recognition: From content- to context-based models. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 7900 LNCS, April 2021 (2013), 228–252. https://doi.org/10.
1007/978-3-642-41248-6_13

[4] Jérémy Bergeron-Boucher. 2016. Identification des motivations pour le jeu vidéo
: Revue des typologies des joueurs. (2016), 70.

[5] Boyan Bontchev. 2016. Adaptation in affective video games: A literature review.
Cybernetics and Information Technologies 16, 3 (2016), 3–34. https://doi.org/10.
1515/cait-2016-0032

[6] Lénaïc B. Cadet and Hanna Chainay. 2020. Memory of virtual experiences: Role
of immersion, emotion and sense of presence. International Journal of Human
Computer Studies 144, July (2020), 102506. https://doi.org/10.1016/j.ijhcs.2020.
102506

[7] Filipe Canento, Ana Fred, Hugo Silva, Hugo Gamboa, and André Lourenço. 2011.
Multimodal biosignal sensor data handling for emotion recognition. Proceedings
of IEEE Sensors, 647–650. https://doi.org/10.1109/ICSENS.2011.6127029

[8] Guillaume Chanel and Phil Lopes. 2020. User Evaluation of Affective Dynamic
Difficulty Adjustment Based on Physiological Deep Learning. 3–23. https://doi.
org/10.1007/978-3-030-50353-6_1

[9] Victoria Clarke and Virginia Braun. 2014. Thematic analysis. 6626–6628.
[10] Afonso Fortes Ferreira, Hugo Plácido da Silva, Helena Alves, Nuno Marques, and

Ana Fred. 2023. Feasibility of Electrodermal Activity and Photoplethysmography
Data Acquisition at the Foot Using a Sock Form Factor. Sensors 23 (1 2023). Issue
2. https://doi.org/10.3390/s23020620

[11] E. Gil, M. Orini, R. Bailón, J. M. Vergara, L. Mainardi, and P. Laguna. 2010. Photo-
plethysmography pulse rate variability as a surrogate measurement of heart rate
variability during non-stationary conditions. Physiological Measurement 31, 9
(2010), 1271–1290. https://doi.org/10.1088/0967-3334/31/9/015

[12] Sarra Graja, Phil Lopes, and Guillaume Chanel. 2021. Impact of Visual and Sound
Orchestration on Physiological Arousal and Tension in a Horror Game. IEEE
Transactions on Games 13 (9 2021), 287–299. Issue 3. https://doi.org/10.1109/TG.
2020.3006053

[13] Joseph R Keebler, William J Shelstad, Dustin C Smith Google, Barbara S Chaparro,
and Mikki H Phan Google. 2020. Validation of the GUESS-18: A Short Version of
the Game User Experience Satisfaction Scale (GUESS). , 49-62 pages. Issue 1.

[14] Mijin Kim and Young Yim Doh. 2017. Computational Modeling of Players’ Emo-
tional Response Patterns to the Story Events of Video Games. IEEE Transactions
on Affective Computing 8, 2 (2017), 216–227. https://doi.org/10.1109/TAFFC.2016.
2519888

[15] Madison Klarkowski, Daniel Johnson, Peta Wyeth, Cody Phillips, and Simon
Smith. 2016. Psychophysiology of challenge in play: EDA and self-reported
arousal. Conference on Human Factors in Computing Systems - Proceedings 07-12-
May-2016, November 2018 (2016), 1930–1936. https://doi.org/10.1145/2851581.
2892485

[16] Frederick P. Morgeson and Stephen E. Humphrey. 2006. The Work Design
Questionnaire (WDQ): Developing and validating a comprehensive measure for
assessing job design and the nature of work. Journal of Applied Psychology 91
(11 2006), 1321–1339. Issue 6. https://doi.org/10.1037/0021-9010.91.6.1321

[17] Pedro A. Nogueira, Vasco Torres, Rui Rodrigues, Eugénio Oliveira, and Lennart E.
Nacke. 2016. Vanishing scares: biofeedback modulation of affective player expe-
riences in a procedural horror game. Journal on Multimodal User Interfaces 10, 1
(2016), 31–62. https://doi.org/10.1007/s12193-015-0208-1

[18] Lauri Nummenmaa, Enrico Glerean, Riitta Hari, and Jari K. Hietanen. 2014. Bodily
maps of emotions. Proceedings of the National Academy of Sciences of the United
States of America 111, 2 (2014), 646–651. https://doi.org/10.1073/pnas.1321664111

