
end i;
i f / > 1 then NIK[I--1] := 0;
for j := 1 step 1 until k 1 do

NIK[j] := Q[k,j];
1 2 : = i f k + 1 -- 1 > n -- I t h e n n -- l e l s e k + 1 -- 1;
f o r j : = k step 1 until 12 do

NIK[j] := Q[k,j])< X X [j - k + I, k];
end END BASIS;
procedure BANDET (A, B, INT, n, m);

value n, m; integer n, m; array A, B; integer array INT;
comment 23. BANDET decomposes the 2m + 1 banded n X n

matrix A in an upper triangular matrix A and a lower triangular
matrix B using Gaussian elimination with complete pivoting. De-
tails of the interchanges are stored in the array INT. The arrays are
dimensioned as follows A[1 :n, --m :m], B[1 :n, 1 :m], 1NT[I :n].
For further details see [5] ;

begin
integer i , j , k, l; real x;
l : = m;
for i := 1 step I until m do
begin

f o r j := 1 -- i s tep 1 until m do
A[i,j--l] := A[i,j];

l : = l - - 1;
f o r j := m -- l step 1 until m do

A[i,j] := 0
end i;
l : = m ;
for k := 1 step 1 until n do
begin

x := A[k, --m]; i := k;
i f l < n t h e n l : = l -t- 1;
for j : = k -t- 1 s t e p l u n t i l l d o

if abs(A[j, --m]) >abs(x) then
begin x : = A[j , --m]; i := j end;

INT[k] := i;
if i # k then
f o r j := --m step 1 until m do
begin

x := A[k,j]; A[k,j] := A[i,j]; A[i,j] := x
end j;
f o r i : = k + I s t e p l u n t i i l d o
begin

x := A[i, --m]/A[k, --m]; B[k, i--k] := x;
for j : = 1 -- instep l u n t i i m d o

A[i,j--1] := A[i,j] -- x × A[k,j];
A[i, m] := 0

end i
end k

end BANDET;
procedure BANSOL (A, B, C, INT, n,m) ;

value n, m; integer n, m; array A, B, C; integer array 1NT;
comment 24. The parameters A, B, INT, n, and m come from

BANDET. BANSOL solves the system decomposed by BANDET
with right-hand side C. The solution is returned in {C[i]}~" (see
[51);

begin
integer i , j , k, l; real x;
1 : = m;
for k := 1 step 1 until n do
begin

i : = INT {k] ;
if i # k then
begin x := C[k]; C[k] : = C[i]; C[i] : = x end;
i f l < n t h e n l : = l + 1;
for i := k + 1 step I until l do

C[i] := C[i] - B[k, i -- k])< C[k]
end k;
1 := --m;
for i := n step --1 until 1 do

467

begin
x := C[i];j := i + in;
for k := 1 -- m step 1 unt i l l do

x := x - - A[i,k])<C[k + j] ;
C[i] := x/A[i, --rn];
i f l < m t h e n l := 1 + 1

end i
end BANSOL;

Acknowledgment. We wish to thank Harold Eidson for useful
suggestions and for checking the algorithm. The referees were also
very helpful.

References
1. de Boor, C. On calculating with B-splines. J. Approx. Th. 6
(1972), 50-62.
2. Lyche, Tom, and Schumaker, Larry L. Computation of
smoothing and interpolating natural splines via local bases.
S I A M J. Numer. Anal 10 (1973), 1027-1038.
3. Reinsch, C.H. Smoothing by spline functions. Numer. Math.
10 (1967), 177-183.
4. Reinsch, C.H. Smoothing by spline functions, II. Numer.
Math. 16 (1971), 451-454.
5. Martin, R.S., and Wilkinson, J.H. Solution of symmetric and
unsymmetric band equations and the calculation of eigenvectors
of band matrices. Numer. Math. 9 (1967), 279-301.
6. Woodford, C.H. An algorithm for data smoothing using splihe
functions. BIT 10 (1971), 501-510.

Algorithm 481

Arrow to Precedence Network
Transformation [H]
Keith C. Crandall [Recd. 15 Jan. 1973]
Department of Civil Engineering, University of Cali-
fornia, Berkeley, CA 94704

Key Words and Phrases: critical path, networks, precedence
networks

CR Categories: 3.23, 5.40
Language: Fortran

Description
Purpose. Many of the recent application programs in the area

of critical path scheduling and resource allocation are written for
the precedence networking convention [1, 2, 3]. Since only a few of
these programs accept networks defined by the arrow convention
directly, a method of transforming arrow convention networks into
precedence convention is required. This algorithm generates the re-
quired transformation by producing a list of followers for each non-
dummy arrow activity. New labels are produced for each trans-
formed activity and replace the (i -- j) labels associated with arrow
networks. (The new label is actually the activity input sequence
value, but this can easily be modified to any desired notation by
using the input sequence value as a subscript to any array contain-
ing the desired notation.)

