
A module-agnostic reference software development
process for different levels of higher-education study

DA SILVA, Carlos Eduardo <http://orcid.org/0000-0001-9608-439X> and
CAREY, Jack <http://orcid.org/0009-0000-8582-8613>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/32434/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

DA SILVA, Carlos Eduardo and CAREY, Jack (2023). A module-agnostic reference
software development process for different levels of higher-education study. In:
ASTARTE, Troy, MOLLER, Faron, QUILLE, Keith and RUSSELL, Sean, (eds.)
UKICER '23: Proceedings of the 2023 Conference on United Kingdom & Ireland
Computing Education Research. ACM.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

A module-agnostic reference software development process for
different levels of higher-education study
Carlos da Silva

Department of Computing
Sheffield Hallam University

Sheffield, UK
c.dasilva@shu.ac.uk

Jack Carey
Department of Computing
Sheffield Hallam University

Sheffield, UK
jack.carey@student.shu.ac.uk

ABSTRACT
Several software development methodologies and practices are
taught in computer science and software engineering higher edu-
cation degrees. This happens through individual modules and cap-
stone projects and sometimes with participation from real clients.
Different from industry, where processes are usually prescribed,
students encounter company-agnostic artefacts and practises, often
having to choose between the available options. Feedback from
tutors, students and clients indicates this to be a challenge, with
students often confused trying to mix-and-match different prac-
tices without the proper consideration of how they would work
together. This paper introduces the SHU Development Process,
covering all software development stages, that is instantiated into
different levels of detail for students as they progress through their
degree studies. The SHU Dev Process provides structured guidance
to software development practices that can be followed through
their chosen process flow or cherry-picked by students as needed. It
has been created through a student-led project over multiple years.
First applied during the academic year 2021/2 and iterated upon for
2022/3 in a capstone project module at Sheffield Hallam University,
the process was evaluated annually by surveying students across
different courses and levels of study. In initial surveys, students
responded positively, and our experience provides valuable insight
that other practitioners may draw upon to implement and evaluate
a similar resource in the future.

CCS CONCEPTS
• Software and its engineering→ Software developmentmeth-
ods; Collaboration in software development; • Social and
professional topics→ Computing education; Software engi-
neering education; Computer science education.

KEYWORDS
software engineering education, software development process,
higher education, students, university

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UKICER 2023, September 7–8, 2023, Swansea, Wales Uk
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0876-3/23/09. . . $15.00
https://doi.org/10.1145/3610969.3611122

ACM Reference Format:
Carlos da Silva and Jack Carey. 2023. A module-agnostic reference software
development process for different levels of higher-education study. In The
United Kingdom and Ireland Computing Education Research (UKICER) con-
ference (UKICER 2023), September 7–8, 2023, Swansea, Wales Uk. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3610969.3611122

1 INTRODUCTION
It is common practice in software development organisations to
define some kind of methodology that documents and provides
guidance to software development teams [8, 10]. Examples of such
guidance include different variations of agile [3] practices and more
structured approaches such as Capability Maturity Model Inte-
gration (CMMI) [5]. More recently, we can also see strategies for
structuring large teams, such as the Spotify Tribes Model which
divides a large team into squads and tribes [11] and its use for
different scenarios [17].

During computer science and software engineering degrees, stu-
dents are exposed to different concepts related to software processes
and methodologies, through a number of techniques. These often
come into play during capstone projects, in which students are
required to build a relatively complex piece of software combining
knowledge and skills learned from previous modules, and some-
times associated with a real client [14]. It is known that effective
student outcomes can improve by as much as 57% by being involved
with industrial partners [14], especially regarding software devel-
opment aspects beyond coding, such as communication, version
control, documentation, and planning.

The Computer Science & Software Engineering (CS&SE) subject
group of Sheffield Hallam University (SHU) adopts the use of cap-
stone projects for first and second year students. Delivered during
the second semester of teaching, they combine aspects of problem-
based learning and interaction with real clients. In both modules,
student teams communicate with clients to gather requirements
and use these to plan their approach to the task at hand, including
aspects related to needed development infrastructure, technologies
and initial design. This culminates in an intense sprint week with a
mixed vibe of a hackathon and office-hours where students build
their respective solutions and present it to the client at the end of
the week.

