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(a) Furhat in the classroom for introduction (b) Furhat with stimulus (c) Furhat with question 

Figure 1: Diferent stages of the experimental task. 

ABSTRACT 
Language is learned through social interactions, in which gaze has 
a special role because it can be used to guide the attention and 
reference objects easily. Children, starting from very early ages, are 
also very good at utilizing gaze to map labels to referenced objects. 
To achieve language teaching robots, we need to understand how 
these functions of gaze can be implemented most efciently. To this 
aim, we allowed children to interact with a social robot to learn 
the labels of several objects in a naturalistic setting. In some trials 
the child guided the gaze and chose the object to be learned while 
the robot was following and in the others they changed the roles 
and robot guided the gaze and decided on the object to be learned. 
We measured how much children actually followed the robot’s 
gaze and how many words they learned in these two conditions, 
referred to as active and passive learning conditions, respectively. 
The results indicate that although children followed the robot’s 
gaze and learned words successfully, there were no meaningful 
diferences in word learning between the two conditions. The rate of 
gaze following and time spent looking at the robot did not infuence 
word learning, either. The implications of these results for use of 
robots in educational settings are further discussed. 
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1 INTRODUCTION 
Language is a social tool, which is primarily acquired through social 
interactions [15]. To achieve the promise of language teaching 
robots, these devices should be able to similarly sustain seamless 
social interactions. We, therefore, need further understanding of 
the factors that infuence the quality of human-robot interactions, 
especially in early childhood. In particular, in order to ensure that 
robots attain social interactions that are qualitatively similar to 
human-human interactions, we must better understand the role 
of non-verbal communication in HRI. This is especially true for 
children for whom socio-communicative input in language learning 
is vital [44]. 

One of the non-verbal communication tools that enrich social 
interactions and has proved critical for language learning is gaze 
(c.f. [13]). Thus, adult gaze is considered an ostensive cue that sig-
nals to the child that the information being discussed is relevant 
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and meaningful [18], with children attending more to information 
accompanied by ostensive cues [38]. At the same time, learning 
outcomes are also improved when adults follow the gaze, and con-
sequently, attention of the child, and label objects that the child 
is attending to [33, 42, 43]. Against this background, the current 
study examines the role of gaze in child-robot interactions, with 
regard to children’s attention to and learning about objects that 
the robot is attending to versus objects where the robot follows the 
child’s gaze and, consequently, attention. 

2 BACKGROUND 

2.1 Joint Attention in HRI 
Considering the robustness of gaze following [39], humans are very 
good at attending to where the robot is looking at under various 
conditions [11]. For instance, a target cueing advantage, i.e., faster 
shift of gaze to a target indicated by another human’s gaze, has been 
replicated in HRI [14, 30, 46]. Human-robot collaborative tasks are 
also completed more efciently when the robot gaze is contingent 
with the task requirements [23]. 

Given the success of gaze following in HRI, subsequent research 
has focused on the factors that infuence how efciently humans 
follow robots’ gaze. For example, although virtual agents’ gaze 
information has been shown to improve task success in a card 
matching game, it provides low precision relative to embodied 
agents [8]. With embodied robots, objects can be referenced in 3D 
space with eye and head movements. Indeed, humans are better 
at following gaze in HRI when the robot moves its eyes and head 
in coordination instead of signaling gaze location with only head 
movements [6]. 

Nevertheless, studies comparing gaze following in human-human 
interactions and HRI report some critical diferences. For instance, 
participants look at the face of the agent more than the target when 
interacting with a robot compared to a human [47]. This distracting 
efect might have signifcant implications especially for the use of 
social robots in children’s language learning, where attending to 
the referent at the correct time has been shown to afect learning 
outcomes [48]. Participants also appear to be able to suppress the re-
fexive cueing efect in HRI [3]. Thus, in tasks requiring participants 
to direct their attention in a specifc direction (cued by an arrow), 
participants’ gaze refexively orients to social cues such as a human 
partner looking in the opposite direction. In HRI, however, while 
participants were able to infer the direction of the robots’ gaze, they 
did not refexively orient to the location of the robot’s gaze. The 
authors concluded that, while robot gaze may be as informative as 
human gaze at higher levels of processing, human gaze may have a 
special place at lower levels of sensory processing, e.g., refexive 
attention, which they attribute to the diferent processing pathways 
for faces reported in neuroscience studies [16]. Furthermore, stud-
ies suggest that the anthropomorphism of the robot may infuence 
attentional strategies, with participants inferring the intentions of 
more anthropomorphic robots better than less anthropomorphic 
robots [26, 27]. 

