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In many computer operating systems a user authen- 
ticates himself by entering a secret password known 
solely to himself and the system. The system compares 
this password with one recorded in a Password Table 
which is available to only the authentication program. 
The integrity of the system depends on keeping the 
table secret. In this paper a password scheme is pre- 
sented which does not require secrecy in the computer. 
All aspects of the system, including all relevant code 
and data bases, may be known by anyone attempting to 
intrude. 

The scheme is based on using a function H which 
the would-be intruder is unable to invert. This function 
is applied to the user's password and the result com- 
pared to a table entry, a match being interpreted as au- 
thentication of the user. The intruder may know all 
about/- /and have access to the table, but he can pene- 
trate the system only if he can invert H to determine 
an input that produces a given output. 

This paper discusses issues surrounding selection of 
a suitable H. Two different plausible arguments are 
given that penetration would be exceedingly difficult, 
and it is then argued that more rigorous results are 
unlikely. Finally, some human engineering problems 
relating to the scheme are discussed. 
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Introduction 

Modern  computer  systems are frequently used to 
store informat ion which is not  to be divulged to un- 
authorized persons. A problem that  arises in such a 
system is authent icat ion:  establishing that  a would-be 
user is in fact the individual he claims to be. A c o m m o n  
approach  to solving this problem is to give each user a 
piece of  information,  usually called a password,  which 
is known by no other person, and then to accept him if 
he knows that  password.  

Fo r  the purposes of  this paper  we ignore such very 
impor tant  issues as communica t ion  line security 
(against wire taps and such) and operat ing system 
security (for example, against reading data f rom system 
buffers). We confine our  discussion to that  part  of  the 
operat ing system which checks to determine whether 
or not  the password entered by the user is the one re- 
corded  for  that  user. 

The Usual Approach 

The usual password scheme involves a hidden 
Password Table, stored in a file which can be read by 
the authent icat ion p rogram but  not  by the average 
user. I The file contains a table associating a password 
with each user. A user is accepted as being properly 
authenticated if he knows the password associated with 
his name in the table. The scheme depends for its suc- 
cess on being able to keep the Password Table secret: 
the operat ing system design must  make it possible to 
prohibit  access to this file for all users, other than the 
System Adminis t ra tor .  

There are several disadvantages to this scheme. First, 
it depends for its success on the correct  operat ion o f  a 
very large part  of  the operat ing sys tem-- the  entire 
access control  mechanism. Second, the System Ad- 
ministrator  can know all o f  the passwords. There is no 
reason why he should know them, or even be able to 
know them. Third, any listing of  the Password Table, 
even if obtained for a valid purpose,  may  be inad- 
vertently seen by an unauthor ized person. Four th ,  
anyone  who can obtain physical access to the computer ,  
such as an operator ,  may  well be able to print the file. A 
final disadvantage is that  it cannot  be implemented at 

This work was supported by the Advanced Research Projects 
Agency of the Department of Defense. Authors' addresses: William 
Kantrowitz and Arthur Evans Jr.: M.I.T. Lincoln Laboratory, 
P.O. Box 73, Lexington, MA 02173; Edwin Weiss, Boston Univer- 
sity, Boston, MA 02215. 

1 Of course, there is a System Administrator--a person--who 
can both read and alter this file. 
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all in an environment whose file system security does 
not protect against unauthorized reading of files. The 
APEX Time Sharing System on the TX-2 computer at 
Lincoln Laboratory is such a system. 

lated value in the Password Table is Fp(P). Given the 
flexibility of the modern digital computer, the selec- 
tion process can be "extremely complex" indeed! 

The Scheme Proposed 

As a point of departure for an attempt to circum- 
vent the disadvantages just listed, we have proceeded 
on the assumption that nothing about the scheme itself 
can be hidden. That  is, we assume that all aspects of the 
scheme--except the passwords themselves--can be 
known by anyone attempting to intrude. Of course, we 
are assuming that suitable system security keeps the 
intruder from being able to read program temporaries, 
buffers, and other memory that holds some or all of the 
password while it is being processed. 