After running these modules for many years, the teaching team
noticed a few problems, usually substantiated by feedback from
students and clients. One of the problems noticed was a need for
some structure in the software development process for students
to follow. Throughout the CS and SE degrees students are exposed
to different methodologies, methods and techniques involved in

https://orcid.org/0000-0001-9608-439X
https://orcid.org/0009-0000-8582-8613
https://doi.org/10.1145/3610969.3611122
https://doi.org/10.1145/3610969.3611122

UKICER 2023, September 7–8, 2023, Swansea, Wales Uk Carlos da Silva and Jack Carey

software development projects, being free to use them as they
choose. However, with no standardised reference to be followed,
we started to notice some discrepancy in the produced output of
capstone projects. Taking the capstone module as example, we
noticed that those teams that got involved with clients that work
with software development were absorbing aspects of the client’s
software development practices into their own projects, while those
with clients in other domains would adopt a more ad-hoc approach,
usually getting overwhelmed by the sheer amount of practices
available. This was seen in the 2021/22 academic year with a team
that worked with a physiotherapist for tracking the progress of
their patient exercises. As the client was not involved with software
engineering, the group did not have a point of reference to guide
their development work.

In this context, and incited by some students, we defined a refer-
ence development process that can be used by students to organise
their work in capstone projects. This paper presents the SHU De-
velopment Process (SDP)1 a module and course agnostic software
development process that can be instantiated into different levels
of teaching. The SHU Development Process provides a structured
reference for student projects, with a standard set of artefacts for
students to use when they engaged with software development
projects, write reports, give presentations, and demonstrate their
work. The SDP has been officially incorporated into our second year
(level 5) capstone project module during the academic year 2022/23.
Finally, the paper also presents an evaluation of the SDP which
involved a survey with the cohort of academic year 2021/22 and
2022/23 of Department of Computing at SHU. The results obtained
provided valuable insights on the SDP, with some lessons learned
and suggestions of improvement that will be carried out during the
academic year 2023/24.

This paper is organised as follows: Section 2 presents some re-
lated work. Section 3 details the SHU Development Process. Sec-
tion 4 presents our survey results together with a discussion on the
lessons learned. Section 5 concludes the paper and points to future
work.

2 RELATEDWORK
This section presents a brief discussion on related work in the
topics of problem-based learning and capstone projects, followed
by a discussion on why we chose the reference documentation
format instead of a question-answer based learning.

Previous research has highlighted the benefits of using problem-
based learning (PBL) [2] in software engineering (SE) education,
with respect to learning the software development lifecycle [14],
improved academic results [16], exposure to different methods [4],
and enthusiasm [6]. Paasivaara et. al. [14] showed that university
modules with external clients can be the first time students un-
derstand the whole life cycle of a software development project
and that the enforcement of scrum based processes limited student
satisfaction. A systematic mapping of trends in SE education high-
lighted the need for tools that facilitate the adoption of current
practices together with mixed models and methods in an educa-
tional context [4]. These findings corroborate the SHU approach
of using capstone-project based on PBL and involvement of real

1https://aserg.codeberg.page/shu-dev-process

clients together with the reference provided by the SHU Develop-
ment Process documentation.

In their research on project-based learning, Włodarski et al. [21]
focused on using a combination of sequential and iterative ap-
proaches. They found that processes should be adapted to academic
settings and hands-on experience with all stages of the software
development process [15] can bridge the gap between SE educa-
tion and industry. As both sequential and iterative approaches are
covered at SHU, the SHU Development Process does not prescribe
one approach, instead acting as a “scaffolding” to aid the approach
taken by students.

Scaffidi [18] showed that, in addition to the technical skills re-
lated to solution domains, employers are looking for skills related to
methods and practises such as agile, code management, and system
interface design. They showed that employers also look for soft
skills relating to communication and handling ambiguous require-
ments, but that the value of any one skill varies between employers.
The sample size of this study was small, at only 11 employers, but
supports the delivery of a variety of skills in computer science and
software engineering courses. Along those lines, Cico et. al. [4]
showed that “the actual participation of industrial stakeholders in
SE education remains limited”, with a request for more experience
papers. A literature review by Garousi et. al. [7] supports Scaffidi’s
finding in their examination of 33 papers. They found an impor-
tance of soft skills, as well as SE models and methods, SE process,
design and architecture, and testing. These are taught at SHUwithin
modules as well as through project-based learning in the capstone
project modules at levels 4 and 5.

One interesting point considered when choosing the format of
the SHU Dev Process is about the use of question & answer based
learning and its benefits for student outcomes [9, 12, 20]. By in-
teracting with teaching staff or their peers, students were able to
improve exam results, as well as inform their own learning and that
of their peers. While it is possible to build a knowledge repository
using digital tools (for example, stack overflow), the effectiveness of
the platforms can be compromised by similar questions being asked
multiple times, lack of (continued) student involvement, and the
need for moderators or lecturers to stay up to date with the ques-
tions being asked. For these reasons, the SHU Development Process
has been designed as reference documentation instead. It is de-
signed to be used alongside the variety of in-classroom approaches
that teaching staff adopt, which range from direct instruction to
question-and-answer based sessions or constructivistic seminars.