[19] Avinash Parnandi and Ricardo Gutierrez-Osuna. 2017. Physiological Modalities
for Relaxation Skill Transfer in Biofeedback Games. IEEE journal of biomedical
and health informatics 21 (3 2017), 361–371. Issue 2. https://doi.org/10.1109/JBHI.
2015.2511665

[20] Hugo F. Posada-Quintero, John P. Florian, Alvaro D. Orjuela-Cañón, and Ki H.
Chon. 2018. Electrodermal activity is sensitive to cognitive stress under water.
Frontiers in Physiology 8, JAN (2018), 1–8. https://doi.org/10.3389/fphys.2017.
01128

[21] Osmalina Rahma, Alfian Putra, Akif Rahmatillah, Yang Putri, Nuzula Fajriaty,
Khusnul Ain, and Rifai Chai. 2022. Electrodermal activity for measuring cognitive
and emotional stress level. Journal of Medical Signals and Sensors 12, 2 (2022),

155–162. https://doi.org/10.4103/jmss.JMSS_78_20
[22] Axel Schäfer and Jan Vagedes. 2013. How accurate is pulse rate variability as

an estimate of heart rate variability?: A review on studies comparing photo-
plethysmographic technology with an electrocardiogram. International Journal
of Cardiology 166, 1 (2013), 15–29. https://doi.org/10.1016/j.ijcard.2012.03.119

[23] Klaus R. Scherer. 2005. What are emotions? and how can they be mea-
sured? Social Science Information 44, 4 (2005), 695–729. https://doi.org/10.
1177/0539018405058216

[24] Bo Wang and Bukuan Sun. 2015. Time-limited effects of emotional arousal on
item and source memory. Quarterly Journal of Experimental Psychology 68 (11
2015), 2274–2290. Issue 11. https://doi.org/10.1080/17470218.2015.1013043

[25] Yan Wang, Wei Song, Wei Tao, Antonio Liotta, Dawei Yang, Xinlei Li, Shuy-
ong Gao, Yixuan Sun, Weifeng Ge, Wei Zhang, and Wenqiang Zhang. 2022. A
systematic review on affective computing: emotion models, databases, and recent
advances. Vol. 83-84. 19–52 pages. https://doi.org/10.1016/j.inffus.2022.03.009
arXiv:2203.06935

9

https://doi.org/10.1007/978-3-031-05637-6_5
https://doi.org/10.1016/j.intcom.2006.08.008
https://doi.org/10.1007/978-3-642-41248-6_13
https://doi.org/10.1007/978-3-642-41248-6_13
https://doi.org/10.1515/cait-2016-0032
https://doi.org/10.1515/cait-2016-0032
https://doi.org/10.1016/j.ijhcs.2020.102506
https://doi.org/10.1016/j.ijhcs.2020.102506
https://doi.org/10.1109/ICSENS.2011.6127029
https://doi.org/10.1007/978-3-030-50353-6_1
https://doi.org/10.1007/978-3-030-50353-6_1
https://doi.org/10.3390/s23020620
https://doi.org/10.1088/0967-3334/31/9/015
https://doi.org/10.1109/TG.2020.3006053
https://doi.org/10.1109/TG.2020.3006053
https://doi.org/10.1109/TAFFC.2016.2519888
https://doi.org/10.1109/TAFFC.2016.2519888
https://doi.org/10.1145/2851581.2892485
https://doi.org/10.1145/2851581.2892485
https://doi.org/10.1037/0021-9010.91.6.1321
https://doi.org/10.1007/s12193-015-0208-1
https://doi.org/10.1073/pnas.1321664111
https://doi.org/10.1109/JBHI.2015.2511665
https://doi.org/10.1109/JBHI.2015.2511665
https://doi.org/10.3389/fphys.2017.01128
https://doi.org/10.3389/fphys.2017.01128
https://doi.org/10.4103/jmss.JMSS_78_20
https://doi.org/10.1016/j.ijcard.2012.03.119
https://doi.org/10.1177/0539018405058216
https://doi.org/10.1177/0539018405058216
https://doi.org/10.1080/17470218.2015.1013043
https://doi.org/10.1016/j.inffus.2022.03.009
https://arxiv.org/abs/2203.06935

	Abstract
	1 Introduction
	2 Related worK
	2.1 Emotion assessment with biosignals
	2.2 Affective games

	3 Methodology
	3.1 Hypotheses
	3.2 Physiological measures
	3.3 Adaptive game prototype
	3.4 Experimental protocol
	3.5 Statistical analyses

	4 Results
	4.1 Effect of speed on EDA
	4.2 Thematic analysis

	5 Discussion
	6 Conclusion
	7 Acknowledgments
	References