2.2 Joint attention in child-adult interactions 
There has been much work on the development and infuence of 
joint attention between children and their adult social partners on 

the quality of caregiver-child interactions and learning outcomes. 
These studies fnd that learning is boosted when the mature partner 
follows the attention of the child and labels an object that the child 
is directing attention to, relative to when the child’s attention is 
recruited to an object before the partner labels this object [33, 42, 
43, 48]. 

Thus, in one of the frst studies on the subject, the authors ob-
served mother-child interactions over a period of fve months and 
examined the vocabulary development of the children [43]. The re-
sults suggest that children in the dyads where children were leading 
episodes of joint attention showed increased vocabulary gains rela-
tive to children whose mothers guided the child’s attention more 
often. In another study, an experimenter introduced novel objects 
to children either while their attention was on the object or when 
they were attending to something else [42]. As in the observational 
study, children learned the label of an item better when the naming 
event occurred while they were already attending to the target item 
compared to the situations where children’s attention shifted to 
the target item after the naming event occurred. 

Such fndings are typically explained with recourse to the de-
mands on the child in ambiguous naming situations. Thus, in situa-
tions where many objects are simultaneously present in the visual 
feld of the child, if caregivers label the object that the child is al-
ready attending to, the child does not need to infer which of the 
many objects in its visual feld is the referent of the label [33]. Fur-
thermore, labelling events where the child is already attending to 
the object are cognitively less demanding for the young learner, 
with fewer demands on their motor skills, cognitive control and 
selective attention. 

While the studies reported above were mostly conducted with 
infants and very young children (up to 24-months of age), studies 
with older samples report mixed results. Such studies have typi-
cally focused on diferences in learning outcomes when children 
actively choose the information to-be learned relatively to when 
they passively receive such information. Ackermann et al. [2020] re-
port a passive boost in learning with 3-year-olds showing reduced 
learning of words in an active context, i.e., when they actively 
chose the objects whose label they wanted to hear, relative to a 
passive context, i.e., where they were presented with the labels 
of objects another child in a previous session had chosen to hear 
[2] (but see Partridge et al., [2015] for opposing results with 3- to 
5-year-olds[31]). In keeping with this, Foushee et al. [2021] fnd 
that children’s ability to learn words and facts actively improves 
across early childhood, matching learning from the passive condi-
tion (where they were explicitly told the label of an object) between 
4.5- to 6-years of age [17]. Ruggeri et al. [2019] report that the mem-
ory boost associated with providing children active control over 
their study environment is small around 5-years, increases with age 
and is adult-like around 8-years of age [37]. In contrast, other stud-
ies with 7-year-olds report improved learning performance when 
children choose the item to-be learned compared to when the item 
was chosen by their interaction partner [40]. Taken together, the 
research reviewed in this section suggests that a) children show im-
proved learning in child-adult interactions when adults follow the 
attention of the child and label objects that they are already attend-
ing to and b) there are, nevertheless, subtle nuances to children’s 
active learning outcomes especially across early development that 
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require greater consideration. In what follows, we examine the 
extent to which such insights from research on early development 
have been capitalised on in HRI. 

2.3 Joint attention in cHRI 
Despite the abundance of research on the efects of diferent gaze 
behaviour in HRI conducted with adult participants, there are not 
many studies investigating how children respond to robot’s gaze. 
The research in this area focuses mostly on children with Autis-
tic Spectrum Disorder (ASD) and how these children respond to 
human gaze vs. robot gaze and the use of social robots as tools in 
therapy [21, 41, 45, 49]. Although typically developing children are 
recruited as control groups to whom the performance of children 
with ASD is compared, some informative observations about typ-
ically developing children’s behaviour have also been made. For 
example, in a study investigating diferences in responses to robot’s 
joint attention elicitation attempts between typically developing 
children and children with ASD, typically developing children es-
tablished joint attention with the robot 75% of the times [7]. In 
another study with typically developing and ASD samples, both 
groups looked at the robot’s face more and cued targets less in their 
interactions with a robot compared to a human [12]. 