Another influence to the SDP documentation is the notion of
process fragments. Seidita et al. [19] defined a process fragment as
“a portion of design process adequately created and structured for being
reused during the composition and enactment of new design processes
both in the field of agent oriented software engineering and in other
ones.”. This has been combined with the notion of scaffolding [1] in
which the different fragments are the artefacts such as user stories
and use case diagrams that students develop collaboratively and
use as building blocks when implementing their software.

3 THE SHU DEVELOPMENT PROCESS
The SHU Dev Process (SDP) was born based on the need for a
structured reference that can be followed by students working on

A module-agnostic reference software development process for different levels of higher-education study UKICER 2023, September 7–8, 2023, Swansea, Wales Uk

INITIATION

action

action

PLANNING
MODELLING

ANALYSIS DESIGN
CONSTRUCTION

CODE

action

action

TEST

action

DEPLOYMENT
DELIVERY

action

SUPPORT & FEEDBACK

action

LEVEL 4
(first year)

LEVEL 5
(second year)

LEVEL 6
(third year)

SHU Development Process

action action

action action

action

action action action

action action

action

action

action action

action action action

Figure 1: General view of the SHU Dev Process structure identifying its five main activities, where each block represents an
action that can have greater levels of detail.

more complex software development projects. The aim is to design
a software development reference that can be “instantiated” into
the different levels of computer science and software engineering
(CS&SE) courses. Students at SHU begin undergraduate study at
level 4 (first year) and finish their third year at level 6. Our proposal
structures and standardises key activities that students undertake
when doing their software development coursework, including sim-
ple project management guidance that works for both individuals
and teams. Where needed, complexity is added to a simple process
according to level of study, in which relevant tools and techniques
are detailed for students so they may better understand and apply
them as they progress through their degree.

The initial iteration of the documentation was created by two
“student researchers” (students hired part-time by the University
to work on projects defined by academics) under the supervision
of teaching staff, where the majority of the decisions related to
detailing of the SDP was performed by the student themselves. The
SDP documentation is designed to be consumed by any student in
the University that is involved in aspects of software development
projects, however attention was initially given to students on the
CS&SE degrees due to its relevance to their assignments. Specif-
ically, we targeted second year undergraduates (level 5) students
undertaking a capstone project module in which external indus-
try partners provide briefs and act as clients for student teams to
develop a complex software system.

This section gives some details on the SDP followed by a discus-
sion on its use through different navigation styles.

3.1 Detailing the SHU Dev Process
The SHU Dev Process, which can be seen in Figure 1, follows the
definition by Pressman & Maxim [15] and comprises five method-
ological activities: initiation2, planning, modelling, construction
and deployment. These main activities encompass a set of support
steps: analysis and design related to modelling; code and test related
to construction; and delivery, support and feedback for deployment.
These stages are used to group the varied actions involved, which
are then presented with different levels of detail depending on the
level of study. As one example we consider user stories which are
explored throughout multiple levels of study, but with different
expectations in terms of its complexity:

2We re-labelled this from the original ’Communication’ section to reduce ambiguity
between inter-stakeholder and intra-team communications.

• Level 4 - Introduce the "As a [type of user] I want to [perform
task] so that I can [achieve goal]" way of thinking about
functionality.

• Level 5 - Builds on level 4 to add acceptance criteria in the
format of "Given [some context], when [an action is carried
out], then [outputs occur]" to help students scope, communi-
cate, plan, and test functionality.

• Level 6 - Builds on level 5 to add requirements traceability
matrices to ensure the functionality agreed through user
stories has been implemented as expected.

In the sequence we detail each of the main activities, describ-
ing the main topics included in the SDP according to Pressman &
Maxim [15].

The initiation activity happens “before any technical work can
commence, and helps in establishing the communication and col-
laboration between the development team and the customer (and
other stakeholders). The intent is to understand their objectives for the
project and to gather requirements that help define software features
and functions”. In particular, the SDP includes material on helping
students understand the client’s objectives, such as the use of so-
cratic questioning method to interrogate the client brief and guide
these initial meetings, as well as providing guidance on how to take
meeting minutes.