The logic used in the transformation can also be utilized to
produce a list of precedecessors if they are desirable. (This order is
required by IBM [3] but is performed internally.) The role of arrays
(H and J J) would be reversed and the array (ILOC) would refer
to (J J) vice (H).

Method. The values of the arrow (i -- j) labels are utilized to
trace the followers of a particular activity. Activities which have an
(i) label corresponding to the (j) label of the activity under evalua-

Communications August 1974
of Volume 17
the ACM Number 8

http://crossmark.crossref.org/dialog/?doi=10.1145%2F361082.361097&domain=pdf&date_stamp=1974-08-01

tion are logical followers. The major problems rest with the arrow
DUMMY activities. These activities are not really followers but
indicate instead addition nodes that precede logical followers. The
transformation routine recursively traces all possible following
nodes and determines the input sequence number of all logic
followers.

To perform this search with the minimum storage required the
following procedure is utilized. First the arrays (II, J J, NLOC) are
filled by scanning the description of the arrow network and storing
in input order the converted value of the (i) label into array (1/);
the converted value of the (]) label into array (J J); and finally the
array (NLOC) contains the input sequence value. To aid in deter-
mining which activities were dummies, the last two arrays (J J,
NLOC) have their values set negative when the corresponding ac-
tivity was a dummy. Since the minimization of storage was a goal,
all incoming (i --]) labels were converted into a numerical sequence
starting with one. The algorithm indicates the required modification
if this is undesirable. (The actual conversion method is described
in the routine HASH.) Once the arrays are filled, the transformation
routine can be called.

Routine (TRNFRM) first sorts the array (H) into ascending
order, maintaining the same correspondence of each element in
array (NLOC). A sequential scan is then performed on the sorted
array (H), and the array is overlayed by an array, (ILOC), contain-
ing pointers to the beginning of each different (i) value in the sorted
array. That is element (1) of the new array points to the start of
the value (1) in the sorted array; element (10) to the start of (10),
and so forth. Finally the array (J J) is scanned sequentially and the
nonnegative values become subscripts to the pointer array (ILOC).
This yields the beginning location and number of activities that
had an (i) label equal to the current (j) value. The values stored in
(NLOC) are the input sequence numbers of the followers. If the
follower was a DUMMY, (NLOC) negative, a recursive search is
performed for additional followers•

Finally for each nonnegative entry in (J J), the description is
retrieved from the scratch tape and the activity and its followers are
output.

Test Results. Testing was performed by two additional programs
which are also included in the algorithm listing in case they are
desired. Routine (TEST) reads the arrow network filling the arrays
(I1, J J, NLOC) as described• Routine (HASH) performs the re-
quired conversion to the (i -- j) labels during this process.

Tests include networks with sequential dummies and other
unusual conditions. In each case tried, the transformation was cor-
rect. The inefficiency of the bubble up sort could adversely affect
very large networks and an alternative would be to pre-sort the
arrow network and eliminate the sorting portion. The following
table indicates execution time versus number of activities for tests
run on a CDC 6400.

Execution Times for Various Networks Tested
Number of Execution
activities time in see.
16 0.42
44 1.68
177 2.08
461 5.81
677 10.76

The routine does not test for logical errors in the arrow net-
work such as loops, so these would be transformed without change
into the precedence notation.

References
1. Fondahl, John W. A non-computer approach to the critical
path method. Tech. Rep. No. 9, Dep. of Civil Engineering,
Stanford U., Stanford, Calif., 1962.
2. Baker, Wilson C. Spread and level CPM. Tech. Rep. No. 56,
Dep. of Civil Engineering, Stanford U., Stanford, Calit., 1967.
3. IBM, Project Management System• Application description
manual (H20-0210), 1968.

