
Operat ing C. Weissman
Systems Editor

A User Authentication
Scheme Not Requiring
Secrecy in the
Computer
Arthur Evans Jr., William Kantrowitz
M.I.T. Lincoln Laboratory
and
Edwin Weiss
Boston University

In many computer operating systems a user authen-
ticates himself by entering a secret password known
solely to himself and the system. The system compares
this password with one recorded in a Password Table
which is available to only the authentication program.
The integrity of the system depends on keeping the
table secret. In this paper a password scheme is pre-
sented which does not require secrecy in the computer.
All aspects of the system, including all relevant code
and data bases, may be known by anyone attempting to
intrude.

The scheme is based on using a function H which
the would-be intruder is unable to invert. This function
is applied to the user's password and the result com-
pared to a table entry, a match being interpreted as au-
thentication of the user. The intruder may know all
about/- /and have access to the table, but he can pene-
trate the system only if he can invert H to determine
an input that produces a given output.

This paper discusses issues surrounding selection of
a suitable H. Two different plausible arguments are
given that penetration would be exceedingly difficult,
and it is then argued that more rigorous results are
unlikely. Finally, some human engineering problems
relating to the scheme are discussed.

Key Words and Phrases: operating system security,
security, authentication, passwords, one-way encryp-
tion, cryptology

CR Categories: 4.39, 5.39

Copyright @ 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Introduction

Modern computer systems are frequently used to
store informat ion which is not to be divulged to un-
authorized persons. A problem that arises in such a
system is authent icat ion: establishing that a would-be
user is in fact the individual he claims to be. A c o m m o n
approach to solving this problem is to give each user a
piece of information, usually called a password, which
is known by no other person, and then to accept him if
he knows that password.

Fo r the purposes of this paper we ignore such very
impor tant issues as communica t ion line security
(against wire taps and such) and operat ing system
security (for example, against reading data f rom system
buffers). We confine our discussion to that part of the
operat ing system which checks to determine whether
or not the password entered by the user is the one re-
corded for that user.

The Usual Approach

The usual password scheme involves a hidden
Password Table, stored in a file which can be read by
the authent icat ion p rogram but not by the average
user. I The file contains a table associating a password
with each user. A user is accepted as being properly
authenticated if he knows the password associated with
his name in the table. The scheme depends for its suc-
cess on being able to keep the Password Table secret:
the operat ing system design must make it possible to
prohibit access to this file for all users, other than the
System Adminis t ra tor .

There are several disadvantages to this scheme. First,
it depends for its success on the correct operat ion o f a
very large part of the operat ing sys tem-- the entire
access control mechanism. Second, the System Ad-
ministrator can know all o f the passwords. There is no
reason why he should know them, or even be able to
know them. Third, any listing of the Password Table,
even if obtained for a valid purpose, may be inad-
vertently seen by an unauthor ized person. Four th ,
anyone who can obtain physical access to the computer ,
such as an operator , may well be able to print the file. A
final disadvantage is that it cannot be implemented at

This work was supported by the Advanced Research Projects
Agency of the Department of Defense. Authors' addresses: William
Kantrowitz and Arthur Evans Jr.: M.I.T. Lincoln Laboratory,
P.O. Box 73, Lexington, MA 02173; Edwin Weiss, Boston Univer-
sity, Boston, MA 02215.

1 Of course, there is a System Administrator--a person--who
can both read and alter this file.

437 Communications August 1974
of Volume 17
the ACM Number 8

http://crossmark.crossref.org/dialog/?doi=10.1145%2F361082.361087&domain=pdf&date_stamp=1974-08-01

all in an environment whose file system security does
not protect against unauthorized reading of files. The
APEX Time Sharing System on the TX-2 computer at
Lincoln Laboratory is such a system.

lated value in the Password Table is Fp(P). Given the
flexibility of the modern digital computer, the selec-
tion process can be "extremely complex" indeed!

The Scheme Proposed

As a point of departure for an attempt to circum-
vent the disadvantages just listed, we have proceeded
on the assumption that nothing about the scheme itself
can be hidden. That is, we assume that all aspects of the
scheme--except the passwords themselves--can be
known by anyone attempting to intrude. Of course, we
are assuming that suitable system security keeps the
intruder from being able to read program temporaries,
buffers, and other memory that holds some or all of the
password while it is being processed.