A software project is a complicated journey, and “the planning
activity creates a “map” that helps guide the team through it. The map
describes the software engineering work with the technical tasks to be
conducted, the risks that are likely, the resources that will be required,
the work products to be produced, and a work schedule”. The SDP con-
tains material on helping students planning for their projects, from
establishment of team communication channels, the definition of
SMART goals, and different aspects related to project management,
such as, agile methodologies, scrum, risk management, version
control workflows and respective tools.

The modelling activity concerns the creation of different mod-
els used in a software development project. “Models and “sketches”
are useful in software engineering, as with many other industries,
to understand the big picture for projects - what they will look like
architecturally, how the constituent parts fit together, and many other
design characteristics. They may be redefined into greater detail in an
effort to better understand the problem you’re trying to solve”. Mod-
elling is divided into analysis and design. The analysis is dedicated
to the formalisation of the requirements. It involves talking with
a client and documenting your understanding. The SDP describes

UKICER 2023, September 7–8, 2023, Swansea, Wales Uk Carlos da Silva and Jack Carey

different levels of complexity for user stories, use cases, personas
and user scenarios, and the MoSCoW prioritisation method3. The
design is focused on the modelling of the solution. It usually in-
volves decision around architecture, data structure, user-interface,
classes, algorithms, etc. The SDP includes material on class, entity-
relationship and sequence diagrams with different levels of com-
plexity based on the level of study. We also include discussions
on architectural overview using the C4 model and architectural
decision records.

The construction activity involves the implementation and test-
ing of the structures modelled in the design phase. This activity is
divided into code and test. The code step concerns the production of
source code, with the SDP covering topics related to good practices
with references to coding standard to different programming lan-
guages and discussions on commenting and review strategies. The
test step deals with general strategies for performing software test-
ing, focusing on unit, integration and user acceptance testing with
pointers to tools and libraries on different programming languages.
We also include references to code coverage.

The deployment activity deals with the “conclusion” of the
development project. It captures the notion that “the software is
delivered to the customer who provides feedback based on their own
evaluation of the delivered product” and receives support (e.g., main-
tenance) from the development team, usually driven by some sort
of monitoring of the running software. In the SDP, the delivery
presents guidance on producing the artefact that will be submit-
ted as the student’s coursework. It involves creation of structured
readme files with building/deployment instructions, to the full au-
tomation delivery pipeline, establishing the link with DevOps prac-
tices and tools, and including references to contemporary technolo-
gies such as containers and cloud computing services. The support
and feedback is focused on the student, in particular, with guidance
on the production of reflective statements and project reports. We
also cover guidance on presentations, from general structure and
points to cover, to practical tips in preparing for live demonstrations
of the running software.

3.2 Navigating the SHU Development Process
One aspect that has been substantially improved in the SDP is
related to its navigation. Althoughwe use Pressman andMaxim [15]
general framework to structure the material, we do not prescribe
any particular order in which actions should be performed. In fact,
we follow the authors’ descriptions of process flow types for how
activities occur with respect to sequence and time: linear, iterative,
evolutionary, and parallel. The SDP adds ’ad-hoc’ as an exception,
for short assignments that do not assess students on all software
development activities.

• Linear executes each of the five activities in sequence, begin-
ning with initiation, and culminating with deployment.

• Iterative repeats one ormore of the activities before proceeding
to the next.

• Evolutionary executes all five activities in a "circular" man-
ner, with each iteration leading to a more complete version of
the software.

3MoSCoW and other specific techniques have been included as requests from teaching
staff, but other strategies are also mentioned and linked to.

• Parallel executes one or more activities in parallel, e.g. mod-
elling for one aspect may take place at the same time as con-
struction of another.

• Ad-hoc execute single activities on a one-off, exceptional
basis.

Through specific module work, students are taught to consider
prescriptive methods such as waterfall, prototype, spiral or other,
and how they may or may not be applicable in a given context.
They can do this purely at their level of study, or above or below
for increased and decreased levels of detail in specific practices.
In order to make this more explicit, the structure of the SDP and
the viewing controls in place allow students to navigate between
artefacts using their chosen process flow without prescribing any
specific one.

Figure 2 gives examples of two possible paths students may
choose to apply within their projects and coursework. The “red”
flow captures a student navigating the process in an evolutionary
style, in which each iteration increases the level of detail as the
student becomes familiar with the activites involved. In contrast,
the “blue” flow demonstrates one possible path of an iterative flow,
combining different levels of details where students work largely at
their level of study (level 5), but increase the level of detail in their
modelling as the work progresses. It is important to mention that
these two are just examples of possible navigation paths and that
other flow types have been observed by teaching staff throughout
the second year capstone project module in the academic year
2022/23, with ad-hoc navigation being most popular for individual
students.