Nevertheless, the few studies conducted with typically develop-
ing children suggest that, similar to adults, children follow a robot’s 
gaze to establish joint attention [4]. In one of the frst studies in-
vestigating whether children successfully follow a robot’s gaze, 
Movellan and Watson [2002], showed that even infants establish 
joint attention with a socially contingent robot similar to a human, 
concluding that humans generalize contingency to non-human 
social partners [24]. 

In another study done by Okumura et al. [2013], similarly, infants 
followed both the human and robot partners’ gaze [29]. However, 
they learned signifcantly more when the partner was human com-
pared to the robot. Finally, in another study with an older sample 
(6- to 11-year-olds) the authors used a NAO robot which provided 
hints about the target card in a memory card [28]. Children who 
noticed that the robot was trying to provide hints established mu-
tual gaze (i.e., looked at each other’s face) and followed the robot’s 
gaze signifcantly more than the children who did not notice that 
the robot was trying to help. Furthermore, children required fewer 
attempts to fnd the correct card in the trials where the robot pro-
vided hints, showing that children used robot’s gaze information 
in their decision making. 

2.4 Current study 
Most of the studies reviewed above have examined the extent to 
which children follow the robot’s gaze and how this infuences sub-
sequent learning and decision making. Also, the robots employed 
in these studies had limited gazing capabilities; due to the fewer 
degrees of freedom in head and/or eye movements. In early devel-
opment, however, studies suggest that following the child’s gaze 
can boost learning outcomes in child-adult interactions and that 
children learn better when they actively control their learning en-
vironment. Against this background, the current study examines 
joint attention and learning outcomes when children follow the 
gaze of the robot, i.e., attend to and learn about objects that the 

robot is attending to, relative to when the robot follows the child’s 
gaze and attends to and labels an object the child is attending to. 

In particular, we allowed children to interact with Furhat, a back 
projected talking head, which assisted the child through a learning 
task, where the child was given the opportunity to learn the labels 
of a number of diferent objects. In half of the trials, Furhat chose 
one of the objects displayed on a screen, fxated this object (with 
head and eye movements) and then provided the child with more 
information about this object (passive learning). In the other half 
of the trials, Furhat followed the child’s gaze (ascertained via an 
external eye-tracker) and provided the child with more information 
about one of the objects on the screen when the child fxated this ob-
ject for longer than a pre-set threshold (active learning). Although 
active and passive learning are operationalized distinctly across 
disciplines, in keeping with the literature in developmental psy-
chology and cognitive science, we refer to active learning in terms 
of situations where children elicit further information about an 
object actively – here via their initiation of joint attention – while 
passive learning refers to situations where children are provided 
with information about an object chosen by someone else, here 
those trials where Furhat initiates joint attention to an object. To 
increase the ecological validity of our investigation, we collected 
data in schools, as part of the afternoon activities of children while 
some level of typical background school noise was present. Our 
research questions (RQs) and corresponding hypotheses (Hs) are: 

2.5 Research Questions 
RQ1. Do children follow a robot’s gaze in an interactive task in 

naturalistic settings? 
H1. Considering the robustness of gaze following in human-

human interactions and the fndings of gaze studies in HRI, 
we expect the children to follow the robot’s gaze on the 
screen (as operationalized by recurrence analysis [35]). 

RQ2. Are there diferences in learning outcomes when the robot 
provides children with information about an object the child 
is already attending to (active learning), relative to when 
the robot chooses the object that children are provided with 
more information about (passive learning)? 

H2. Given the literature suggesting an active learning beneft 
when children actively control their learning environment 
reviewed above, we expect to fnd better word learning 
outcomes in active learning trials compared to passive 
learning trials. 

RQ3. Do children attend more and longer to items that they ac-
tively choose to hear more about (active learning) relative 
to when the robot chooses the object to provide more infor-
mation on (passive learning)? 

H3. We expect children to look longer at the objects in active 
learning trials compared to passive learning trials, which 
may explain the previously reported active learning boost. 

RQ4. Do children who follow the robot’s gaze more also show im-
proved learning performance in passive learning condition? 

