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ABSTRACT
Robots that work close to humans need to understand and use
social cues to act in a socially acceptable manner. Social cues are
a form of communication (i.e., information flow) between people.
In this paper1, a framework is introduced to detect and analyse
a class of perceptible social cues that are nonverbal and episodic,
and the related information transfer using an information-theoretic
measure, namely, transfer entropy. We use a group-joining setting
to demonstrate the practicality of transfer entropy for analysing
communications between humans. Then we demonstrate the frame-
work in two settings involving social interactions between humans:
object-handover and person-following. Our results show that trans-
fer entropy can identify information flows between agents and
when and where they occur. Potential applications of the frame-
work include information flow or social cue analysis for interactive
robot design and socially-aware robot planning.

CCS CONCEPTS
• Human-centered computing → Collaborative and social com-
puting.

KEYWORDS
Social cues, Transfer entropy, Nonverbal communication, Socially-
aware robots

1 INTRODUCTION
Social robots are a category of robots that work physically close
to humans and are designed to interact with non-expert users.
User acceptance requires that these robots operate in a socially
acceptable manner and are able to react to, or exchange, social
cues that play an important role during interaction. While people
frequently exchange social cues using verbal and gestural signals,
they also exchange rich information through their gait, posture
and walking patterns [34]. For instance, in a handover task, a giver
typically reaches forward to indicate their intent to give an item
and a receiver observes this cue and reaches forward indicating
readiness to accept the item. Many nonverbal, subtle cues like
this reaching cue might not be immediately apparent to a casual
observer, but play an important role when people collaborate or
interact with each other [44].

Socially-aware behaviour is a multi-lateral process, and to be
useful in robots it needs to be predictable, adaptable and easily un-
derstood by humans [34]. This requires that social robots sense and
react to social information conveyed by humans while simultane-
ously conveying useful social information to humans. However, due
1This paper has been accepted by HRI’24.

to hardware limitations, environmental constraints and the robot’s
primary task, not all robots can communicate through dedicated
audio or visual display channels. Therefore, being able to capture
and use measurable social cues embedded in kinematic measure-
ments (e.g., pose and motion) is an important step for social robots
to achieve more acceptable and anthropomorphic behaviours while
working with humans. Detecting and reacting to subtle social cues
is crucial to move beyond explicit and often contrived or overt
human-robot interaction. Unfortunately, this is very challenging
because humans or agents can express themselves in a variety of
ways, which means that the cues themselves are often difficult to
elucidate. This work seeks to address this challenge by defining a
class of measurable social cues and proposing a framework that
allows these cues to be detected automatically.

In signal detection theory, Green and Swets [15] introduced the
concept of response bias, which refers to how much evidence an
observer requires before responding to a given signal. Our cue detec-
tion framework builds on this theoretical notion. In our framework,
the given signal refers to social cues. If a cue is below the response
bias of the observer, it is a silent cue, meaning that one cannot tell
if a cue exists by solely observing the observer. For the purposes
of this work, we focus on those cues that are above the response
bias. We define a perceptible social cue as an event generated by an
agent that influences the behaviour of the other agent observing the
cue. This paper aims to formulate a method to detect perceptible
cues of this form.

The proposed perceptible social cue analysis framework accepts
raw information captured by sensors on robots, and seeks to pri-
marily provide answers to the following questions:

• When or where is a perceptible social cue activated?
• What is the direction of the exchanged cue?

A core contribution of the proposed framework is to model implicit
communication between agents, and thereby the exchange of per-
ceptible social cues, as an exchange of information. This allows us
to use information-theoretic approaches to measure continuous
information flows between agents, and threshold these to identify
perceptible social cues. Herein, cue transfer is analysed using an
information-theoretic measure, Transfer Entropy (TE), a statistical
measure of the amount of directed transfer of information between
two systems [35]. Other contributions include:

• a general framework that is able to detect arbitrary cues
from raw data of social interactions without pre-designing
or predefining a set of cues.