Time

A
ct
iv
ity

Level 6 (third year)Level 4 (first year) Level 5 (second year)

C
om

m
un

ic
at
io
n

Pl
an
ni
ng

M
od
el
lin
g

C
on
st
ru
ct
io
n

D
ep
lo
ym

en
t

Iterative flow Evolutionary flow

Activities

Flows

Figure 2: Two examples of possible navigation paths showing
iterative and evolutionary flows.

A module-agnostic reference software development process for different levels of higher-education study UKICER 2023, September 7–8, 2023, Swansea, Wales Uk

4 EVALUATION
This section presents the results of a survey conducted during
academic years 2021/22 and 2022/23, followed by a brief discussion
of the obtained results.

4.1 Survey Results
During academic year 2021/22 the SDP has been made available
to students of the second year capstone project module from the
CS&SE degrees as one of the resources available to them. At the end
of the academic year we invited these students to answer a survey
with their impression of the SHU Dev Process. These provided
feedback that has been incorporated into the SDP for 2022/23, in
which the SDP was again indicated as online resource, and another
survey performed. The surveys have been registered and approved
by University ethical procedures and were completely anonymised
at the point of collection, consisting of a combination of likert scales
and open comments, where all questions were optional. Thematic
analysis was used to categorize the open comments and a summary
of each theme has been placed with each.

Table 1: Number of students participating in the survey ac-
cording with their course.

Responses / Population
Course 2021/22 2022/23

Computer Science 17 / 186 14 / 204
Software Engineering 17 / 122 7 / 164

Other 12 / – 12 / –

We start by presenting a brief reflection on the survey population.
Table 1 presents the number of students that answered the survey
followed by the available population for the degrees of computer
science and software engineering (our main target demographics)
for both 2021/22 and 2022/23. 74% of responses (from a total of 46)
came from our target demographic of computer science (CS) and
software engineering (SE) courses in 2021/22, with 66% (from a total
of 35) in 2022/23. The “other” courses include game design (GD),
cyber security (CSec), IT management and others that are offered
by different subject groups, and thus not officially involved with the
SHUDev Process. It was particularly surprising to see CSec students
(5 responses out of 12) interested in the SDP documentation. We
believe their participation in the survey was motivated by word-of-
mouth between students, which gives us the chance to get some
insights about the perspective of being module and course agnostic.

After capturing demographic information the survey continues
with an open-ended question: “What are you looking for in a resource
like this?”. We received a total of 24 responses in 2021/22 (and 23
responses in 2022/23), which have been collated using thematic
analysis. The main theme in both years relates to some sort of guid-
ance on different aspects of a software development project, from
concepts and project structure to coding and specific technologies.
A second recurrent theme is related to feedback and interaction
with other students, in particular in 2022/23 there were several
mentions of inclusion of student’s suggestions in the SDP itself.
In both years we find responses related to summary of concepts
and, in 2021/22, one explicit mention to accessibility to all reading

levels. Other themes that appeared in 2022/23 revolve around help
for securing jobs and personal/professional development. Topics
considered out of scope for this project, such as those mentioning
wellbeing or course/module-specific guidance, highlighted the need
to refer students to module content and other University services
in these cases. We also had a number of comments classified as
“non-answer”, including comments like "not sure", or "not much".

Figure 3: Results on levels of satisfaction of students with
the SHU Dev Process using likert-scale.

Figure 3 presents the levels of satisfaction results obtained using
likert-scale. These consider the overall quality of the documenta-
tion, the layout and ease of understanding. We draw attention to
improvements in all three topics, particularly in the layout and ease
of understanding, as these were tackled in response to feedback
collected in 2021/22.

We also asked “Does the documentation enhance your understand-
ing of the software development process?”. The overall response is
around 77% yes in 2021/22 (and 85% in 2022/23), with the majority
of students in the target CS (85% in 2021/22 and 93% in 2022/23) and
SE (90% in 2021/22 and 86% in 2022/23) courses felt the documenta-
tion enhanced their understanding of software development. We
were surprised by the positive results from CSec (100% yes in both
years) and negative result from GD students (20% yes in 2021/22
and 0% yes in 2022/23). CSec students do not engage in software
development during their degree, possibly making the SDP the
first learning material devoted to software development guidance
they have been exposed to. On the other hand, GD students, as
part of their degree, build a running game for a commercial plat-
form which, as indicated by course teaching staff, involves several
practices related to software development.