468

Algorithm
(Note: A sample driver is included to help clarify the use of

this algorithm--L.D.F.)
C T H I S IS THE TEST PROGRAM FOR THE TRANSFORMATION ALGORITHM.
C IT READS THE ARROW NETWORK DESCRIPTION AND ESTABLISHES
C THE INPUT ARRAYS FOR THE ROUTINE (TRNFRM).
C IT IS LIMITED TO 7 0 0 ACTIVITIES IN ARROW NOTATION.
C THE ROUTINE (HASH) IS U T I L I Z E D TO CREATE A SEQUENTIAL
C NUMBERING.
C THE ROUTINE (TRNFRM) CREATES THE ACTUAL TRANSFORMATION.
C TAPE(2) -A BINARY SCRATCH TAPE (FILE) WITH ALL DATA TO
C BE INCLUDED WITH THE TRANSFORMED ACTIVITIES,NOTE- CHANGE
C STMT 140 TO CORRESPOND WITH ACTUAL DATA STORED.
C TAPE(a) -A BINARY SCRATCH TAPE FOR TRANSFERING THE TRANS-
C FORMED DATA BACK TO THE MAIN PROGRAM FOR PRINT OUT, OR ANY
C OTHER USE. THE DATA IS IN THE FORM (I,M,FOL) WHERE I IS
C THE NEW ACTIVITY LABEL AND M IS THE NUMBER OF FOLLOWERS
C AND F0L IS AN ARRAY CONTAINING THE LABELS OF THE M
C FOLLOWERS...

INTEGER II(700), dd(700), NL0C(700), ACT(2), DUMMY,
* HASH, FOL(50)
DATA DUMMY/5HDUMMY/, IBLNK/IH /

C READ IN ARROW A C T I V I T I E S ACCORDING TO CURRENT FORMAT.
99999 F O R H A T (I H I , 13H INPUT ORDER, 6X, SHLABEL, 5X, 4HDESC,

7 H ~ I P T I O N , 12X, 3HDUR)
99998 FORMAT(2A4, 2AIZ, 13, 3Xs 16)
99997 FORMAT(|I4, 4X, A4, IH-, A4, 3X, 2A10, 16)
99996 FORMAT(IHI, 19HTRANSFORMED NETWORK//14H LABEL DESCR,

* 6HIPTION, 10X, 3HDUR, 3X, 9HFOLL0~ERS)
99995 FORMAT(IH * 17, 2X, 2A10, 14)
9999a FORMAT(IH÷, 36X, 1515/(37X, 1515))

WRITE (6,99999)
NACT = 0
NTAPE2 = 0

IZ READ (5,99998) I, d, ACT, IDUR
C FORMAT I99998) WILL VARY FOR INDIVIDUAL NEEDS.
C THE TEST FOR END OF DATA IS A BLANK CARD.

IF (I.EQ.IBLNK) GO TO 30
NACT = NACT + !

C LIST THE ARROW DATA FOR REFERENCE.
WRITE (6,99997) NACT, I, d, ACT, IDUR

C CONVERT THE ALPHANUMERIC l-d LABELS INT0 SEQUENTIAL
C NUMERIC. (ROUTINE HASH PERFORMS THIS TASK.)
C STORE THE CONVERTED LABELS IN THE ARRAYS (II AND dd).
C NOTE. THE VALUE STORED IN ARRAY (dd) IS ALSO SAVED AS
C VARIABLE d TO ALLOW IT TO BE USED AT STMT 2Z WITHOUT AN
C ARRAY REFERENCE.

II(NACT) = HASH(1)
d = HASH(d)
dd(NACT) = d

C STORE THE INCOMING INPUT SEQUENCE VALUE IN ARRAY (NLOC)
NLOC(NACT) = NACT

C EXAMPLE OF USER CREATED LABELING, SEE ALSO COMMENTS AFTER
C STMT 140 IN ROUTINE TRNFRM.
C LABLS(NACT)=CONCATENATION OF INPUT (I-d)
C THE CONCATENATION IS PERFORMED IN ACCORDANCE VITH VALID
C FORTRAN FOR THE COMPILER IN USE.
C TEST FOR A DUMMY ACTIVITY AS IT WILL NOT BE TRANSFORMED.

IF (ACT(|).EQ.DUMMY) GO TO 20
C SAVE ON TAPE (2I ALL INFORMATION RELATING TO THE ACTIVITY
C dUST READ THAT IS TO BE ASSOCIATED WITH THE TRANSFORMED
C ACTIVITY.(FOR THE EXAMPLES 0NLY THE DESCRIPTION AND DUR
C ARE SAVED,ACTUAL USERS WILL HAVE INDIVIDUAL REQUIREMENTS)

NTAPE2 = NTAPE2 + |
WRITE (2) ACT, IDUR
GO TO t 8

C IF AN ACTIVITY WAS A DUMMY, S0 NOTE BY SETTING THE
C LOCATION AND dd LABEL VECTORS NEGATIVE.

20 NLOC(NACT) = -NACT
Jd(NACT) = - d

C RETURN FOR NEXT INPUT ACTIVITY. TRANSFER WILL BE MADE TO
C STMT 30 WHEN LAST INPUT IS RECOGNIZED.

GO TO 10
30 REWIND 2

C CALL THE TRANSFORMATION ROUTINE. ,DESCRIPT ION OF INPUT
C ARRAYS IS FOUND IN THE (TRNFRM) ROUTINE.