The proposed scheme works like this. As in the 
usual system, a person requesting access gives his name 
and his password, P. The validation program computes 
the value of a function H at the point P, and it then 
looks in the Password Table for the entry corresponding 
to the name. It finds there some entry, E. If E = H(P) 
the individual is accepted as having been authenticated, 
the assumption being that only he knows a value of P 
that gives rise to the tabulated E. 

For  the purposes of the present discussion, we 
assume that anyone attempting to intrude has access to 
both the Password Table and the function H )  Since 
the integrity of the system is destroyed if the intruder 
can deduce a P that gives rise to any single E found in 
the table, what is needed is that H be very hard to 
undo, or invert. Note that the obvious brute force attack 
is not practical if the space is large enough; for example, 
at one try per microsecond it takes about 150 million 
years to try 2 72 passwords. This is not an argument that 
the scheme is safe--only that an approach more 
sophisticated than mere brute force is needed to circum- 
vent it. That  there is no safety in numbers alone is a 
well-known cryptologic result. 

One possible approach is to select a function H 
which is mathematically very hard to invert. One would 
then depend on mathematical analysis to try to establish 
the validity of the scheme. 3 Our approach is different; 
we have selected a function that is computationally 
hard to invert. Mathematically, we do not know how to 
analyze the function at all, much less invert it. We 
achieve this effect by having available an extremely large 
family of functions and selecting among that family 
depending on the password. That  is, given a password 
P we determine a function Fp whose behavior depends 
on P in an extremely complex manner. Then the tabu- 

The function H is a computer program. By "accessing H" 
we mean that this program can be read. 

3 A solution using this method is described in [5]. The present 
scheme had already been developed when we first learned of Purdy's 
work. 

Details of the Scheme 

Before presenting the details of the scheme, a bit of 
overview seems in order. The computation of the func- 
tion H is done in J cycles, each of which converts a 
value from the password space into a new such value. 
The first cycle starts with the original password P; 
each successive cycle starts with the value calculated by 
the previous one; and the last cycle produces the value 
compared with E. Each cycle is parametrized by a 
different value, so that each cycle is computationally 
distinct. The function calculated by a cycle is called 
Fx, where x is the parameter. The first cycle is para- 
metrized by P itself, and the parameter for each suc- 
cessive cycle is calculated by applying the function 
NextX to the parameter of the previous cYcle. 

Each cycle consists of successive application of K 
scrambling functions fk, each of which replaces the 
current value by a new one. Each scrambling function 
is parametrized by x (the parameter to the cycle) and /o r  
by P (the original password). Further,  each scrambling 
function is repeated m times, where m is a function of 
(the current) x and of P. 

Note the nesting. There are J cycles, each consisting 
of K scrambling functions. Each cycle is parametrized 
based on a value x, and both x and P are used both to 
parametrize the scrambling functions and to determine 
the number of replications of each of them. 

For  convenience, all computations are performed on 
values from the space I of n-bit values. It is assumed that 
P is a value from that space determined in some con- 
venient way from the password originally entered. The 
following terminology is used. 

n The number of bits in the password and in the vari- 
ous values derived from it. 

1 The space of all n-bit quantities. 
P The password entered, from I. 
E The associated table entry, from I. 
H The entire function that goes from P to E. 
Fp The version of H determined from a given P. 
J The number of cycles. 
F~ The function for a single cycle, parametrized on x. 
x The value used to parametrize the current cycle, 

from I. 
K The number of distinct scrambling functionsfk. 
qk Functions from (I × I) to small integers. These are 

applied to P and the current value of x to determine 
the number of times to iterate the current fk. 
The scrambling functions. Each of the fk scrambles 
a value from I, returning a new value from I. The 
set of values returned by each fk includes all possi- 
ble values from 1. Some of the fk may be paramet- 

f~ 
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Fig. 1. 

I  o0o, 0ota,o  I 

repeat d times 

I 
repeat for k = to  K [ 

m ~ qk (P ,  x )  

repeat m times ] 

V ~ f k ( V , P , x )  

x ~ Next  X ( x )  

I . . . . . .  ,sinv ] 

rized based on P or on x. This parametrization is 
indicated in the flow chart by showing each f as 
taking three arguments. 