H4. As robot’s gaze signals the item-to-be-learned and allows 
the child to allocate attentional resources accordingly, we 
expect to see an increase in learning performance with 
increased gaze following. 
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3 METHODS 

3.1 Participants 
A total of 96 children participated in the study. The children were 
recruited from local primary schools and were in frst to fourth 
grades. Thus, all children received primary schooling in German 
and were regarded as being profcient in German. Demographic 
information pertaining to children’s background and development 
could not be collected due to data being collected at the schools. 
9 children were excluded from all the analyses due to technical 
problems (n = 8) or fussiness (n = 1) during the experiment leav-
ing 87 children (47 females) with usable data. Age of the children 
ranged from 72 to 130 months (Median��� = 97 months, IQR��� 
= 23 months) The study design was approved by the institute’s 
ethics committee and necessary permits were obtained from the 
school administrations before we started testing. In addition, legal 
guardians of the children tested provided informed signed consent 
before their child participated in the study. Each child received a 
certifcate of attendance and a printed picture of themselves with 
the robot, if the parent had given us consent for photos of their 
child to be taken. 

3.2 Apparata and Stimuli 
Furhat (Figure 1) is a robot head which back projects its face to a 
semi-translucent mask [5]. It can move its head along three axes. As 
its face is an image generated by a computer, it can exhibit human 
like eye-movements, synchronize lip movements to speech, and 
produce facial expressions and gestures such as blinking, winking, 
nodding, etc. It uses third-party text-to-speech and speech-to-text 
services to generate speech and transcribe user’s speech to text. 
We programmed the behaviour of the robot using furhat-remote-
desktop-API python package [36]. 

The robot and the child mutually interacted with a 24-inch, 
1920x1080 pixel resolution touch screen which lay between the 
robot and the child, at approximately 45° angle; facing the child 
(Figure 1a). The robot and the screen were placed so as to give the 
impression that the robot could see what was on the screen from 
above. A Tobii pro X3-120 portable eye tracker was placed at the 
bottom of the screen to determine where the child was looking at 
during the experiment. The eye tracker was connected to a com-
puter which sent head movement and speech commands to the 
robot so that the robot could follow the gaze of the child. We used 
the Tobii-research python package [1] to collect gaze data from the 
eye-tracker and the PsychoPy package (version 2022.1.2) [32] to 
control stimulus presentation and data collection from the children. 

Stimuli were images of 12 pairs of objects (768x432 pixels) against 
a white background (see Figure 1b). Except for two pairs of objects 
used in practice trials, all objects were either exotic animals or hand 
tools. These objects were chosen after piloting with 5 children and 
discussion with their parents before data collection started. Also, 
potential confounding efects of prior knowledge was minimized 
by our randomisation measures. During training, each object was 
named 3 times embedded in simple carrier phrases beginning with 
the phrase “This is a/an .....”. Subsequent sentences then provided 
brief information about the object such as where it lives (animals) 
or what it could be used for (tools). We used Amazon Polly’s “Vicki-
Neural” as the robot’s voice. 

3.3 Procedures 
Children participated in the study in a separate, but not sound proof 
room at their schools, either during afternoon care or holiday care. 
Prior to the experimental task, children attended a short introduc-
tory session in which the robot introduced itself and explained its 
capabilities. Depending on the availability of the children, the in-
troduction session was either carried out individually or in groups 
of up to fve children. 

After the introduction, each child did the experimental task 
individually. They sat on a chair in front of the touchscreen and 
the robot. After greeting the child and calibrating the eye-tracker, 
the robot instructed the child that they would see some pictures 
on the screen. The robot also told the child that, in some cases, the 
robot would choose what to talk about (passive learning) while, 
in others, the child could choose (active learning) just by looking 
at the image they wanted to know more about. This was followed 
by two practice trials; one where the robot chose the target item 
and one where the child chose the target object. Next, children 
completed ten training trials where they could choose to hear more 
about specifc objects on the screen. Five active and fve passive 
learning trials were randomly distributed across ten trials, with the 
robot telling the child at the beginning of each trial, whose turn it 
was to choose. 

Passive trials, where the robot chose the target, began with two 
images appearing on the screen side by side and the robot looking 
at the child’s face. Then, the robot attended to either one of the 
pictures or the middle of the screen randomly, with weights for 
the pictures being 3 and middle of the screen 0.5. Each fxation of 
the robot lasted either 1, 1.4, or 1.8 seconds, randomly assigned to 
fxations. In each trial, the robot had between 2 to 3 such fxations, 
randomly distributed across trials. Finally, the robot randomly chose 
one of the images, fxated on it for 1 second, and started talking 
about the object. The set-up, therefore, gave the impression that the 
robot was considering which of the images to talk about. Children’s 
eye movements were recorded from the beginning of the trial until 
the robot started speaking. 