• a method of computing TE locally with multi-dimensional
features using neural networks.
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We validate the framework in three unique settings: group joining,
handover and person-following, to showcase the broad applicability
of perceptible social cue analysis.

2 BACKGROUND
2.1 Social Cues
It is broadly recognised that social cues play an important role
in communication. However, for social cue detection, researchers
usually predefine a fixed set of social cues composed of known
postures and gestures such as nodding or head shaking [43][5][6].
NovA [2] is a well-developed system for nonverbal signal detection,
which detects postures and gestures using event-based gesture
analysis [23], and classifies them into a predefined set of cues.
This system also provides a movement expressivity measurement.
However, these measurements are not used for cue detection.

Social cues are widely used in robotics, especially for Human-
Robot Interaction (HRI). Tomari et al. proposed a socially-aware
navigation planner for wheelchair robots, tracking the head ori-
entations of the participants to estimate personal space assuming
humans are more protective of the space in front of them [41].
Hansen et al. developed an adaptive system for natural interaction
between mobile robots and humans based on the person’s pose and
position, which estimates the interaction intention of the user and
then uses it as a basis for socially-aware navigation based on a per-
son’s social space [42]. Escobedo et al. used the commonly visited
destinations of a wheelchair robot’s user to estimate the probable
intended destination of the user and then accept the user’s face and
voice commands for navigation [11]. These works are dependent on
the proxemics theory proposed by Hall, who defined general social
zones of humans [16]. However, the concept of social zones relies
on averaged heuristics. Hall validated his study only for US citizens
[34], which means these metrics may not translate well to other
cultural contexts. Many human-following robot designs use social
cues, e.g., in [28] where body orientation is used to estimate the
intended turning direction. In [30], the relative position between
a human and a robot is used as a feature to anticipate the human.
Hu et al. [20] use human orientation as an input for anticipatory
robot behaviours. In general, most robots are designed to act on
heuristic or manually selected social cues, and it is unclear whether
these social cues are reliable or repeatable. Consequently, most
current research focuses on detecting these cues to predict intent
or behavior.

Cue detection usually requires tuning and is not necessarily re-
peatable or cross-cultural. There are no examples of research where
interaction cues are automatically sourced.We tackle these issues in
this work. The perceptive social cue detection framework proposed
here identifies social cues both spatially and in time from raw data,
requiring no predefined cue sets and comparatively less manual
specification. Since it is data-driven, the framework is agnostic to
social norms or heuristics and can be applied to any context where
motion data can be tracked.

2.2 Communicating intent
The study of social cues is related to intent communication, which
refers to behaviours that allow an observer to quickly and correctly
infer the intention of the agent generating the behaviour [7][10].

The research in [26] shows that motions that communicate intent
increase perceived safety during virtual human-robot path-crossing
tasks. In [7], the authors consider robustness, efficiency and energy
as universal costs in a reinforcement learning scheme, with results
showing an increase in the ability of a human to interpret a robot’s
intention. Research studying projected visual legibility cues [19],
has shown that projected arrows are generally more interpretable
than flashing lights in a navigation setting. Importantly, the ways
people communicate and understand intent are different, and there
is no universal method to measure the communication of intent.
However, if communicating intent is interpreted as the transfer
of information between agents, this concept can be captured by
the proposed framework, which could be used as a standard for
measurement and to guide the selection of robot motions or actions.

2.3 Transfer Entropy
TE is a measure that allows the analysis of the information transfer
and potential causal relationships between two simultaneous time
series. In the economics literature, Baek et al. use TE to analyse
the market influence of companies in the U.S. stock market [1].
He and Shang [17] compare different TE methods for analysing
the relationship between 9 stock indices from the U.S., Europe and
China. TE has been used to analyse animal-animal or animal-robot
interactions such as [36][33]. It has also been adopted to analyse
joint attention [38] and model pedestrian evacuation [45]. Berger
et al. apply TE in robotics to detect human-to-robot perturbations
using low-cost sensors [3]. The above studies succeed in quantizing
the information transfer or the relationship between their targets
using TE, but tend to focus on specific features or aspects of interest.
Our work seeks to provide a more general framework for detecting
and analysing perceptible social cues, by looking for changes in
information transfer over time and in space.