The overall transformation is described by the flow- 
chart of Figure 1. The flowchart uses the identifiers 
listed above, as well as the following. 

V The current value to be scrambled. Each application 
of an f i  replaces V by a new value. 

m The number of times the currentfk is to be applied. 
k A counter from 1 to K, to count through the scram- 

bling functions. 
NextX A function that goes from one value of the 

parameter x to the next one. 

The inner loop represents the m-fold replication offk.  
The loop on k represents one cycle through all of the 
scrambling functions, and the outer loop represents the 
J cycles. 

The Intruder's Problem 

It is instructive to see, at least intuitively, why it 
is so hard to attack this scheme. Suppose that the 
tame entry is E, that the last function used (i.e. the last 
fk) is g, that the value to which g was originally ap- 

plied was Q, and that g was executed m times. (That 
is, E = g"(Q).) We assume that the intruder knows E 
and that he knows all about g--including the inverse 
function g-a. But this does not help him very much 
since he does not know m. Further, m is dependent on 
the original password and bears no discernible relation 
either to Q or to E. Thus applying g-1 repeatedly to E 
and looking at the successive results is of no help. The 
values that appear have essentially nothing to do with 
anything he knows, so when he gets Q he is unable to 
recognize it. There are no available stepping stones in 
going backward from E to the original P. The problem 
is harder as the number of differentfk gets at all large, 
and even harder as the number of cycles grows. 

Relation to Cryptology 

It seems useful to relate this work to well-known 
results from the field of cryptology. A cryptosystem (see 
[6] for a mathematical definition, or [3]) is a large 
family of encrypting functions. To encrypt a message, 
one function is selected from this family, the selection 
being specified by a key, and the message is transformed 
by this function to a cryptogram. The intended recipient, 
knowing the key, knows what encrypting function was 
used and applies its inverse to decrypt the cryptogram, 
thus retrieving the original message. It is usually as- 
sumed that a would-be intruder (usually called the 
"enemy" in cryptologic literature) knows all about the 
family of functions (the cryptosystem) but does not 
know the key used for a given message. 

For  a function to be useful for encryption, it must 
have an inverse, so that the intended recipient can re- 
trieve the original message. For  our purpose we require 
a function which we, the designers of the scheme, do 
not know how to invert. The closest analogy to cryp- 
tology would suggest that our password is the key, but 
this analogy seems rather forced when it is realized that 
the only message encrypted with that key is the key 
itself. Wilkes discusses this point briefly in [8], and 
suggests the term "one-way cipher" for this kind of 
scheme. The scheme somewhat suggests the autokey 
encryption technique. 

The work of Horst Feistel and others at IBM's 
Thomas J. Watson Research Laboratory is related to 
our effort. This group has been working on schemes for 
secure communication between terminals and comput- 
ers, using sophisticated encryption techniques due to 
Feistel. Our use of cycles is similar to Feistel's idea of 
"rounds."  See [7] for an overview of the scheme, and 
[1] for a more detailed description of the encryption 
methods used. A less technical discussion of this and 
other issues of computer cryptology may be found in 
[2]. 

One idea of importance from cryptology is the 
"mixing function," a function with the property that 
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each bit of  the output  is dependent  on every bit of  the 
input.  It  is pointed out  in [6] tha t  mixing functions are 
very desirable cryptologically.  An  impor tan t  design 
criterion of  H has been that  it be a good  mixing func- 
tion. One way we achieve this effect is to use each bit of  
P in at least one o f  the m. Proper  selection of  the f i  
further insures good  mixing. 

It  is manda to ry  that  at least some of  t h e f t  selected 
be nonl inear  functions,  in the sense that  each bit in the 
output  be a nonlinear  funct ion of  the input  bits. This 
point  is developed further  later. 