Active trials, where the child chose the target, began the same 
way. Eye-tracking data were down sampled from 120 Hz to 36 Hz, 
with the average of last 10 fxation points on the horizontal axis 
used to determine whether the child was looking to the left or right 
of the screen. This was then fed to the robot such that the robot 
then attended to the same side of the screen as the child. Down 
sampling, averaging, and having only two areas of interest (left and 
right of the screen) prevented jerky head movements of the robot 
and simulated smooth gaze following. After the child had looked 
at the screen continuously for 5 seconds, we evaluated whether 
the child looked to the right or left side of the screen during the 
last 500ms. The robot then started talking about the object to the 
side of the screen the child was fxating. If gaze shifted between 
left and right during the last 500 ms, gaze data were collected for 
an additional second with the last 500 ms of gaze evaluated the 
same way. When the eye tracker did not register child’s gaze due 
to calibration issues, an experimenter manually entered where the 
child was fxating using the keyboard and the robot started talking 
about chosen item. 
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After all trials were completed, the child had a chance to take a 
break, duration of which was determined by the participant. Next, 
the vocabulary task was presented in which four items that had been 
shown during the training trials appeared on the screen (Figure 1c). 
The robot then asked the child to tap on the item it named. The 
items in each question were two pairs from two trials. The robot did 
not give any feedback once the child answered. Finally, the robot 
thanked the child and concluded the experiment. 

3.4 Data analysis 
RQ1. To examine whether children follow the robot’s gaze, we 
looked at the recurrence scores of the child and robot. That is, we 
calculated the proportion of time in each passive learning trial 
where the child and the robot were looking at the same picture. To 
achieve this, we frst calculated the number of frames required for 
the robot to complete a gaze shift from one side of the screen to 
the other and from the middle to the sides using a video of a mock 
session of the experiment. We also estimated the delay between 
the robot receiving the attend command and actuating the gaze 
shift. Although the robot’s eyes move before the head, we took 
the beginning of head movement as the start of gaze shift. Using 
the time stamps of attend commands and data log of attention 
durations, we generated gaze data of the robot with a sampling rate 
of 1000 Hz in the same coordinate system as the eye-tracking data 
obtained from the child. Then, we synchronized the robot’s and 
child’s gaze relative to the start of each trial and determined where 
they were looking at each time point. 

To examine whether child and robot gazes remained on the same 
picture signifcantly longer in our data compared to a scenario 
where the child and the robot were looking at the screen randomly, 
we conducted a permutation analysis. We excluded trials where chil-
dren looked at the screen less than 10% of the whole trial duration (n 
= 4; 2 females) with the assumption that this was due to calibration 
issues. We randomly shufed the robot’s fxation within each trial 
for each participant 999 times and calculated recurrence scores on 
the randomly shufed data. For each run of the permutation, we 
frst averaged the recurrence scores for each participant and then 
across all participants to obtain 999 recurrence scores. Actual recur-
rence scores obtained from the original data were also represented 
in the permuted data; yielding 1000 recurrence scores in total. To 
retain the auto-correlated nature of the eye-movements, we shuf-
fed blocks of fxations rather than shufing individual gaze points. 
We then calculated the probability that the actual recurrence scores 
came from a random distribution by using the equation below:Í 

� (�� ≥ �)
� = 

� 
Where: 

• � (�� ≥ �) is an indicator function that equals to 1 if the 
recurrence score (�� ) is greater than or equal to the actual 
recurrence score (�), and 0 otherwise. 

• � is the total number of recurrence scores obtained from 
permutations 

RQ2. To examine whether children learned more from active 
learning trials relative to passive learning trials, we ran a General-
ized Linear Model. Children’s responses at test were binary coded 
(1: correct, 0: incorrect) and entered as the response variable in the 

model. Learning condition (active vs. passive), age (in months) and 
their interaction were entered as predictors. For this and subse-
quent models, the random efects structure and transformations 
are detailed below. 

RQ3. To examine whether children looked at the objects on the 
screen more during active learning trials compared to the passive 
learning trials, we ftted a model with the proportion of looking 
to the target item on screen as the response variable and learning 
condition (active, passive), age and their interaction as predictors. 

RQ4. To examine the relationship between recurrence of gaze 
and learning performance, we ftted another Generalized Linear 
Model with children’s responses at test (binary coded as above) 
as the response variable and recurrence proportion, age and their 
interaction as predictors. Since the robot only led eye gaze in passive 
trials, this analysis was conducted on the data from only the passive 
trials. 