Mutual information (MI) is an information measure that captures
the shared information between random variables. Klyubin et al.
proposed the concept of empowerment for intrinsic motivation for
reinforcement learning, which measures the maximumMI (channel
capacity) between the agent’s actuation and their sensors [24]. This
is expanded by Mohamed and Rezende with a lower complexity
maximisation approach to MI [29]. Jaques et al. use MI as a social
influence reward for multi-agent deep reinforcement learning in
Sequential Social Dilemmas (SSDs) [25] to encourage collaborations
between agents [21].While MImeasures the shared information, TE
measures the time-asymmetric information transfer. Unlike MI, the
asymmetric property of TE allows us to analyse the directionality of
information flow, which is beneficial for analysing the exchange of
social cues. By applying TE, we aim to quantize social cue transfer
to better understand and use social cues for robots. In addition, most
TE-related research reduces multi-dimensional features down to a
single dimension to compute TE, while in practice, most features are
multi-dimensional. We tackle this issue by using neural networks
to build the probability distributions needed to estimate TE.

3 METHODOLOGY
We model a perceptible cue as an exchange of information between
two agents, using information-theoretic approaches to measure the
levels of information exchanged. While it is difficult to measure
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extremely subtle information transfer, given sensor capability limits
and the varied time horizons over which cues can occur, it is possible
to identify a restricted subset of cues within the information stream.
To enable this, we make the following assumptions:

• To be detected, a perceptible cue needs to exceed some
significance level or base threshold of information transfer
between agents.

• To be detected, a perceptible cue needs to occur within a
finite time period.

Our framework is illustrated in Fig. 1 and described below.

3.1 Transfer Entropy
Transfer entropy is closely related to the concept ofWiener-Granger
causality2 [14]. TE, 𝑇𝑌→𝑋 , can be defined as the conditional mu-
tual information between two variables 𝑋𝑡 and 𝑌𝑡 [4], which is
formulated as follows.

𝑇
(𝑘,𝑙 )
𝑌→𝑋

(𝑡) = 𝐼 (𝑋𝑡 : Y
(𝑙 )
𝑡 |X(𝑘 )

𝑡 )

= 𝐻 (𝑋𝑡 |X(𝑘 )
𝑡 ) − 𝐻 (𝑋𝑡 |X(𝑘 )

𝑡 ,Y(𝑙 )
𝑡 )

(1)

Here, 𝐼 denotes the mutual information and 𝐻 Shannon’s entropy
[37]. This equation defines the information transfer from 𝑌 to 𝑋 ,
where 𝑡 is the time, and 𝑘 , 𝑙 are the history length of 𝑋𝑡 and 𝑌𝑡 . In
some literature, 𝑋 is termed the target and 𝑌 the source. TE can
be intuitively interpreted as the reduction of uncertainty in a state
𝑋 predicted solely based on its own history when an additional
information source𝑌 is introduced [4]. The key idea of the proposed
framework is to use TE to measure the information transfer of
perceptible social cues.

3.2 Overall framework workflow
1. Preparation. We start by identifying a target 𝑋 and source 𝑌 .
In social cue analysis scenarios, the source can be a feature that
transmits cues of interest (e.g., a pedestrian’s head orientation),
and the target features that would be influenced by the cues (e.g.,
another pedestrian’s pose). Next, time series data is collected for
both the target and source. Prior to modelling, we use Takens’ delay
embedding [39] to create higher-dimensional embeddings for the
time-history series of features,

X(𝑑 )
𝑡 = (𝑥 (𝑡 − 𝛿), 𝑥 (𝑡 − 2𝛿), ..., 𝑥 (𝑡 − (𝑑 − 1)𝛿))

Y(𝑑 )
𝑡 = (𝑦 (𝑡 − 𝛿), 𝑦 (𝑡 − 2𝛿), ..., 𝑦 (𝑡 − (𝑑 − 1)𝛿)),

(2)

where 𝑑 is the history length and 𝛿 is the unit time step. The history
length for the target and source do not necessarily need to be the
same, one can also denote them separately such as 𝑘, 𝑙 in Eq. (1). In
general, the history needs to be long enough to capture the temporal
relationship between cue cause and effect. In our experiments, we
match this with estimates of human response times.