Some Proposed Functions 

Some possible families of  funct ions for the f i  are 
now listed. Since the space I is of  n-bit quantities, each 
funct ion under  considerat ion maps  A = (al, a2, . . . ,  
a,)  to  B = (bl, b2, • . . ,  b,). 
1. Permute.  The bits of  B are some permutat ion of  the 
bits o f  A. Some possible permuta t ions  are the following. 
- -  Shift c bits. Here each b~ = ai+c, the addit ion in the 

subscript  being modulo  n. The value of  c could well 
be the associated m. 

- -  Permute,  fixed. The bits of  B are some fixed permu- 
tat ion of  the bits of  A. 

- -  Permute,  calculated. Calculate some permutat ion of  
the first n integers, the part icular  permuta t ion  se- 
lected being dependent  on P a n d / o r  x. The bits of  
B are tha t  permuta t ion  of  the bits o f  A. 

- -  Permute  bytes. This is a variant  of  either of  the 
above,  with whole bytes being permuted.  It  is 
ment ioned separately because it could be signifi- 
cantly easier to implement  on some computers .  

2. Scramble.  Deduce  some n-bit quanti ty Q f rom P 
a n d / o r  x, and then let each bit of  B be the (noncarry-  
ing) binary sum of  the cor responding  bits of  A and Q. 
The m corresponding  to this operat ion must  be exactly 
one. 
3. Table lookup.  Suppose n = c X d, so that  we can 
think of  A as being made  up of  d-bit bytes, c of  them. 
Given an arbi t rary table with 2 d entries, let each byte 
o f  B be calculated f rom the cor responding  byte of  A by 
treating the latter as a d-bit integer and using the cor-  
responding table entry. To  make  the result one-to-one,  
the 2 ~ table entries must  include each integer f rom zero 
to 2 ~ -  1, so that  the table is in fact a permutat ion of  the 
first 2 d integers. An  obvious  variation is to use an integer 
derived f rom P a n d / o r  x as the seed for a pseudo-ran-  
dom-number  generator,  the latter being then used to 
generate the 2 d entries of  the table. 4 The above com-  
ments  about  one- to-one apply. 
4. Add  bytes. A cons tant  (either built in or calculated 
f rom P) can be added to each byte, with the carry (if 
any) ignored. A different cons tant  could be used for 
each b y t e )  
5. Assemble. Select some "sui table"  machine instruc- 
tions f rom a pool,  the selection being based on P a n d /  

or x, and calculate a value Q by executing these instruc- 
tions starting with some bit pattern (perhaps dependent  
on P a n d / o r  x). Then B is the binary sum of  A and Q. 
The result appears to be rather formidable  to analyze. 

Variations 

The scheme just defined uses f l ,  f2, . . . ,  fK in each 
cycle in a predetermined order.  Instead one could com-  
pute f rom P a n d / o r  x a permuta t ion  ( s t ,  s2 ,  . . . , s K )  of  
the integers f rom one to K ,  and u s e f i l ,  f i 2 ,  . . .  , i l K ,  in 
that  order.  This seems to make  inverting H somewhat  
harder.  It  is o f  course also possible to use some of  the 

f i  more  than once - -pe rhaps  parametr ized differently. 

Analysis 

Let H be the entire t ransformat ion  just  defined: 

E = H ( P )  = F e ( P ) .  (1) 

Since E and P are each n-bit quantities, we can write 
them in vector nota t ion  as 

E = (el, e 2 , . . . , e , )  
P = (px, p 2 , . . . , p , )  

where each pi  and el is a binary quanti ty.  Then an al- 
ternate way to view the t ransformat ion  H is as a col- 
lection o f  n funct ions hk, each taking n binary argu- 
ments  and yielding a binary value. Thus  eq. (1) can be 
rewritten as 

e l  = h t ( p , ,  p.2, • • • , p n ) ,  

e2 = h 2 ( p x ,  p.2, . . . ,  p,~), (2) 

e n  = h , ( p l ,  p 2 ,  • • • , p , ~ ) .  

The intruder knows the e~; and the hk are implicit in H, 
which he knows. His task is first to determine the hk 
explicitly, and then to solve the system of  eqs. (2) for 
the pk. 