All analyses were done in R, version 4.2.2 [34], using "glmer" 
function of lme4 package [9]. We dummy coded learning condition 
(0: passive, 1: active). Age was centred and z-transformed to a mean 
of zero and a standard deviation of one to ease model convergence 
and interpretation wherever possible. All models detailed above 
used binomial error distribution and logit link function. We also 
included the random intercepts of participants and item, as well 
as random slopes of condition, age, and their interaction within 
item and condition within participant whenever these random 
efects were identifable. Correlations between random intercepts 
and slopes were initially included in the models, but were removed 
due to convergence issues. Correlation parameters were close to 
-1 or 1, or their exclusion led to only a minor decrease in model 
ft. The study was pre-registered on Open Science Framework 1. 
Python script for the experiment and R script for the data analysis 
can also be reached on the same platform 2. 

4 RESULTS 
The mean and standard deviation of proportion of correct answers 
separated by condition and age as well as mean and standard de-
viation for recurrence scores are presented in Table 1. Number 
of participants are diferent for recurrence scores due to calibra-
tion related exclusions. Children did not take breaks longer than 
60 seconds between learning trials and vocabulary task, therefore 
the vocabulary scores should be interpreted as the results of an 
immediate vocabulary task. 

RQ1.: Permutation analysis with shufed recurrence scores 
returned a random distribution of recurrence scores with a range 
between 0.191 and 0.214. Comparison of recurrence scores obtained 
from the experimental data (Mean���_��� = 0.215, SD���_��� = 0.117) 
with randomly permuted data (Mean����_��� = 0.199, SD����_��� = 
0.003) revealed that in the experiment children followed the robot’s 
gaze signifcantly more compared to a random distribution (p = 
0.001), confrming our frst hypothesis. Figure 2 plots the actual 
recurrence score against the random distribution obtained from 
1000 permutations. The narrow range of recurrence scores obtained 
from the permutations is an expected outcome of keeping the auto-
correlated nature of gaze data. Thus, within a trial the robot does 

1osf.io/q7x2h
2osf.io/f9m8k/?view_only=f36ad217db854b9cbdb94e689bb4219a 
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Table 1: Mean and standard deviation of proportion of correct 
answers in the vocabulary task per age and condition as well 
as recurrence score. 

Active Passive Recurrence 
Age n mean sd mean sd n mean sd 

72-84 10 0.78 0.42 0.72 0.45 9 0.16 0.19 
85-96 31 0.78 0.42 0.74 0.44 29 0.22 0.20 
97-108 19 0.77 0.42 0.77 0.43 18 0.22 0.16 
109-120 18 0.87 0.34 0.86 0.35 18 0.25 0.18 
121-132 9 0.82 0.39 0.88 0.32 9 0.26 0.16 

Figure 2: Actual and permuted recurrence scores. Dottet lines 
show 95 % confdence intervals. 

not change gaze often and then only between two images and the 
rest of the screen (in some trials it fxates only on one location 
due to the randomizations in its gaze behaviour design). Since we 
treat each fxation as a block while shufing the data, randomly 
rearranging the robot’s fxations does not lead to a large change 
in the structure of the fxations. The signifcant results obtained 
despite these limitations strongly suggest that the children were 
responsive to robot’s gaze. 

RQ2.: The model examining whether children learned more 
from active trials relative to passive trials yielded a signifcant 
main efect of age, while condition or its interaction with age were 
not signifcant (���������� = 0.127, p = 0.5; ���� = 0.320, p = 0.03; 
����������:��� = -0.271, p = 0.17). Figure 3 plots change in probability 
of giving a correct answer in both conditions as a factor of age ac-
cording to the model results. A full-null model comparison between 
the model reported above and a null model excluding predictors of 
interest (i.e., condition and its interaction with age), yielded a non-
signifcant result (�2(2) = 2.48, p = 0.29). Thus, adding condition 
and its interaction with age did not improve model ft signifcantly. 
Particularly, while children showed learning of the label-object 
associations, there was no evidence that children showed improved 
learning in active learning trials relative to passive trials. 