2. Model the Target.We next establish a baseline model, con-
ditioned on only the history features of the target. The framework
allows the application of different probabilistic prediction models.
For instance, we can use a simple linear vector autoregressive model
(VAR) to model the target X𝑡 .

X𝑡 = 𝑐 + 𝛼X(𝑑 )
𝑡 + 𝜖 (3)

2These are equivalent when linear Gaussian models are used.

where 𝑐 is the constant intercept of themodel,𝛼 is the time-invariant
matrix that matches the dimension of X(𝑑 )

𝑡 and 𝜖 an error term.
We can also model the target using other modelling techniques
such as a multilayer perceptron (MLP), a Gaussian process or poten-
tially more complex neural network architectures. Regardless of the
underlying model, we intentionally form the target output distri-
bution as a conditional multivariate Gaussian with mean 𝑓 (X(𝑑 )

𝑡 )
and covariance 𝑓 𝜎 (X(𝑑 )

𝑡 ),

𝑃 (X𝑡 |X(𝑑 )
𝑡 ) ∼ NX𝑡

(𝑓 (X(𝑑 )
𝑡 ), 𝑓 𝜎 (X(𝑑 )

𝑡 )), (4)

This simplifies later TE calculations. After obtaining the base model
conditioned only on the target history, the source is included to
build a second model of the target. For example, assuming a vector
autoregressive model, we obtain

X𝑡 = 𝑐 + 𝛼X(𝑑 )
𝑡 + 𝛽Y(𝑑 )

𝑡 + 𝜖

𝑃 (X𝑡 |X(𝑑 )
𝑡 ,Y(𝑑 )

𝑡 ) ∼ NX𝑡
(𝑓 (X(𝑑 )

𝑡 ,Y(𝑑 )
𝑡 ), 𝑓 𝜎 (X(𝑑 )

𝑡 ,Y(𝑑 )
𝑡 )) .

(5)

Here, we illustrate the process using a vector autoregressive model,
butmodels that capture non-linear effects could also be used.We use
neural networks to model behaviours for the experiments below.

3. Compute and Analyse Transfer Entropy. Modelling tar-
gets using conditional multivariate Gaussian random variables
allows Shannon’s differential entropy to be calculated as follows,

𝐻 (x) = −
∫

𝑝 (x) log𝑝 (x) 𝑑x

=
𝐷

2
(1 + log(2𝜋)) + 1

2
log |𝜎 |

(6)

Here, 𝐷 denotes the dimension of the target variable. Using (6) to
calculate the entropy for each model, one can calculate the TE from
the source to target as

𝑇
(𝑑,𝑑 )
𝑌→𝑋

(𝑡) = 𝐼 (X𝑡 : Y
(𝑑 )
𝑡 |X(𝑑 )

𝑡 )

= 𝐻 (𝑋𝑡 |X(𝑑 )
𝑡 ) − 𝐻 (𝑋𝑡 |X(𝑑 )

𝑡 ,Y(𝑑 )
𝑡 )

(7)

Finally, we can analyse the information transfer from the source
to the target using the measured TE.

3.3 Computing Transfer Entropy
The signals received from agents are usually in continuous form.
Researchers often discretise these continuous signals in order to
statistically compute TE using histograms or other frequentist ap-
proaches [3][31]. Kernel density estimation has also been recom-
mended in [35] and frequently used in the information analysis tool-
box [27], a popular tool for modelling TE in economics. However,
these methods require a large amount of data to build sufficiently
dense probability distributions, especially if the feature dimension
is high [31]. Therefore, they are not helpful for local time series
analysis with a limited number of samples, which means these
methods are not suitable for computing local TE in order to anal-
yse information transfer spatially or temporally. Even if we have
sufficient data, building high-dimensional density distributions is
not computationally efficient, which means these approaches are
unsuitable for online algorithms. To tackle this issue, we use neural
networks in our framework to estimate distributions, and then cal-
culate entropy directly from the estimated conditional probabilities.
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Figure 1: Illustration of the proposed framework. 𝑋 , 𝑌 represent two agents in a social interaction scenario. Raw data is used
to fit probabilistic behaviour model with different conditions, the output conditional probabilities are then used to compute
transfer entropy (TE) in both information transfer directions. Double exponential smoothing (DES) is used to remove the
general TE trend followed by the thresholding in order to find perceptible cues using the TE.