The proposed scheme works like this. As in the
usual system, a person requesting access gives his name
and his password, P. The validation program computes
the value of a function H at the point P, and it then
looks in the Password Table for the entry corresponding
to the name. It finds there some entry, E. If E = H(P)
the individual is accepted as having been authenticated,
the assumption being that only he knows a value of P
that gives rise to the tabulated E.

For the purposes of the present discussion, we
assume that anyone attempting to intrude has access to
both the Password Table and the function H) Since
the integrity of the system is destroyed if the intruder
can deduce a P that gives rise to any single E found in
the table, what is needed is that H be very hard to
undo, or invert. Note that the obvious brute force attack
is not practical if the space is large enough; for example,
at one try per microsecond it takes about 150 million
years to try 2 72 passwords. This is not an argument that
the scheme is safe--only that an approach more
sophisticated than mere brute force is needed to circum-
vent it. That there is no safety in numbers alone is a
well-known cryptologic result.

One possible approach is to select a function H
which is mathematically very hard to invert. One would
then depend on mathematical analysis to try to establish
the validity of the scheme. 3 Our approach is different;
we have selected a function that is computationally
hard to invert. Mathematically, we do not know how to
analyze the function at all, much less invert it. We
achieve this effect by having available an extremely large
family of functions and selecting among that family
depending on the password. That is, given a password
P we determine a function Fp whose behavior depends
on P in an extremely complex manner. Then the tabu-

The function H is a computer program. By "accessing H"
we mean that this program can be read.

3 A solution using this method is described in [5]. The present
scheme had already been developed when we first learned of Purdy's
work.

Details of the Scheme

Before presenting the details of the scheme, a bit of
overview seems in order. The computation of the func-
tion H is done in J cycles, each of which converts a
value from the password space into a new such value.
The first cycle starts with the original password P;
each successive cycle starts with the value calculated by
the previous one; and the last cycle produces the value
compared with E. Each cycle is parametrized by a
different value, so that each cycle is computationally
distinct. The function calculated by a cycle is called
Fx, where x is the parameter. The first cycle is para-
metrized by P itself, and the parameter for each suc-
cessive cycle is calculated by applying the function
NextX to the parameter of the previous cYcle.

Each cycle consists of successive application of K
scrambling functions fk, each of which replaces the
current value by a new one. Each scrambling function
is parametrized by x (the parameter to the cycle) and /o r
by P (the original password). Further, each scrambling
function is repeated m times, where m is a function of
(the current) x and of P.

Note the nesting. There are J cycles, each consisting
of K scrambling functions. Each cycle is parametrized
based on a value x, and both x and P are used both to
parametrize the scrambling functions and to determine
the number of replications of each of them.

For convenience, all computations are performed on
values from the space I of n-bit values. It is assumed that
P is a value from that space determined in some con-
venient way from the password originally entered. The
following terminology is used.

n The number of bits in the password and in the vari-
ous values derived from it.

1 The space of all n-bit quantities.
P The password entered, from I.
E The associated table entry, from I.
H The entire function that goes from P to E.
Fp The version of H determined from a given P.
J The number of cycles.
F~ The function for a single cycle, parametrized on x.
x The value used to parametrize the current cycle,

from I.
K The number of distinct scrambling functionsfk.
qk Functions from (I × I) to small integers. These are

applied to P and the current value of x to determine
the number of times to iterate the current fk.
The scrambling functions. Each of the fk scrambles
a value from I, returning a new value from I. The
set of values returned by each fk includes all possi-
ble values from 1. Some of the fk may be paramet-

f~

438 Communications August 1974
of Volume 17
the ACM Number 8

Fig. 1.

I o0o, 0ota,o I

repeat d times

I
repeat for k = to K [

m ~ qk (P , x)

repeat m times]

V ~ f k (V , P , x)

x ~ Next X (x)

I ,sinv]

rized based on P or on x. This parametrization is
indicated in the flow chart by showing each f as
taking three arguments.