RQ3. The model testing the relationship between children’s 
proportion of looking to the target object and performance at test 
did not yield any signifcant efect of the critical predictors or their 
interaction (������� = 0.630, p = 0.2; ���� = 0.295, p = 0.13;_���� 
�������_ = -0.176, p = 0.7). Comparison of the full model ���� :��� 
with the model lacking the predictors of interest also showed that 

Figure 3: Change in probability of giving a correct answer in 
both conditions depending on age. The values were obtained 
based on the estimates of the model. Shaded areas show 95 % 
confdence intervals for ftted values. 

inclusion of proportion of looking to the target and its interaction 
with age did not signifcantly improve the model ft (�2(2) = 1.98, p 
= 0.37). This suggests that children’s performance at test was not 
predicted by their attention to the target objects during the learning 
phase in passive trials. Figure 4 shows the ftted values from this 
model. 

Figure 4: Children’s probability of giving a correct answer 
(y-axis) as a function of target looking proportion (x-axis) 
and age. Shaded areas show 95 % confdence intervals for 
ftted values. 

RQ4. Similarly, the model testing the relationship between 
children’s gaze following, as indexed by their recurrence score, and 
performance at test did not yield signifcant efects of the critical 
predictors or their interaction (����������� = -0.099, p = 0.90; ���� = 
0.558, p = 0.05; ����������� :��� = -0.782, p = 0.37). Again, a full-null 
comparison with a model excluding the recurrence score and its 
interaction with age did not change the model ft signifcantly (�2(2) 
= 0.79, p = 0.67). Thus, children’s gaze following behaviour did not 
predict their performance at test. Figure 5 shows the ftted values 
from this model. 

Lastly, we ran an exploratory model comparing children’s atten-
tion to the robot in active and passive learning trials. This model 
included the proportion of time spent looking at the robot as the re-
sponse variable and condition, age and their interaction as predictor 
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Figure 5: Change in probability of giving a correct answer 
(y-axis) with recurrence score (x-axis) plotted for each age in 
months. Shaded areas show 95 % confdence intervals. 

variables. We excluded trials in which the child was looking outside 
the screen during the whole trial (n = 38), leaving 792 trials in total. 
Although we only have gaze data when children were looking at 
the screen, in the context of this exploratory analysis, we assume 
that children were looking at the robot while their gaze was away 
from the screen during the trials. Although random efect structure 
was similar to the previous models, we used "glmmTMB" function 
of glmmTMB package [22] as our response variable required a beta 
error distribution. 

The analysis revealed signifcant efects of condition and age, but 
not for their interaction (���������� = -0.44, p < 0.001; ���� = -0.17, p 
= 0.04; ����������:��� = -0.069, p = 0.39). The model output is plotted 
in Figure 6. As expected, children looked at the robot more during 
passive learning trials relative to active learning trials. Comparison 
of the model with a reduced model where the variables of interest 
(condition and age) were dropped showed that exclusion of these 
signifcantly deteriorated the model’s ability to explain the variance 
in the data (�2(2) = 29.4, p < 0.001). Bringing together the results 
from RQ2. and this exploratory analysis, our fndings suggest that 
although children were looking more at the robot in passive trials 
relative to active trials, there was no evidence for diferences in 
performance at test across conditions, i.e., they showed similar 
learning success in both conditions. 

5 DISCUSSION 
The current study examined children’s gaze following behaviour 
in cHRI and the extent to which learning outcomes difered across 
child-led (active learning) and robot-led (passive learning) inter-
actions, as indexed by either child or robot gaze. As expected, we 
found that children can follow a robot’s gaze and learn words from 
interactions with robots, at least in the naturalistic settings in which 
this study was conducted. However, contrary to our expectations, 
we did not fnd any diferences in learning outcomes across child 
and robot-led interactions. In particular, children showed similar 
learning outcomes regardless of whether the robot labelled an im-
age that the child was looking at or the robot chose the image to be 
labelled by directing its gaze towards this object and subsequently 
labelled this image. Surprisingly, this similarity of learning out-
comes persisted despite the robot distracting children’s attention 

Figure 6: Children’s looking proprtion to the robot as a func-
tion of condition and age. Shaded areas show 95 % confdence 
intervals for the ftted values. 

away from the object in robot-led interactions, i.e., passive learning 
trials, relative to child-led interactions, i.e., active learning trials. 
It should be noted that although our test of vocabulary learning 
was only tapping receptive vocabulary, which is only one facade 
of vocabulary learning, other one being expressive vocabulary, re-
ceptive profciency is a frst step towards expressive competence 
and our task fnds that receptive competence is not afected by the 
diferent conditions. 