CALL TRNFRM(NACT, I I , dd* NLOC)
C PRINT OUT THE TRANSFORMED NETWORK...

WRITE (6,99996)
DO a0 N=I,NTAPE2

C RECOVER THE REQUIRED DATA RELATING TO THE TRANSFORMED
C ACTIVITY FROM TAPE(2) AND TAPE (4).

READ (2) ACT, IDUR
READ (4) I, M, F0L
I.~RITE (6,99995) I, ACT, IDUR
IF (M.LE.Z) GO TO 40
WRITE (6,99994) (FOL(MM),MM=|,M)

~Z CONTINUE
5TOP
END

INTEGER FUNCTION HASH(N)
C THIS ROUTINE CONVERTS THE ALPHANUMERIC ARROW LABELS INT0 A
C SEQUENTIAL NUMERIC EQUIVALENT. THE MAXIMUM NUMBER OF
C SEPARATE A C T I V I T Y LABELS IS 500 FOR THIS TEST PACKAGE.
C THE ACTUAL INCOMING LABEL IS STORED IN ARRAY (HOLD) AND
C THE SEQUENTIAL NUMERIC EQUIVALENT IS STORED IN ARRAY
C (SAVE)
C VARIABLE (NUN) PROVIDES THE SEQUENTIAL NUMBERS.

INTEGER HOLDI500), SAVE(S00)

Communications August 1974
of Volume 17
the ACM Number 8

DATA MUM/0/, HOLD/500*O/
C USE A MODIFIED HASHING ROUTINE TO F I N D AND STORE THE
C EQUIVALENT VALUES.
C NN I S A HAShED VALUE FOR THE INPUT V A R I A B L E N.
99999 F O R M A T (3 4 H EXCEEDED THE EVENT TABLE CAPACITY)

NN = MOD(IABS(N/68719476736)*375)
10 DO 20 I=NN*500

C THE ARRAY (HOLD) 15 EXAMINED STARTING WITH THE HASHED
C VALUE, IF THE ARRAY ELEMENT CONTAINS THE INPUT VARIABLE N,
C TRANSFER IS MADE TO STMT 40 AND THE EQUIVALENT SEQUENTIAL
C NUMBER IS RECALLED FROM ARRAY (SAVE). IF THE ARRAY ELEMENT
C CONTAINS A ZER0*TRANSFER IS MADE TO STMT 30 AND A
C N U M E R I C A L
C EQUIVALENT IS ASSIGNED. THE SEARCH OF (H O L D) C O N T I N U E S
C UNTIL AN OPEN ELEMENT IS FOUND...

IF (HOLD(1).EQ.N) GO TO 40
IF (HOLD(1).EQ.0) GO TO 30

00 CONTINUE
C IF NO OPEN ELEMENT WAS FOUND PJND NN=I THERE ARE NO OPEN
C ELEMENTS IN THE ENTIRE ARRAY. IF NN IS NOT EQUAL TO l, SET
C IT TO l AND SEARCH LOWER PART OF (H O L D) . . .

IF (N N . E Q . I) GO TO 60
NN = l
GO TO 10

C FOUND A NEW LABEL-GIVE I T AN EQUIVALENT SEQUENTIAL NUMBER
30 HOLD(1) = N

NUM = HUM ÷ l
IVAL = HUM
SAVE(1) = IVAL

C TRANSFER TO STMT 50 AND SAVE A REDUNDANT RECALL FROM
C (SAVE)