This allows us to estimate TE locally and continuously, which is
also computationally more efficient and achieves spatial and tem-
poral information transfer analysis. It should be noted that since
our data is continuous and entropy is computed using Shannon’s
differential entropy, the transfer entropy can be negative indicating
the absence of information being communicated.

3.4 Cue detection

Figure 2: An illustration of the perceptible cue detection
framework.

A graphical illustration of the intuition underlying perceptible
cue detection is given in Fig. 2. We use the TE to detect perceptible
social cues.3 Positive TE means the information transfers from the
source to the target. However, there can be continuous information
3We provide an example at https://github.com/jhy9968/TEscd.git

transfer during social interactions. We are most interested in the
set of special events that trigger observer responses. Therefore,
to meet the criteria of a perceptible social cue in our framework,
we require TE measures to meet the requirements that: 1) the TE
has to be larger than zero indicating general information transfer;
and 2) the TE has to be larger than a threshold to be identified
as a perceptible cue. To determine the threshold, we use double
exponential smoothing (DES) [13] to find the moving mean and
standard deviation of the TE. Let us denote 𝜇𝑡 , 𝜎𝑡 and 𝑇𝑡 as the
moving mean, moving standard deviation of TE and current TE at
time 𝑡 . The DES works as follows:

𝜇𝑡 = 𝛼𝑇𝑡 + (1 + 𝛼) (𝜇𝑡−1 + 𝑏𝑡−1)
𝜎𝑡 = (1 − 𝛼) (𝜎𝑡−1 + 𝛼 (𝑇𝑡 − 𝜇𝑡−1 − 𝑏𝑡−1) (𝑇𝑡 − 𝜇𝑡−1))
𝑏𝑡 = 𝛽 (𝑇𝑡 − 𝑥𝑡−1) + (1 − 𝛽)𝑏𝑡−1

(8)

Here, 𝑏𝑡 is the smoothed trend at time 𝑡 , 𝛼 is a smoothing factor
and 𝛽 a trend smoothing factor. Then the perceptible cue threshold
is computed as

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑡 = 𝜇𝑡−1 + 𝛾𝜎𝑡−1, (9)

where 𝛾 is a tunable parameter. We use 𝛾 = 3 in the work. The
thresholding process filters out TE trends, which represent the accu-
mulated information during continuous information exchanges. TE
regions that meets the requirement 𝑇𝐸𝑡 > 0 and 𝑇𝐸𝑡 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑡
indicate perceptible social cues. In order to further remove the ef-
fect of the trend, we apply a 1st order high-pass filter to the TE
before cue detection. Since human reaction time to visual cues ap-
proximately ranges from 0.18-0.9s without distractions [12][18],
the critical frequency of the high-pass filter is set to 1Hz in this

https://github.com/jhy9968/TEscd.git
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work. In the current framework, the selection of 𝛼 and 𝛽 is related
to the time constant of DES, which depends on the expected cue
period. The time constants for smoothing 𝜏𝛼 and trend smoothing
𝜏𝛽 are calculated as follows:

𝜏𝛼 = − Δ𝑇

ln (1 − 𝛼) 𝜏𝛽 = − Δ𝑇

ln (1 − 𝛽) , (10)

where Δ𝑇 is the sampling time interval of the data. A basic principle
is that 𝜏𝛼 should be roughly the length of one cue in the setting,
and 𝜏𝛽 should be generally shorter than 𝜏𝛼 .