The survey continues by asking students “What do you think
could change to make the Reference Development Process better?”.
The thematic analysis of the responses for both years identified
content as the most mentioned topic, including addition of more
specific details and examples, and more conciseness in some parts.
The responses for 2021/22 included several suggestions for layout
and accessibility, which have been incorporated into the SDP and
mentioned as positive aspects in 2022/23. Both surveys identified
the definition of a single example project to be used throughout the
whole SDP. A consistent example project to use in diagrams and

UKICER 2023, September 7–8, 2023, Swansea, Wales Uk Carlos da Silva and Jack Carey

explanations is being considered for the next iteration of the SHU
Dev Process, with care being taken to avoid technology-specific
solutions. Another recurrent topic in both years is formal presen-
tation of the SDP for first year students, which will be officially
included in the academic year 2023/24.

4.2 Discussion
Overall, the feedback we collected supported the aims of providing
a structured reference process for students. The participation of
students from other courses was a surprise to us, but provided
interesting comments and helped us in demonstrating the course
and module-agnostic nature of the SDP. Together, these comments
support the introduction of the SDP in earlier levels of study.

The SDP has also been used as inspiration by some module teach-
ing staff in their teaching plans and is actively being consulted for
the restructuring of some modules that is currently happening at
SHU. We have also seen the SHU Dev Process starting to influence
assignment descriptions, although not yet formally used to struc-
ture the marking of student projects. Further discussions with the
teaching team are needed, particularly with the amount of details
indicated according with the level of study. In particular, its use in
the level 5 Professional Software Projects (PSP) module was well re-
ceived by tutors, who noticed its influence in the students-produced
artefacts. When asked about it the module leader said:

“The PSP module sees students working with real world
clients, on real world projects. The students were intro-
duced to the SHU Development Process and encouraged
to apply it to their project work. Techniques such as
MoSCoW prioritisation method helped students struc-
ture their work, in what for many would have been their
first exposure to real projects.”

The CS and SE courses passed through a restructuring for the
academic year 2022/23 following a general “semesterasition” being
conducted by the University and introducing a few other changes.
As such, a direct comparison of grades could not be made against
previous years. Future iterations of the module will continue to
reference the SDP so that its use can be better evaluated. In partic-
ular, we have to consider a trade-off between the module assess-
ment following the SDP structure too closely while maintaining its
course/module-agnostic nature. One positive outcome is that the
SDP has now been presented to all teachers of CS and SE degrees,
with the aim of it being officially incorporated into all modules for
the academic year 2023/24.

The main lesson learned with this experience is related to the
involvement of “student researchers” [13]. They were involved in
the definition of the process, but tutors were the ones presenting it
to students as part of the modules sessions. The student researcher
was able to spread the SDP throughword-of-mouth but this restricts
the reach to its network of students. As demonstrated by some of the
received comments, students are more receptive when they could
see that their peers were involved in presenting such an approach.
We intend to continue involving student researchers in further
development of the SHU Dev Process, as well as in presenting the
SDP to peers in their respective modules.

One limitation of this experience was the sample size of respon-
dents. They represented a small fraction of the hundreds of students

in the department (as shown in Table 1), particularly when consid-
ering our targeted courses. This means that the results may not be
representative of the entire computing department student body.
Improvement and repetition of the survey in the next academic
year or at another institution could be used to validate or disprove
the results seen in this paper. Nevertheless, the survey provided
areas of improvement for future iterations. The suggestions and
improvements were organised as issues on the git repository4 so
they can be tracked, discussed, and implemented.

5 CONCLUSIONS
This paper presented the SHU Development Process, a structured ref-
erence documentation for students to follow as they learn about and
implement software development practises, bothwithin a successful
project-based module and beyond. The SDP aimed to supplement
the full variety of teaching approaches taken by educators by pro-
viding a canonically correct source of information that students can
refer to when deciding which methods to apply in their work. We
recommend that academics and educators teaching software devel-
opment processes introduce similar documentation to their courses
to support the effective student outcomes in their institution.

The evaluation showed that this has been beneficial to both
student experience and that of the teaching staff who assess them.
The results obtained through a survey with students indicates that
it is worth instantiating the SDP into first year modules, which we
plan to do with the capstone-project module recently introduced
to level 4 of CS and SE degrees. We also intent on applying and
surveying students throughout their full 3-year degree journey.
The changes recommended by students and highlighted by our
evaluation have been registered as issues in our git repository
and will be tackled in the next academic year. Besides that, we
also intend to conduct a more thorough evaluation of the SDP
documentation, initially in the context of the PSP module, but
expanding to other modules and courses.