GO TO 50
40 IVAL = SAVE(1)
50 HASH = IVAL

RETURN
C AN ERROR MESSAGE IS GENERATED IF THE NUMBER OF EVENTS
C EXCEEDS THE D I M E N S I O N ALLOWED,

6 0 WRITE (6,99999)
STOP
END

SUBROUTINE TRNFRM(NACT, I f , J J , NLOC)
C ALL DATA WAS STORED IN THE ARRAYS (I I - J J - N L O C) BY THE
C CALLING ROUTINE AND C0MFORMS TO THE FOLLOWING DESCPIPTION
C (NACT) -THE NUMBER OF ARROW ACTIVITIES INCLUDING DUMMIES.
C (I f) -AN ARRAY OF CONVERTED - I - LABELS STORED IN THE ARROW
C NETWORK INPUT ORDER.REFER TO THE COMMENTS AFTER STMT 140
C IF USER GERERATED LABELS ARE DESIRED.LEE ALSO COMMENTS IN
C MAIN ROUTINE.
C (Jd) -AN ARRAY LIKE (II) FOR -O- LABELS EXCEPT THAT THE
C VALUE IS NEGATIVE FOR ALL DUMMY ACTIVITIES.
C (NLOC) -AN ARRAY INDICATING INPUT 0RDER.(A SEQUENTIAL LIST
C SUCH THAT THE ABSOLUTE VALUES WOULD RANGE FROM ONE TO NACT
C) NOTE- THE VALUE STORED IN (NLOC) IS NEGATIVE WHEN THE
C CORRESPONDING ARK0%' ACTIVITY %~AS A -DUMMY- .
C TAPE(a) -A BINARY SCRATCH TAPE FOR TRANSFERING THE TRANS-
C FORMED DATA BACK TO THE MAIN PROGRAM FOR PRINT 0UT, OR ANY
C OTHER USE. THE DATA 15 IN THE FORM (I,M,FOL) %'HERE I IS
C THE NEW ACTIVITY LABEL AND M IS THE NUMBER OF FOLLOWERS
C AND F0L 15 AN ARRAY CONTAINING THE LABELS OF THE M
C FOLLOWERS...
C STORAGE FOR THE ARRAYS IS ALSO SPECIFIED IN THE CALLING
C PROGRAM.

INTEGER l l C l) , JJ(1), NLOC(I)
INTEGER STACK(50), FOL(50)

C THE DIMENSION 5TAMENTS FOR (II-JJ-NLOC) MUST BE MODIFIED
C FOR USE WITH SOME FORTRAN COMPILERS-
C DIMENSIONS ON STACK AND F0L LIMIT THE NUMBER OF FOLLOWING
C ACTIVITIES TO 50.
C STATEMENT FUNCTION TO PROVIDE OVERLAYING ARRAY (If) WITH
C ARRAY (ILOC).REFER TO THE WARNING AFTER STMT 30,IF A
C SEPERATE ARRAY (ILOC) IS UTILIZED THE STATEMENT FUNCTION
C WOULD BE DELETED.
9 9 9 9 9 FORMAT(IIIH THE FOLLOWING ACTIVITY APPEARS T0 HAVE M,

* 22HORE THAN 50 FOLLOWERS)
99998 FORMAT(41H SUSPECT THE FOLL0%IING ACTIVITY IS INVOLV*

* 41HED IN A NETWORK LOOP - CHECK INPUT DATA. / I 5)
I L O C (I) = I f (I)

C REWIND TAPE 4 FOR TRANSFER OF TRANSFORMED DATA.
REWIND 4

C PLACE THE ARRAYS (I I - N L O C) IN ASENDING ORDER USING (I I)
C AS THE SORT VARIABLE. (THIS IS A BUBBLE UP SORT.)

LIMIT = NACT - l
DO 20 M : I , L I M I T

L L = M + l
DO 10 N = L L , N A C T

IF (II(M).LE.II(N)) GO TO 10
IHOLD = I f (N)
I f (N) = I f (M)
I f (M) = IHOLD
IHOLD = NLOC(N)
NLOC(N) = NLOC(M)
NLOC(M) = IHOLD

10 CONTINUE
20 CONTINUE

C REPLACE THE ARRAY (If) WITH AN INTEGER P O I N T E R SUCH THAT
C THE (K TH) ELEMENT OF THE POINTER POINTS TO THE FIRST
C LOCATION IN THE SORTED ARRAY (I I) WHICH CONTAINS THE VALUE
C (K).THE POINTER ARRAY WILL BE CALLED (ILOC) SINCE IT
C INDICATES THE BEGINNING OF SORTED ARROW NODES (ARRAY If)
C AND THESE NODES ARE NORMALLY REFERRED TO AS (1) NODES.

C THE VARIABLE iN) IS SET TO THE MINIMUM VALUE IN ARRAY (II)
C N I S ALSO A V A R I A B L E THAT I N D I C A T E S THE CURRENT VALUE
C UNDER INVESTIGATION IN ARRAY (If).
C h IS A P O I N T E R TO THE ARRAY (ILOC), INDICATING THE LOCATION
C OF THE NEXT ELEMENT.IN ADDITION L ALS0 INDICATES THE NEXT
C SEQUENTIAL NUMBER,AND IS USED TO FIND THE END NODES.(NODE5
C WHERE THERE EXISTS NO -I- IN THE (I-J) PAIRS*AND THERE-
C FORE NO ENTRY IN THE SORTED (II) ARRAY..)