It  is immediately obvious that  the designers of  the 
system must  select H so that  the t ransformat ion  repre- 
sented by eqs. (2) is nonlinear,  since the solution of  n 
linear equat ions in n unknowns  is s t raightforward.  Thus  
it is impor tan t  that  H be highly nonlinear.  F r o m  our  
point  of  view, this requires that  at least some of  the fk 
selected must  be nonlinear.  The first two funct ions 
listed above are linear, but  the last three are not.  

4 Such generators are discussed at length in [4]. 
This scrambling function is not quite one-to-one in a com- 

puter unless the addition is done using the two's complement con- 
vention, since otherwise +0 and --0 lead to the same value. 

6 For reasons to be explained below under the section Human 
Engineering, n must be 64 or 72 or more, so at best the problem is 
nontrivial. 

7 For example, the user might have to identify himself in person 
to the System Administrator and then log-in from the System Ad- 
ministrator's console and set his own password. It is easy to think 
of other possibilities. 

8 This fact justifies the earlier statement that a 64 or 72 bit 
password would be used. The exact length would be selected to be 
computationally convenient. 
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The basic intractability of the scheme should now 
be apparent.  Given a set of equations such as (2) a 
mathematician can at tempt a solution using various 
tools. 6 The present scheme is of such complexity that 
it is not at all clear how to reduce it to this form. That  
is, the transformations defined by some of the f i ,  es- 
pecially when raised to an unknown power, would be 
very hard to put into the neat form of (2). Thus the 
intruder has two intractable problems: reducing the 
algorithm for H to the n functions h~, and solving the 
resulting system of equations. 

Does this mean we claim the scheme cannot be 
broken? N o - - w h a t  it does mean is that we, the creators 
of the scheme, have thought long and hard about the 
matter, and have no idea how to reduce our algorithm 
to the form of a manageable system of boolean equa- 
tions. Further, we know of no suitable tools for solving 
such a system if it is highly nonlinear and if n is big 
enough. 

Further Comments 

Since the System Administrator has no way to learn 
a user's password, some mechanism is needed to ac- 
commodate  the user who forgets it. Safeguards are of 
course needed, but these are procedural in nature and 
not relevant to this paper. 7 I f  the scheme is as good as 
we intend it to be, there is no way the user could ever re- 
trieve his original password. All he could do is to select 
a new one. 

Presumably anyone attempting to defeat this scheme 
will (among other things) implement the function H on 
his own computer so that he can study it empirically. 
Thus there is an advantage to be had by an implementer 
of this scheme, particularly if his computer  is an un- 
common one, if he codes it using characteristics of the 
computer that would be hard to simulate on other hard- 
ware. To the extent that such features are used, the 
brute force part  of any at tempt to break in is made that 
much more expensive. TX-2 has some uncommon fea- 
tures which are hard to simulate, such as word permu- 
tation and reconfiguration, bit operations combined 
with rotations, parallel arithmetic on bytes, and others. 

The Issue of One-to-One 

If  H is the entire function produced by the scheme 
just described, then it seems desirable that H be one- 
to-one. Otherwise, there could be distinct passwords a 
and/3 such that H(a) is equal to H(/3). This seems to be 
undesirable, since then more than one password pro- 
duces a given value of E, and the intruder's task of 
finding such a value might be eased. 

Is H as we have defined it one-to-one? Probably not, 
although we do not expect ever to be able to decide 
with assurance. We have required that each of the fk 
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be one-to-one. It  then follows that the function Fe 
derived from a given password P is one-to-one, since 
the composition of one-to-one functions is one-to-one. 
Thus Fe(a) can equal Fe(/3) if, and only if, a equals/3. 
But that is not what is in question here. Could there be 
distinct passwords P and Q such that Fe(P) = FQ(Q)? 
Nothing in our discussion precludes this possibility; in- 
deed, H could collapse horribly. However, it appears 
that it is just as hard to investigate whether or not H is 
one-to-one as it is to defeat this scheme analytically, and 
we do not know how to do either. 

