Numerical	R.A. Willoughby
Mathematics	Editor

Recurrence Relations

 for the Fresnel and Similar Integrals

Forman S. Acton
Princeton University

Abstract

The class of functions defined by $\int_{0}^{\infty}[\exp (-c X) d t /$ $\left.(1+Y)(\sqrt{t})^{k}\right]$ where X and Y are either t or t^{2} and k is $\mathbf{- 1 , 0}$, or $\mathbf{1}$ can be evaluated by recurrences for all but small values of the parameter c. These recurrences, given here, are more efficient than the usual asymptotic series.

Key Words and Phrases: recurrence relations, Fresnel integral, exponential integral

CR Categories: 5.12

In this paper we give simple recurrence relations that evaluate integrals such as $\int_{0}^{\infty}\left[\exp \left(-c t^{2}\right) d t /(1+t)\right]$ and $\int_{0}^{\infty}\left[\exp (-c t) d t /\left(1+t^{2}\right)\right]$ for values of the argument $2<c<\infty$. These recurrences are simple to program, are remarkably efficient for $\mathrm{c}>5$, and are especially suitable for the small programmable electronic desk calculators that are now appearing where storage for constants is limited. The recurrences provide an alternative to rational approximations (which are not always available) that are derived from asymptotic series via the Q-D algorithm, usually with some kind of economization. (Cody [3] gives some for our sample integral.)

Copyright (c) 1974, Association for Computing Machinery, Inc. General permission to republish, but not for profit, all or part of this material is granted provided that ACM's copyright notice is given and that reference is made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by permission of the Association for Computing Machinery.

Author's address: Electrical Engineering Department, Princeton University, Princeton, NJ 08540.

We emphasize that these recurrences, like asymptotic series, decrease in efficiency as the argument becomes smaller, but they remain viable until c is down to 3 or 2-i.e. well into the range for which a small-argument series is efficient, provided, of course, that any singular behavior at the origin is explicitly removed (see [2, Chap. 10]).

Specifically, the integrals we treat here are of the form
$F(c)=\int_{0}^{\infty}\left[\exp (-c X) d t /(1+Y)(\sqrt{ } \bar{t})^{k}\right]$
where X and Y are either t or t^{2} (in all combinations) and k is ± 1 or zero. The recurrences are all given in Tables I and II. Here we continue our exposition via one example, the integral
$J_{0}(c)=\int_{0}^{\infty}\left[\exp (-c t) d t / \sqrt{t}\left(1+t^{2}\right)\right]$
that occurs as an asymptotic form of the Fresnel integrals (see 7.4.26 and 7.3.5 in [1]).

We define the three sequences of functions
$J_{n}(c)=\int_{0}^{\infty} \frac{e^{-c t}}{\sqrt{t}\left(1+t^{2}\right)}\left[\frac{t^{2}}{1+t^{2}}\right]^{n} d t$

$$
c \geq 0
$$

$I_{n}(c)=\int_{0}^{\infty} \frac{e^{-c t} t}{\sqrt{t}\left(1+t^{2}\right)}\left[\frac{t^{2}}{1+t^{2}}\right]^{n} d t$
$n \geq 0$
$K_{n}(c)=\int_{0}^{\infty} \frac{e^{-c t}}{\sqrt{t}}\left[\frac{t^{2}}{1+t^{2}}\right]^{n} d t$
and note that $J_{0}(c)$ is the integral we seek, $I_{0}(c)$ is essentially the other Fresnel asymptotic form, while $K_{0}(c)$ is elementary, being $\sqrt{\pi / c}$. Further, all three sequences of functions decrease monotonically with increasing n. The recurrences
$I_{n-1}=\frac{4 n \cdot I_{n}+2 c \cdot K_{n}}{4 n-1}$
$J_{n-1}=\frac{4 n \cdot J_{n}+2 c \cdot I_{n-1}}{4 n-3}$
$K_{n-1}=K_{n}+J_{n-1}$
may be derived through integration-by-parts with frequent use of the relation
$\frac{t^{2}}{1+t^{2}}=1-\frac{1}{1+t^{2}}$
and the observation that
$\frac{d}{d t}\left[\frac{t^{2}}{1+t^{2}}\right]=\frac{2 t}{\left(1+t^{2}\right)^{2}}$.
The derivation of the first relation is typical:

$$
\begin{aligned}
J_{n} & =\int_{0}^{\infty} \frac{e^{-c t}}{\sqrt{t}\left(1+t^{2}\right)}\left[\frac{t^{2}}{1+t^{2}}\right]^{n-1}\left(1-\frac{1}{1+t^{2}}\right) d t \\
& =J_{n-1}-\frac{1}{2} \int_{0}^{\infty} \frac{e^{-c t}}{t^{3 / 2}}\left[\frac{t^{2}}{1+t^{2}}\right]^{n-1} \frac{2 t d t}{\left(1+t^{2}\right)^{2}}
\end{aligned}
$$