N = l

L=2
DO 50 I=2,NACT

IF (II(1).EQ.N) O0 TO 50
N = If(1)

30 IF (N.EQ.L) GO TO 40
C THIS TEST FINDS THE REFERENCES TO THE END NODE WHICH WILL
C NOT BE IN THE SORTED ARRAY OF (1) NODES.
C WARNING -- ALTHOUGH INPUT ORDER IS M0T NORMALLY IMPORTANT
C REFERENCE TO END NODES,THAT IS (I-J) pAIRS WITH -J- EQUAL
C TO AN END NODE,SHOULD BE POSITIONED IN THE LATER PORTION
C OF THE INPUT DATA.THIS RESTRICTION CAN BE ELIMINATED BY
C USING A SEPARATE ARRAY FOR (ILOC) .
C I I (L) I S SET TO ZERO T0 I N D I C A T E THAT NODE -L- I S AN END
C NODE IN ThE ARROW INPUT NETWORK.

If(L) = 0
L = L + I
GO TO 3 0

C STORE THE SUBSCRIPT VALUE OF THE ARRAY (If) IN TO THE
C 0VERLAYED ARRAY (I L O C) .

40 I I (L) = I
L = L + I

50 CONTINUE
C SET THE NEXT LOCATION OF THE POINTER TO ONE PAST THE LAST
C ACTIVITY NUMBER.

MAXLST = L - l
II(L) = NACT + l

C FOR ALL NON DUMMY ACTIVITIES,TRANSFORM THE ARROW LOGIC
C CONSTRAINTS INT0 THE PRECEDENCE NOTATION BY GIVING THE
C ACTIVITY A LABEL EQUAL TO ITS INPUT 0RDER,THEN LIST ALL
C TRANSFORMED FOLLOWERS.

DO 160 I=IsNACT
L = 0
M = 0

C L INDICATES THE LENGTH OF THE STACK AND M IS THE NUMBER OF
C FOLLOWERS.THE STACK IS USED TO RECUBSIVELY TRACE ALL
C DUMMIES TO FIND LOGICAL FOLLOWERS.

N = dJ(1)
C IF N IS NEGATIVE THE ARROW ACTIVITY WAS A DUMMY.

IF (N.LE.0) GO TO 160
60 L0C = N

IF (LOC.GT.MAXLST) GO TO lie
C L0C HAS A VALUE EQUAL TO THE -J- LABEL OF ACTIVITY UNDER
C TRANSFORMATION. ILOCR POINTS TO THE BEGINNING OF THAT SAME
C VALUE IN THE SORTED ARRAY (!!).WHEN (L0C) EXCEEDS THE
C VALUE OF (MAXLST) THE -d- LABEL ON THE ARR0~! NETWORK WAS
C THE END NODE,THEREFORE THERE ARE NO FOLLOWERS.

I LOCR = I L O C (L O C)
IF (ILOCR.LE.0) GO TO l l Z

C IF ILOCR IS MEG OR ZERO THE ACTIVITY HA5 NO FOLLOWERS.
70 LOC = L0C + l

NN = I L O C (L O C) - I L O C R
C NN INDICATES THE NUMBER OF ELEMENTS IN ARRAY (I f) WITH THE
C VALUE.

IF (NN.LE.O) GO TO 70
DO 100 L00R=IaNN

LOCS = NLOC(ILOCR)
I F (LOCS.EQ.Z) GO TO 90
I F (LOCS.GT.0) GO TO 80

C LOCS NEGATIVE INDICATES A DUMMY AND THESE ARE HELD IN THE
C STACK FOR LATER CONTINUED SEARCH OF FOLLOWERS.

L = L * I
I F (L . G T . 5 0) GO TO 130
S T A C K (L) = - L O C S
GO T0 90

80 M = M ÷ I
C A FOLLOWER HAS BEEN FOUND.STORE IT IN THE ARRAY (FOL).

IF (M . O T . 5 0) GO TO 120
F O L (M) = LOCS

C I N C R E A S E THE P O I N T E R TO NEXT P O T E N T I A L FOLLOWER.
90 ILOCR = ILOCR + l

100 CONTINUE
If0 IF (L.LE.0) GO TO 140

C IF (L) IS NON-ZER0,THERE ARE DUMMY LINKAGES TO BE CONSIDER
C ED. (N) WILL I N D I C A T E FIRST OF T H E S E AND THE SEARCH FOR
C FOLLOWERS WILL CONTINUE.