The overall transformation is described by the flow-
chart of Figure 1. The flowchart uses the identifiers
listed above, as well as the following.

V The current value to be scrambled. Each application
of an f i replaces V by a new value.

m The number of times the currentfk is to be applied.
k A counter from 1 to K, to count through the scram-

bling functions.
NextX A function that goes from one value of the

parameter x to the next one.

The inner loop represents the m-fold replication offk.
The loop on k represents one cycle through all of the
scrambling functions, and the outer loop represents the
J cycles.

The Intruder's Problem

It is instructive to see, at least intuitively, why it
is so hard to attack this scheme. Suppose that the
tame entry is E, that the last function used (i.e. the last
fk) is g, that the value to which g was originally ap-

plied was Q, and that g was executed m times. (That
is, E = g"(Q).) We assume that the intruder knows E
and that he knows all about g--including the inverse
function g-a. But this does not help him very much
since he does not know m. Further, m is dependent on
the original password and bears no discernible relation
either to Q or to E. Thus applying g-1 repeatedly to E
and looking at the successive results is of no help. The
values that appear have essentially nothing to do with
anything he knows, so when he gets Q he is unable to
recognize it. There are no available stepping stones in
going backward from E to the original P. The problem
is harder as the number of differentfk gets at all large,
and even harder as the number of cycles grows.

Relation to Cryptology

It seems useful to relate this work to well-known
results from the field of cryptology. A cryptosystem (see
[6] for a mathematical definition, or [3]) is a large
family of encrypting functions. To encrypt a message,
one function is selected from this family, the selection
being specified by a key, and the message is transformed
by this function to a cryptogram. The intended recipient,
knowing the key, knows what encrypting function was
used and applies its inverse to decrypt the cryptogram,
thus retrieving the original message. It is usually as-
sumed that a would-be intruder (usually called the
"enemy" in cryptologic literature) knows all about the
family of functions (the cryptosystem) but does not
know the key used for a given message.

For a function to be useful for encryption, it must
have an inverse, so that the intended recipient can re-
trieve the original message. For our purpose we require
a function which we, the designers of the scheme, do
not know how to invert. The closest analogy to cryp-
tology would suggest that our password is the key, but
this analogy seems rather forced when it is realized that
the only message encrypted with that key is the key
itself. Wilkes discusses this point briefly in [8], and
suggests the term "one-way cipher" for this kind of
scheme. The scheme somewhat suggests the autokey
encryption technique.

The work of Horst Feistel and others at IBM's
Thomas J. Watson Research Laboratory is related to
our effort. This group has been working on schemes for
secure communication between terminals and comput-
ers, using sophisticated encryption techniques due to
Feistel. Our use of cycles is similar to Feistel's idea of
"rounds." See [7] for an overview of the scheme, and
[1] for a more detailed description of the encryption
methods used. A less technical discussion of this and
other issues of computer cryptology may be found in
[2].

One idea of importance from cryptology is the
"mixing function," a function with the property that

439 Communications August 1974
of Volume 17
the ACM Number 8

each bit of the output is dependent on every bit of the
input. It is pointed out in [6] tha t mixing functions are
very desirable cryptologically. An impor tan t design
criterion of H has been that it be a good mixing func-
tion. One way we achieve this effect is to use each bit of
P in at least one o f the m. Proper selection of the f i
further insures good mixing.

It is manda to ry that at least some of t h e f t selected
be nonl inear functions, in the sense that each bit in the
output be a nonlinear funct ion of the input bits. This
point is developed further later.

Some Proposed Functions

Some possible families of funct ions for the f i are
now listed. Since the space I is of n-bit quantities, each
funct ion under considerat ion maps A = (al, a2, . . . ,
a,) to B = (bl, b2, • . . , b,).
1. Permute. The bits of B are some permutat ion of the
bits o f A. Some possible permuta t ions are the following.
- - Shift c bits. Here each b~ = ai+c, the addit ion in the

subscript being modulo n. The value of c could well
be the associated m.

- - Permute, fixed. The bits of B are some fixed permu-
tat ion of the bits of A.