It would be desirable if we could argue convincingly 
that the collapse is not too bad, but even that seems 
beyond our means. More  investigation is needed, but 
the discussion above under Analysis should make it 
clear that results will be very hard to come by. Perhaps 
some experimental investigation into collapse would be 
useful, but the space is so large that meaningful experi- 
ments seem excessively costly in computer time. 

It should be noted that computing Fe(K) instead of 
Fe(P), where K is some constant, is no better with re- 
spect to being one-to-one. We are quite unprepared to 
argue that Fe(K) differs from FQ(K) if P differs from Q, 
even though each of Fe and FQ are one-to-one. 

Even though the mapping from P to Fe(P) cannot 
be proved to be one-to-one, it still seems to be desirable 
that each of the fk be one-to-one. Since this keeps the 
number of possible values at each step as large as pos- 
sible, it makes harder the analysis involved in breaking 
in. 

Human Engineering 

We have discussed a password as an n-bit quantity, 
but it is clear that human beings cannot  memorize such 
quantities conveniently. Presumably, the user will think 
of his password as a sequence of letters and digits, there 
being standard programming techniques for transform- 
ing such a sequence to a bit vector. 

The intruder will find this scheme much easier to 
experiment with than the usual one. Having first imple- 
mented H on his own computer ,  he is able to study it 
independently of  the system being attacked. In the usual 
scheme it is possible to test a password only by attempt- 
ing to log in, but it is easy to program the log-in program 
to warn the operations staff of too many unsuccessful 
attempts. An implication of this ease of  experimenta- 
tion is that a rather long password is needed, s I f  the 
password were selected from some fairly small set (per- 
haps a few thousand items), the intruder could easily . 
try each possibility on his computer .  

There are some serious issues of  human engineering 
that follow from the requirement for a long password. 
Faced with the need to select (say) a 12-character pass- 
word, a person might well select one, such as his spouse's 
name or "qwertyuiop",  that could be too easily guessed. 
One possibility is to assign random passwords, but most  
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people find "cFq38 ,Te"  rather hard to live with. This 
issue is not pursued further in this report, but it deserves 
more attention before an implementation is installed. 

There are some requirements on the function that 
converts the entered characters into a bit vector for in- 
ternal processing. All possible values of P should be 
produced by this function. Further, it seems desirable 
that no bit of P be dependent on any single character 
of the original password. 

Acknowledgments .  The impetus to study this prob- 
lem came from a suggestion from Lawrence G. Roberts 
that a password scheme be implemented for the TX-2 
computer. After the scheme had been developed, Jerome 
H. Saltzer pointed out that the basic idea had been pre- 
sented by Maurice V. Wilkes, in [8]. Wilkes gives credit 
to R.M. Needham for the initial idea and the first im- 
plementation, but provides no discussion of the details 
of the method used. 

Saltzer has also pointed out that the Multics operat- 
ing system uses a similar scheme, in addition to keeping 
the Password Table secret. The point of view seems to 
be that it is the integrity of the file system that provides 
the crucial aspect of security, while this scheme circum- 
vents the second, third, and fourth of the disadvantages 
of the usual scheme as listed above. 
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The protection of time sharing systems from unau- 
thorized users is often achieved by the use of passwords. 
By using one-way ciphers to code the passwords, the 
risks involved with storing the passwords in the com- 
puter can be avoided. We discuss the selection of a suit- 
able one-way cipher and suggest that for this purpose 
polynomials over a prime modulus are superior to one- 
way ciphers derived from Shannon codes. 
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I. Introduction 

One of the managerial aspects of time sharing sys- 
tems is the need to protect the system from unauthorized 
users. Access may be controlled by restricting certain 
users to certain terminals at certain times only, limiting 
access to the building, or by the use of passwords. 
Passwords, if used, must be carefully guarded; the most 
vulnerable part of a password system is usually the list 
of passwords stored in the computer. 

M.J. Wilkes [1, p. 91] describes a device, due to 
R.M. Needham, implemented at Cambridge, England, 
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