The survey responses we collected focused on the affective out-
comes of students using the documentation within their courses.
While results supported the introduction of the documentation, no
industry link was made directly between the produced documen-
tation and current software engineering industry trends. Though
the taught content at SHU is already informed by industry, fur-
ther work should directly survey external partners involved with
project-based modules to find gaps and/or corroboration between
the produced documentation and industry practises.

ACKNOWLEDGMENTS
This project has been funded by the Teaching, Learning & Student
Experience Enhancement Projects and SETL Evaluation Bursaries
2022-2023 of the College of Business, Technology and Engineering
of Sheffield Hallam University.

ACKNOWLEDGMENTS
For the purpose of open access, the author has applied a Creative
Commons Attribution (CC BY) licence to any Author Accepted
Manuscript version arising from this submission.

4https://codeberg.org/aserg/shu-dev-process

https://codeberg.org/aserg/shu-dev-process

A module-agnostic reference software development process for different levels of higher-education study UKICER 2023, September 7–8, 2023, Swansea, Wales Uk

REFERENCES
[1] Sylvia Ashton and Rachel Stone. 2021. An A-Z of creative teaching in higher

education (2nd edition. ed.). SAGE, London.
[2] Terry. Barrett. 2011. New approaches to problem-based learning : revitalising your

practice in higher education. Routledge, New York.
[3] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cun-

ningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron
Jeffries, Jon Kern, BrianMarick, Robert C. Martin, SteveMellor, Ken Schwaber, Jeff
Sutherland, and Dave Thomas. 2001. Manifesto for Agile Software Development.
http://www.agilemanifesto.org/

[4] Orges Cico, Letizia Jaccheri, Anh Nguyen-Duc, and He Zhang. 2020. Exploring
the intersection between software industry and Software Engineering education
- A systematic mapping of Software Engineering Trends. Journal of Systems and
Software 172 (Feb. 2020), 110736. https://doi.org/10.1016/j.jss.2020.110736

[5] Radu Constantinescu and Ioan Mihnea Iacob. 2007. Capability maturity model
integration. Journal of Applied Quantitative Methods 2, 1 (2007), 31–37.

[6] Maria Lydia Fioravanti, Bruno Sena, Leo Natan Paschoal, Laíza R. Silva, Ana P.
Allian, Elisa Y. Nakagawa, Simone R.S. Souza, Seiji Isotani, and Ellen F. Barbosa.
2018. Integrating Project Based Learning and Project Management for Software
Engineering Teaching: An Experience Report. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education (SIGCSE ’18). Association
for Computing Machinery, New York, NY, USA, 806–811. https://doi.org/10.
1145/3159450.3159599

[7] Vahid Garousi, Gorkem Giray, Eray Tuzun, Cagatay Catal, and Michael Felderer.
2020. Closing the Gap Between Software Engineering Education and Industrial
Needs. IEEE Software 37, 2 (March 2020), 68–77. https://doi.org/10.1109/MS.2018.
2880823 Conference Name: IEEE Software.

[8] Johannes Holvitie, Sherlock A. Licorish, Rodrigo O. Spínola, Sami Hyrynsalmi,
Stephen G. MacDonell, Thiago S. Mendes, Jim Buchan, and Ville Leppänen. 2018.
Technical debt and agile software development practices and processes: An
industry practitioner survey. Information and Software Technology 96 (April
2018), 141–160. https://doi.org/10.1016/j.infsof.2017.11.015

[9] Malin Jansson, Stefan Hrastinski, Stefan Stenbom, and Fredrik Enoksson. 2021.
Online question and answer sessions: How students support their own and other
students' processes of inquiry in a text-based learning environment. The Internet
and Higher Education 51 (Oct. 2021), 100817. https://doi.org/10.1016/j.iheduc.
2021.100817

[10] Mohamad Kassab, Joanna DeFranco, and Valdemar Graciano Neto. 2018. An
Empirical Investigation on the Satisfaction Levels with the Requirements En-
gineering Practices: Agile vs. Waterfall. In 2018 IEEE International Professional
Communication Conference (ProComm). IEEE, Toronto, ON, Canada, 118–124.
https://doi.org/10.1109/ProComm.2018.00033 ISSN: 2158-1002.