- - Permute, calculated. Calculate some permutat ion of
the first n integers, the part icular permuta t ion se-
lected being dependent on P a n d / o r x. The bits of
B are tha t permuta t ion of the bits o f A.

- - Permute bytes. This is a variant of either of the
above, with whole bytes being permuted. It is
ment ioned separately because it could be signifi-
cantly easier to implement on some computers .

2. Scramble. Deduce some n-bit quanti ty Q f rom P
a n d / o r x, and then let each bit of B be the (noncarry-
ing) binary sum of the cor responding bits of A and Q.
The m corresponding to this operat ion must be exactly
one.
3. Table lookup. Suppose n = c X d, so that we can
think of A as being made up of d-bit bytes, c of them.
Given an arbi t rary table with 2 d entries, let each byte
o f B be calculated f rom the cor responding byte of A by
treating the latter as a d-bit integer and using the cor-
responding table entry. To make the result one-to-one,
the 2 ~ table entries must include each integer f rom zero
to 2 ~ - 1, so that the table is in fact a permutat ion of the
first 2 d integers. An obvious variation is to use an integer
derived f rom P a n d / o r x as the seed for a pseudo-ran-
dom-number generator, the latter being then used to
generate the 2 d entries of the table. 4 The above com-
ments about one- to-one apply.
4. Add bytes. A cons tant (either built in or calculated
f rom P) can be added to each byte, with the carry (if
any) ignored. A different cons tant could be used for
each b y t e)
5. Assemble. Select some "sui table" machine instruc-
tions f rom a pool, the selection being based on P a n d /

or x, and calculate a value Q by executing these instruc-
tions starting with some bit pattern (perhaps dependent
on P a n d / o r x). Then B is the binary sum of A and Q.
The result appears to be rather formidable to analyze.

Variations

The scheme just defined uses f l , f2, . . . , fK in each
cycle in a predetermined order. Instead one could com-
pute f rom P a n d / o r x a permuta t ion (s t , s2 , . . . , s K) of
the integers f rom one to K , and u s e f i l , f i 2 , . . . , i l K , in
that order. This seems to make inverting H somewhat
harder. It is o f course also possible to use some of the

f i more than once - -pe rhaps parametr ized differently.

Analysis

Let H be the entire t ransformat ion just defined:

E = H (P) = F e (P) . (1)

Since E and P are each n-bit quantities, we can write
them in vector nota t ion as

E = (el, e 2 , . . . , e ,)
P = (px, p 2 , . . . , p ,)

where each pi and el is a binary quanti ty. Then an al-
ternate way to view the t ransformat ion H is as a col-
lection o f n funct ions hk, each taking n binary argu-
ments and yielding a binary value. Thus eq. (1) can be
rewritten as

e l = h t (p , , p.2, • • • , p n) ,

e2 = h 2 (p x , p.2, . . . , p,~), (2)

e n = h , (p l , p 2 , • • • , p , ~) .

The intruder knows the e~; and the hk are implicit in H,
which he knows. His task is first to determine the hk
explicitly, and then to solve the system of eqs. (2) for
the pk.

It is immediately obvious that the designers of the
system must select H so that the t ransformat ion repre-
sented by eqs. (2) is nonlinear, since the solution of n
linear equat ions in n unknowns is s t raightforward. Thus
it is impor tan t that H be highly nonlinear. F r o m our
point of view, this requires that at least some of the fk
selected must be nonlinear. The first two funct ions
listed above are linear, but the last three are not.

4 Such generators are discussed at length in [4].
This scrambling function is not quite one-to-one in a com-

puter unless the addition is done using the two's complement con-
vention, since otherwise +0 and --0 lead to the same value.

6 For reasons to be explained below under the section Human
Engineering, n must be 64 or 72 or more, so at best the problem is
nontrivial.

7 For example, the user might have to identify himself in person
to the System Administrator and then log-in from the System Ad-
ministrator's console and set his own password. It is easy to think
of other possibilities.

8 This fact justifies the earlier statement that a 64 or 72 bit
password would be used. The exact length would be selected to be
computationally convenient.