K = STACK(L)
N = I A B S (J J (K) }
L = L - l
GO TO 60

C ERROR MESSAGES IF DIMENSIONS EXCEEDED- LOOP ASSUMED.
120 WRITE (6*99999)
130 WRITE (6 , 9 9 9 9 8) I
140 WRITE (4) I, M, FOL

C IF USER LABELS ARE USED THEY WOULD BE RETRIEVED THUSLY --
C I = LABLS(1)
C DO 150 LOOP=I,M
C ISUB = F O L (L 0 0 P)
C . F O L (L 0 0 P) = LABLS(ISUB)
C 150 CONTINUE
C WHERE LABLS WOULD BE AN ARRAY PASSED IN THE ARGUMENT L I S T

160 CONTINUE
REWIND 4
RETURN
END

469 Communications August 1974
of Volume 17
the ACM Number 8

Algorithm 482

Transitivity Sets [G7]
J o h n M c K a y a n d E. R e g e n e r * [Recd . 21 M a y 1973]

S c h o o l o f C o m p u t e r Sc ience , M c G i l l U n i v e r s i t y , M o n -

t r ea l , Q u e b e c , C a n a d a

Key Words and Phrases: transitivity, sets
CR Categories: 5.39
Language: Algol

Let P = {P1, P2, . . . , Pk} be a set of k permutations on the set
f~ = {1, 2 , . . . , n}. The transitivity set containing i (or orbit of i)
under P is the set of images of i under the action of products of
elements of P. This procedure computes these orbits.

On entry, im[i,j] is assumed to contain the image of i under
Pj, for i = 1, 2, . . . , n a n d j = 1, 2, . . . , k. The procedure numbers
the orbits consecutively starting at 1. On exit ind[i] contains the
number of the orbit to which i belongs. The orbits appear in order
in orb[1 :n]. In orb the first element of each orbit is tagged negative.
If only one permutation is input, the array orb contains it (tagged)
in disjoint cycle form on exit.

The algorithm, which involves no searching, is related to one
for finding a spanning tree of a graph [1]. The set P need not, in
general, generate a group-- i t is sufficient that it generate a semi-
group on f~.

References
1. Cannon, J. Ph.D. Th., Sydney U., Sydney, N.S.W., Australia,
1969.

Algorithm
procedure orbits (ind, orb, im, n, k);

value n, k; integer n, k;
integer array ind, orb, ira;

begin
integer q, r, s, j , nt, ns, norb;
f o r j := 1 step 1 until n do ind,] := 0;
norb := 0; ns := 1;
for r := 1 step 1 until n do if ind[r] = 0 then
begin

norb := norb + 1; ind[r] := norb;
nt := ns; orb[ns] := --r; s := r;

a:
ns := ns + 1;
for j := 1 step 1 until k do
begin

q : = im[s,y];
if ind[q] = 0 then
begin

nt := nt -t- 1; orb[nt] := q; ind[q] := norb
end

end;
ff ns < nt then
begin s := orb[ns]; go to a end

end
end

* Now at Facult~ de Musique, University de Montr6al, Mon-
treal, P.Q., Canada.

R e m a r k on A l g o r i t h m 450 [E4]

R o s e n b r o c k F u n c t i o n M i n i m i z a t i o n [M a r e k M a c h u r a

a n d A n d r z e j M u l a w a , C o m m . A C M 16 (A u g . 1973) ,
4 8 2 - 4 8 3]

A d h e m a r B u l t h e e l [Recd . 10 Oct . 1973]

K a t h o l i e k e U n i v e r s i t e i t L e u v e n , F a c u l t y o f A p p l i e d

Sc iences , A p p l i e d M a t h D i v i s i o n , C e l e s t i j n e n l a a n 200 B,
B - 3 0 3 0 H e v e r l e e , B e l g i u m

1. Some misprints were found in the listing of the algorithm.
(a) An E has to replace the F printed in the following statements:

The one preceding the statement labeled 70.
The one following the statement labeled 80.
The one preceding the statement labeled 100.
The one following the statement labeled 100.

(b) The digit 1 should replace the character 1 as the first index of
A L P H A in the statement preceding the statement labeled 200.
(c) R E T A should be read BETA in the statement preceding the
statement labeled 260.

2. Some compilers detect an error in the calling sequence of
M O N I T R in the third line following the statement labeled 70 be-
cause the fifth argument of M O N I T R is an INTEGER-type con-
stant, and in the subroutine MON 1TR the fifth argument stands
for the norm B of a vector which is obviously a REAL- type variable
as is also assumed in the other calls of M O N I T R . One way to over-
come this difficulty is to replace 0 by any R E A L constant, say 0.

3. Since it is often useful to have the initial guess and the cor-
responding function value printed, an additional call to M O N I T R
could be inserted just preceding the C O M M E N T
C START OF THE ITERATION LOOP
This statement could be
CALL MON1TR (N, X, FO, R, 1 .E 10, CON, 0).
The last argument is the monitoring index NR. The user of Romin
should program MON 1TR to handle the initial guess when N R = O
(printing or not, checking for convergence or not, . . .) . The fifth
argument is chosen to be a large constant because it stands for the
norm B of a vector. The routine M O N I T R will contain a test to
see if B < ~ with ~ "small" and chosen by the user. If one wants to
check the initial guess for convergence, then the routine would stop
when B equals 0 . .