Communications
of
the ACM

Number 8

Table I. Integrals with $\exp (-c t)$ in Their Numerators

*These are the formula numbers in AMS-55 for the integrals.
whence integration-by-parts gives

$$
\begin{aligned}
J_{n}= & J_{n-1}+\frac{1}{2 n} \int_{0}^{\infty} e^{-c t}\left[\frac{t^{2}}{1+t^{2}}\right]^{n}\left(-\frac{c}{t^{3 / 2}}-\frac{3}{2 t^{5 / 2}}\right) d t \\
= & J_{n-1}-\frac{c}{2 n} \int_{0}^{\infty} \frac{e^{-c t} t}{\sqrt{t}\left(1+t^{2}\right)}\left[\frac{t^{2}}{1+t^{2}}\right]^{n-1} d t \\
& -\frac{3}{4 n} \int_{0}^{\infty} \frac{e^{-c t} t}{\sqrt{t}\left(1+t^{2}\right)}\left[\frac{t^{2}}{1+t^{2}}\right]^{n} d t \\
= & J_{n-1}-\frac{c}{2 n} I_{n-1}-\frac{3}{4 n} J_{n-1}
\end{aligned}
$$

so finally
$J_{n}=\left(1-\frac{3}{4 n}\right) J_{n-1}-\frac{c}{2 n} I_{n-1}$.
The system of recurrences is homogeneous, and the familiar scheme of J.C.P. Miller [1, Sec.9.12] may be used in which canonical values of $I_{n}(c)=1, J_{n}(c)=0$, and $K_{n}(c)=0$ are given for some suitably large n. The recurrences are then run down to $n=0$ and the value of I_{0} (or J_{0}) is finally normalized by multiplying by the ratio of $\sqrt{\pi / c}$ to the value of $K_{0}(c)$ that was computed -all values in the computation being erroneous by this common factor. For our example we take $c=5, n=10$ to produce the values in Table III and we see that we have achieved results correct to nearly seven significant figures in J_{0} and five in I_{0}. (No intermediate values need be retained. They are given here merely to show the

Table II. Integrals with $\exp \left(-c t^{2}\right)$ in Their Numerators
$I_{0}=\int \frac{e^{-c t^{2}}}{(1+t)} d t$
$J_{1}=\int \frac{e^{-c t_{t}^{2}}}{(1+t)} d t$
Recurrence Normalization

1	$I_{n-1}=I_{n}+\frac{2 c^{\prime}}{n} K_{n}$	7.4 .10
-	$J_{n-1}=J_{n}+I_{n-1}$	$J_{0}=\int e^{-c t^{2}} d t=\frac{1}{2} \sqrt{\frac{\pi}{c}}$
1.	$K_{n-1}=K_{n}+J_{n}$	$K_{0}=\int e^{-c t^{2}} t d t=\frac{1}{2 c}$

$I_{0}=\int \frac{e^{-c t^{2}}}{1+t^{2}} d t$

1
$I_{n-1}=\frac{2 n \cdot I_{n}+2 c \cdot J_{n}}{2 n-1}$
$J_{n-1}=J_{n}+I_{n-1}$

$\begin{array}{ll}I_{0}=\int_{\sqrt{t}\left(1+t^{2}\right)}^{-c t^{2}}{ }^{2} d t & 1 \\ J_{1}=\int \frac{e^{-c t^{2}} t \sqrt{t} d t}{\left(1+t^{2}\right)} & 0 \quad I_{n-1}=\frac{4 n \cdot I_{n}+4 c \cdot J_{n}}{4 n-3} . \\ J_{n-1}=J_{n}+I_{n-1} & J_{0}=\int \frac{e^{-c t^{2}}}{\sqrt{t}} d t=\frac{\Gamma^{1 / 4}}{2 c^{1 / 4}}\end{array}$
$I_{0}=\int \frac{e^{-c t^{2}} \sqrt{t}}{\left(1+t^{2}\right)} d t$

$I_{0}=\int \frac{e^{-c t^{2}}}{\sqrt{t}(1+t)} d t$

,	$I_{n-1}=\frac{2 n \cdot I_{n}+4 c \cdot K_{n}}{2 n-1}$	
	$J_{n-1}=\frac{2 n \cdot J_{n}+4 c \cdot I_{n}}{2 n+1}$	
0	$K_{n-1}=K_{n}+J_{n-1}$	$K_{0}=\int e^{-c t^{2}} \sqrt{E d t}=\frac{\Gamma c^{3 / 4}}{2 c^{3 / 4}}$
-	$L_{n-1}=L_{n}+K_{n}^{(\text {not } n-1)}$	$L_{0}=\int e^{-c t^{2}} t \sqrt{t} d t=\frac{\Gamma\left(^{5 / 4}\right)}{2 e^{5 / 4}}$

Table III.

n	J_{n}		I_{n}	K_{n}
10	0		1.0	0
9	0.2772	002	1.025641	0.277200
8	0.6460	806	1.1341451	0.9232809
7	1.2193	176	1.4685630	2.1425985
6	2.2922	394	2.3165093	4.4348380
5	4.6889	486	4.3454175	9.1237866
4	11.0317	728	9.3761166	20.1555954
3	31.6069	748	23.4382307	51.7625342
2	122.8379	976	72.6258282	174.6005318
1	861.4013	517	332.4302777	1036.001883
0	42411.4052	3	3896.5799 82	43447.4071 1
Nomaliz	ed 0.77376	43797	. $071090 \cdot 1885$	
Correct	0.77376	45665	.071089873	

growth that is typical in these recurrences.) The larger the starting value of n, the more accurate the final results, but the accuracy is also a function of c. As a rough guide, $n_{\text {initial }}=150 / \mathrm{c}$ will yield approximately ten significant figures in I_{0} and J_{0}. Note that the recurrences involve no loss of precision through subtraction of imprecisely known quantities-all values of I, J, and K being positive. Again, this is typical.

Received October 1973; revised January 1974

References

1. Abramowitz, M. and Stegun, I.A. Handbook of Mathematical Functions. U.S. National Bureau of Standards, AMS-55, Washington, D.C., 1964.
2. Acton, F.S. Numerical Methods That Work. Harper and Row, New York, 1970.
3. Cody, W.J. Chebyshev approximations for the Fresnel integrals. Math. Comput. 22 (1968), 450; 453.

Communications
of
August 1974
the ACM