440 Communications August 1974
of Volume 17
the ACM Number 8

The basic intractability of the scheme should now
be apparent. Given a set of equations such as (2) a
mathematician can at tempt a solution using various
tools. 6 The present scheme is of such complexity that
it is not at all clear how to reduce it to this form. That
is, the transformations defined by some of the f i , es-
pecially when raised to an unknown power, would be
very hard to put into the neat form of (2). Thus the
intruder has two intractable problems: reducing the
algorithm for H to the n functions h~, and solving the
resulting system of equations.

Does this mean we claim the scheme cannot be
broken? N o - - w h a t it does mean is that we, the creators
of the scheme, have thought long and hard about the
matter, and have no idea how to reduce our algorithm
to the form of a manageable system of boolean equa-
tions. Further, we know of no suitable tools for solving
such a system if it is highly nonlinear and if n is big
enough.

Further Comments

Since the System Administrator has no way to learn
a user's password, some mechanism is needed to ac-
commodate the user who forgets it. Safeguards are of
course needed, but these are procedural in nature and
not relevant to this paper. 7 I f the scheme is as good as
we intend it to be, there is no way the user could ever re-
trieve his original password. All he could do is to select
a new one.

Presumably anyone attempting to defeat this scheme
will (among other things) implement the function H on
his own computer so that he can study it empirically.
Thus there is an advantage to be had by an implementer
of this scheme, particularly if his computer is an un-
common one, if he codes it using characteristics of the
computer that would be hard to simulate on other hard-
ware. To the extent that such features are used, the
brute force part of any at tempt to break in is made that
much more expensive. TX-2 has some uncommon fea-
tures which are hard to simulate, such as word permu-
tation and reconfiguration, bit operations combined
with rotations, parallel arithmetic on bytes, and others.

The Issue of One-to-One

If H is the entire function produced by the scheme
just described, then it seems desirable that H be one-
to-one. Otherwise, there could be distinct passwords a
and/3 such that H(a) is equal to H(/3). This seems to be
undesirable, since then more than one password pro-
duces a given value of E, and the intruder's task of
finding such a value might be eased.

Is H as we have defined it one-to-one? Probably not,
although we do not expect ever to be able to decide
with assurance. We have required that each of the fk

441

be one-to-one. It then follows that the function Fe
derived from a given password P is one-to-one, since
the composition of one-to-one functions is one-to-one.
Thus Fe(a) can equal Fe(/3) if, and only if, a equals/3.
But that is not what is in question here. Could there be
distinct passwords P and Q such that Fe(P) = FQ(Q)?
Nothing in our discussion precludes this possibility; in-
deed, H could collapse horribly. However, it appears
that it is just as hard to investigate whether or not H is
one-to-one as it is to defeat this scheme analytically, and
we do not know how to do either.

It would be desirable if we could argue convincingly
that the collapse is not too bad, but even that seems
beyond our means. More investigation is needed, but
the discussion above under Analysis should make it
clear that results will be very hard to come by. Perhaps
some experimental investigation into collapse would be
useful, but the space is so large that meaningful experi-
ments seem excessively costly in computer time.

It should be noted that computing Fe(K) instead of
Fe(P), where K is some constant, is no better with re-
spect to being one-to-one. We are quite unprepared to
argue that Fe(K) differs from FQ(K) if P differs from Q,
even though each of Fe and FQ are one-to-one.

Even though the mapping from P to Fe(P) cannot
be proved to be one-to-one, it still seems to be desirable
that each of the fk be one-to-one. Since this keeps the
number of possible values at each step as large as pos-
sible, it makes harder the analysis involved in breaking
in.

Human Engineering

We have discussed a password as an n-bit quantity,
but it is clear that human beings cannot memorize such
quantities conveniently. Presumably, the user will think
of his password as a sequence of letters and digits, there
being standard programming techniques for transform-
ing such a sequence to a bit vector.

The intruder will find this scheme much easier to
experiment with than the usual one. Having first imple-
mented H on his own computer , he is able to study it
independently of the system being attacked. In the usual
scheme it is possible to test a password only by attempt-
ing to log in, but it is easy to program the log-in program
to warn the operations staff of too many unsuccessful
attempts. An implication of this ease of experimenta-
tion is that a rather long password is needed, s I f the
password were selected from some fairly small set (per-
haps a few thousand items), the intruder could easily .
try each possibility on his computer .