4. With these corrections and changes the algorithm was sue-
cessfully used under a WATF1V compiler on the IBM 370-155
computer of the Computing Centre of the University of Leuven. For
the example of the parabolic valley function given by the authors
of the algorithm and with the same starting point the following
results were obtained: in a single-precision version 202 function
evaluations were needed to reach F = 0.299986.10-~, and in a
double-precision version 194 function evaluations to reach
F = 0.297742.10 -~ and 290 function evaluations gave F =
0.489134.10 -13 .

470 Communications August 1974
of Volume 17
the ACM Number 8

Remark on Algorithm 454 [E4]
The Complex Method for Cons t ra ined Opt imiza t ion
[Joel A. Richardson and J.L. Kuester , C o m m . A C M 16

(Aug. 1973), 487-489]

Numer ica l R.A. Wi l loughby
Mathemat ics Edi tor

Gauss Harmonic
Interpolation Formulas

Kenne th D. Shere [Recd. 8 Oct. 1973]
Mathemat ica l Analysis Division, Naval Ordnance Lab-
oratory, Silver Spring, M D 20910

A.H. Stroud
Texas A&M University

This algorithm can result in an infinite loop. This happens
whenever the "corrected point," the centroid of the remaining
"complex" points, and every point on the line segment joining these
two points all have functional values lower than the functional
values at each of the remaining complex points. Two examples for
which this algorithm fails are [1] and [2]:
1. maximize f (x) = - lO0(x2-x191 - (l -x02

- 10 _< xl, xs <10, initial value (xl, x2) = (-2.5, 5.0)
and
2. maximize

f(O, 4,) = 0.2 (sin (0o) cos (4,0) sin (0) cos (4,) q- sin (0o) sin (4,0)
sin (0) sin (4,) + cos (00) cos (0)) -- 1.0 (sin s (0) cos s (0)
q- cos s (4,) sin s (4,) sin' (0))

0 _< 0, 4, < ~r/2, (00, 4,0) = (.8726, .0873),
initial (0, 4,) = (r/4, 7r/4)

Also, there is no difference in usage between M and L.
A similar method is the "simplex method" [3]. A modification

to the "complex method" which uses the ideas of [3] has been pro-
grammed. The modified J C O N S X solves each of the above prob-
lems in under 5 CP see on a CDC 6400. The modified routine is
available to interested parties upon request.

It is also worth noting that the variable 1,4, which appears in
the second statement after 70 CONTINUE is not used elsewhere.

References
1. Rosenbrock, H.H. An automatic method for finding the
greatest or least value of a function. Comput. J. 3 (1960), 175-184.
2. Ferguson, R.E. An electromagnetism problem. (Private
communication.)
3. Parkinson, J.M., and Hutchinson, D. An investigation into the
efficiency of variants on the simplex method. In Numerical Methods
for Nonlinear Optimization, F.A. Lootsma, Ed., Academic Press,
New York, 1972.

Let R be an open, bounded, simply connected region
in the (x,y)-plane and let (x . , y .) be a point in R.
Assuming R is starlike with respect to (x , , y ,) , we discuss
a method for computing Gauss harmonic interpolation
formulas for R and the point (x . , y .) . Such formulas
approximate a harmonic function at (x . , y ,) in terms of a
linear combination of its values at certain selected
points on the boundary of R. Such formulas are useful
for approximating the solution of the Dirichlet problem
for R.

Key Words and Phrases: interpolation, quadrature,
harmonic interpolation, harmonic quadrature, Dirichlet
problem

CR Categories: 5.13, 5.16, 5.17

1. Introduction

We consider the two-dimens ional Dirichlet problem.
This is the p rob lem of finding a funct ion u (x , y) so that

O2u 02u
Ox--q2+-~f = 0 in R , u (x , y) g i v e n o n B . (I)

Here R is an open, bounded , s imply connected region
in the (x,y)-plane and B is the b o u n d a r y of R.

If (x . , y .) is a given po'int in R, it is well known
(see, for example [7, p. 85]) that

u(x, , y ,) = w(x, , y , ; x, y)u(x, y) d~ where

OG
w (x , , y , ; x , y) - On (x . , y . ; x , y) (2)

is the no rma l derivative of Green ' s funct ion for R.
Copyright O 1974, Association for Computing Machinery, Inc.

General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author's address: College of Science, Department of Mathe-
matics, Texas A&M University, College Station, TX 77843.

471 Communications August 1974
of Volume 17
the ACM Number 8