Our fnding that children followed the robot’s gaze successfully 
in a noisy environment with little instruction and learned the label 
of the object that the robot was referring to using only gaze high-
lights that robot’s gaze is sufcient to establish reference-referent 
connections in this context. This fnding is in line with the previous 
studies [7, 12, 24, 29]. While the referenced items were spatially 
distant in most of the previous studies [23, 25, 30, 47], in our study 
the interaction took place on a relatively small space. Evidence 
of following the robot’s gaze despite this limited space suggests 
that gaze cues are utilised efciently in cHRI such that robot’s gaze 
can distinguish items in close proximity to each other. Further re-
search is needed to determine the range of resolutions at which 
this reference-referent connection can be successfully established. 

Considering the age range of our sample and the mixed results in 
the literature regarding improved learning outcomes when children 
receive actively elicited information, our failure to fnd a diference 
in learning outcomes across robot-led and child-led interactions 
is not surprising. On the one hand, we note that despite the age 
range tested in the current study overlapping with many of the 
previous studies in the literature, a critical diference in our study 
is the use of a robot as the interaction partner. However, we do not 
consider this a contributing factor in our failure to fnd diferences 
in learning outcomes across child-led and robot-led interactions 
for the following reason. On the one hand, we note that previous 
studies suggest that the active learning boost increases with age and 
is adult-like only around 8-years of age. Furthermore, our fndings 
suggest that children adapted to attention leading roles easily and 
they learned the object-label pairs as evidenced by the high learning 
scores in Table 1. The failure to fnd a diference across conditions 
may be attributed, on the other hand, to our task design, which 
allowed children to learn words in a naturalistic setting. Data collec-
tions were carried out in children’s schools, their typical learning 
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environment, and the task was introduced as a “learning game”, 
which might have primed children towards better learning perfor-
mance. Furthermore, contrary to most of previous studies where 
labels were either introduced in isolation or embedded in neutral 
carrier sentences [2, 31], our labels were embedded in informative 
meaningful contexts. Thus, children could leverage their knowl-
edge of concepts associated with the novel words towards word 
learning performance. This could lead to children performing well 
regardless of conditions, eliminating previously reported efects 
of impoverished performance during passive learning, and high-
lights the importance of future research aiming for such naturalistic 
settings in testing paradigms. 

We also found no evidence for a meaningful relationship between 
children’s gaze following behaviour and word learning success in 
passive learning trials. This, too, is unsurprising given that the prob-
ability of learning the label of an item was high, even in passive 
trials (mean��������� �_����� = 0.8). While not all children followed 
the robot’s gaze as successfully as the others, the high levels of 
learning performance achieved suggest that children were, nev-
ertheless, able to gather the necessary information with regards 
to the item being labelled, even from briefer gaze exchanges. This 
is further supported by our exploratory analysis which showed 
that, while children looked more at the robot during passive learn-
ing trials, they learned equally well in both conditions, which is 
not in line with the some other fndings in the literature [20]. In 
other words, despite the distracting efect of the robot randomly 
looking at pictures prior to the labelling events, children could 
successfully form the reference-referent association. It remains a 
possibility that the contingency of the gaze exchanges during and 
after the labelling event, during which time the robot continued to 
fxate the labelled object might have proved adequate to support 
the reference-referent connection [19]. An alternative but related 
explanation of this fnding might be children’s attention to broader 
socio-pragmatic context. This explanation suggests that redun-
dancy of multi model cues, rather than fxation time on the target 
improves learning [10]. It is possible that in our experiment these 
redundant cues such as robot’s head movements, use of real objects 
and real information about them suppressed the potential small 
efect of looking time to the target on learning outcome. Future 
research, may, therefore, focus on the extent to which diferences 
in participants’ attention to the labelled object during and after the 
labelling event guide performance. 

Taken together, an important merit of this study is the fnding 
of robust learning performance using a social robot in a natural-
istic setting at a school in a simple learning task, where children 
could individually interact with and learn from it. The robot was 
in a separate room, where children could visit without interrupt-
ing their daily fow and without requiring much human resources 
for supervision. Here, we found surprisingly high learning per-
formance with children showing learning in conditions, e.g., the 
passive condition and despite decreased social contingency, that 
have typically showed impoverished learning in the past. Thus, this 
study shows that, when scaled for diferent tasks and subjects, a 
robot with similar capabilities might be implemented as a learning 
aid at schools efciently. A key takeaway from the current fndings 
is that our results reiterate the importance of gaze to infer reference, 
that can be reliably and smoothly used by children in cHRI. 
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