There are some serious issues of human engineering
that follow from the requirement for a long password.
Faced with the need to select (say) a 12-character pass-
word, a person might well select one, such as his spouse's
name or "qwertyuiop", that could be too easily guessed.
One possibility is to assign random passwords, but most

Communications August 1974
of Volume 17
the ACM Number 8

people find "cFq38 ,Te" rather hard to live with. This
issue is not pursued further in this report, but it deserves
more attention before an implementation is installed.

There are some requirements on the function that
converts the entered characters into a bit vector for in-
ternal processing. All possible values of P should be
produced by this function. Further, it seems desirable
that no bit of P be dependent on any single character
of the original password.

Acknowledgments . The impetus to study this prob-
lem came from a suggestion from Lawrence G. Roberts
that a password scheme be implemented for the TX-2
computer. After the scheme had been developed, Jerome
H. Saltzer pointed out that the basic idea had been pre-
sented by Maurice V. Wilkes, in [8]. Wilkes gives credit
to R.M. Needham for the initial idea and the first im-
plementation, but provides no discussion of the details
of the method used.

Saltzer has also pointed out that the Multics operat-
ing system uses a similar scheme, in addition to keeping
the Password Table secret. The point of view seems to
be that it is the integrity of the file system that provides
the crucial aspect of security, while this scheme circum-
vents the second, third, and fourth of the disadvantages
of the usual scheme as listed above.

Received August 1973; revised February 1974

References
1. Feistel, Horst. Cryptographic coding tbr data-bank privacy.
Res. Rept. RC-2827. T. J. Watson Res. Lab., IBM, 1970.
2. Feistel, Horst. Cryptography and computer privacy. Scientific
American 228 (May 1973), 15-23.
3. Kahn, David. The Code Breakers. Macmillan, New York, 1967.
4. Knuth, Donald E. The Art of Computer Programming. Vol. 2.
Addison-Wesley, Reading, Mass. 1969.
5. Purdy, George. Security code. U. of Illinois, Center for Ad-
vanced Computation, 1973.
6. Shannon, Claude E. Communication theory of secrecy systems.
Bell System Technical J. 28 (1949), 656-715.
7. Smith, J. Lynn, Notz, William A., and Osseck, P.R. An ex-
perimental application of cryptography to a remotely accessed
data system. Proc. ACM 1972 Annual Conf., ACM, New York,
282-297.
8. Wilkes, Maurice V. Time-Sharing Computer Systems. Ameri-
can Elsevier, New York, 1972.

Operating C. Weissman
Systems Editor

A High Security
Log-in Procedure
George B. Purdy
University of Illinois at Urbana-Champaign

The protection of time sharing systems from unau-
thorized users is often achieved by the use of passwords.
By using one-way ciphers to code the passwords, the
risks involved with storing the passwords in the com-
puter can be avoided. We discuss the selection of a suit-
able one-way cipher and suggest that for this purpose
polynomials over a prime modulus are superior to one-
way ciphers derived from Shannon codes.

Key Words and Phrases: operating systems, time
sharing systems, security, cryptography

CR Categories: 4.35

I. Introduction

One of the managerial aspects of time sharing sys-
tems is the need to protect the system from unauthorized
users. Access may be controlled by restricting certain
users to certain terminals at certain times only, limiting
access to the building, or by the use of passwords.
Passwords, if used, must be carefully guarded; the most
vulnerable part of a password system is usually the list
of passwords stored in the computer.

M.J. Wilkes [1, p. 91] describes a device, due to
R.M. Needham, implemented at Cambridge, England,

Copyright O 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported in part by the Advanced Research
Projects Agency of the Department of Defense and was monitored
by the U. S. Army Research Office-Durham under Contract No.
DAHC04-72-C-0001. Author's address: Center for Advanced Com-
putation, University of Illinois at Urbana-Champaign, Urbana, IL
61801.

442 Communications August 1974
of Volume 17
the ACM Number 8