[11] Henrik Kniberg and Anders Ivarsson. 2012. Scaling Agile @ Spotify with Tribes,
Squads, Chapters & Guilds. https://blog.crisp.se/wp-content/uploads/2012/11/
SpotifyScaling.pdf

[12] Jan Knobloch, Jonas Kaltenbach, and Bernd Bruegge. 2018. Increasing Student
Engagement in Higher Education Using a Context-Aware Q&A Teaching Frame-
work. In 2018 IEEE/ACM 40th International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). IEEE, Gothenburg,
Sweden, 136–145.

[13] Mike Neary, Gary Saunders, and Dan Derricott. 2014. Student as Producer:
Research-Engaged Teaching, an Institutional Strategy. Project Report. The Higher
Education Academy, York.

[14] Maria Paasivaara, Dragoş Vodă, Ville T. Heikkilä, Jari Vanhanen, and Casper
Lassenius. 2018. How does participating in a capstone project with industrial
customers affect student attitudes?. In Proceedings of the 40th International Con-
ference on Software Engineering: Software Engineering Education and Training.
ACM, Gothenburg Sweden, 49–57. https://doi.org/10.1145/3183377.3183398

[15] Roger S. Pressman and Bruce R. Maxim. 2020. Software Engineering: A Practi-
tioner’s Approach. (ninth edition / roger s. pressman, ph.d., bruce r. maxim, ph.d.,
international student edition. ed.). McGraw-Hill, New York, NY.

[16] Beatriz Pérez and Ángel L. Rubio. 2020. A Project-Based Learning Approach
for Enhancing Learning Skills and Motivation in Software Engineering. In Pro-
ceedings of the 51st ACM Technical Symposium on Computer Science Education
(SIGCSE ’20). Association for ComputingMachinery, New York, NY, USA, 309–315.
https://doi.org/10.1145/3328778.3366891

[17] Abdallah Salameh and Julian M. Bass. 2019. Spotify Tailoring for Promoting
Effectiveness in Cross-Functional Autonomous Squads. In Agile Processes in
Software Engineering and Extreme Programming – Workshops, Rashina Hoda (Ed.).
Springer International Publishing, Cham, 20–28.

[18] Christopher Scaffidi. 2018. Employers’ needs for computer science, information
technology and software engineering skills among new graduates. International
Journal of Computer Science, Engineering and Information Technology 8, 1 (2018),
1–12.

[19] Valeria Seidita, Massimo Cossentino, and Antonio Chella. 2012. A Proposal
of Process Fragment Definition and Documentation. In Multi-Agent Systems
(Lecture Notes in Computer Science), Massimo Cossentino, Michael Kaisers, Karl

Tuyls, and Gerhard Weiss (Eds.). Springer, Berlin, Heidelberg, 221–237. https:
//doi.org/10.1007/978-3-642-34799-3_15

[20] David H Smith IV, Qiang Hao, Vanessa Dennen, Michail Tsikerdekis, Bradly
Barnes, Lilu Martin, and Nathan Tresham. 2020. Towards Understanding Online
Question &Answer Interactions and their effects on student performance in large-
scale STEM classes. International Journal of Educational Technology in Higher
Education 17, 1 (Dec. 2020), 20. https://doi.org/10.1186/s41239-020-00200-7

[21] Rafal Włodarski, Aneta Poniszewska-Marańda, and Jean-Remy Falleri. 2022.
Impact of software development processes on the outcomes of student computing
projects: A tale of two universities. Information and Software Technology 144
(April 2022), 106787. https://doi.org/10.1016/j.infsof.2021.106787

http://www.agilemanifesto.org/
https://doi.org/10.1016/j.jss.2020.110736
https://doi.org/10.1145/3159450.3159599
https://doi.org/10.1145/3159450.3159599
https://doi.org/10.1109/MS.2018.2880823
https://doi.org/10.1109/MS.2018.2880823
https://doi.org/10.1016/j.infsof.2017.11.015
https://doi.org/10.1016/j.iheduc.2021.100817
https://doi.org/10.1016/j.iheduc.2021.100817
https://doi.org/10.1109/ProComm.2018.00033
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://doi.org/10.1145/3183377.3183398
https://doi.org/10.1145/3328778.3366891
https://doi.org/10.1007/978-3-642-34799-3_15
https://doi.org/10.1007/978-3-642-34799-3_15
https://doi.org/10.1186/s41239-020-00200-7
https://doi.org/10.1016/j.infsof.2021.106787

	Abstract
	1 Introduction
	2 Related Work
	3 The SHU Development Process
	3.1 Detailing the SHU Dev Process
	3.2 Navigating the SHU Development Process

	4 Evaluation
	4.1 Survey Results
	4.2 Discussion

	5 Conclusions
	Acknowledgments
	Acknowledgments
	References