4 EXPERIMENTS
In this section, we first show that TE can be used to quantify infor-
mation transfer in social interactions. Then we validate the frame-
work in two settings to demonstrate its ability to detect perceptible
social cues both temporally and spatially.

4.1 TE for social interactions - Group-Joining
To appraise the ability of TE to study social interactions, we first
study a group-joining activity. The CongreG8 dataset [46] contains
380 full-body motion trials of free-standing conversational groups
of three humans and a newcomer who approaches the groups with
the intent of joining them. Four participants play a game called
Who’s the Spy. The game contains three group members and one
adjudicator (the newcomer). Three group members gather at the
centre of the arena, two are given cards with the same item, the
third is given a card with a different item. Group members take
turns describing the item on their card. Meanwhile, the adjudicator
walks around the arena listening to the group members’ discussion.
Once the adjudicator has identified a spy, they join the group and
point out the spy. The interactions are grouped into two categories.
When the adjudicator approaches the group and the group mem-
bers accommodate the adjudicator (e.g., a group member moves to
make space), the trial is labelled asWelcome. Alternatively, if the
group members stand still and ignore the adjudicator, the sample is
labelled as Ignorance. Due to the high level of freedom within this
experiment, participants’ behaviours are largely different between
each trial resulting in large variance in the sampled data.

We apply the general workflow (3.2) to theWelcome and Igno-
rance scenarios separately to compute the TE for each trial for two
directions (from the adjudicator to the group members, and the
reverse) and study the peak values of TE. We set the position of
adjudicator or group members as target features depending on the
direction of transfer being investigated. We consider the group
members as a whole, so a single target/source is defined for all the
group members. A re-sampling rate of 10Hz and history length of
10 with a unit time step of 0.1s for the embedding are applied. Since
this is a relatively more complex dataset, a Gaussian Emission Vari-
ational Autoencoder (VAE) [22] with a two-hidden-layer encoder,
a two-hidden-layer decoder and a latent space with 8 nodes is used
to model the distributions over targets.

In this experiment, the adjudicator leads the group-joining event.
Depending on the scenario, the responses from the group members
are different. For the Welcome scenarios, group members should
respond more to the perceptible social cues from the adjudicator
when compared to the Ignorance scenarios. Therefore, we expect
to see a difference in peak TE from the adjudicator to the group

members because we assume that the peak TE occurs during the
joining process when the majority of information transfer from the
adjudicator to the group happens. Therefore, we hypothesize that:
The peak values of TE from the adjudicator to the group members
should have large differences for the Welcome and Ignorance sce-
narios, when compared with peak TE in the other direction (group
members to adjudicator).

To test this hypothesis, we calculate the peak TE values of each
trial for both scenarios and both information transfer directions.
Then we conduct a two-sided t-test between the two scenarios for
both directions. This test (Table 1) shows a significant difference
between Ignorance andWelcome settings in the adjudicator to group
member direction, but not from group members to the adjudicator,
supporting our hypothesis. This also supports our proposal that TE
can correctly quantify information transfer in social settings.

Table 1: Peak transfer entropy analysis t-test results.

Information transfer direction p-value
Adjudicator to Group 0.0008
Group to Adjudicator 0.9246

4.2 Temporal cue detection - Human-Human
Handover

We test the framework’s ability to identify when perceptible social
cues occur in a human-human handover scenario. We use a dataset
[8] comprising over 1000 recordings collected from 18 right-handed
volunteers performing human-human handovers. 6-axis inertial
data was acquired from two smartwatches on participants’ wrists.
During their single-blind experiments, a volunteer (receiver) and an
experimenter (giver) form a pair. The two participants start from the
diagonal corners of a square experimental area and walk towards
the centre of the square to perform handovers. Several strategies
are applied during the handovers:

• Normal: experimenter gives the object in a normal fashion.
• Quick: experimenter moves their arm faster.
• Delay: once the volunteer initiates the transferring gesture,

the experimenter keeps their arm still (≈ 2s) before reaching
towards the volunteer to give the object.

• Holding: experimenter holds the object in place (≈ 2s) after
both persons have touched it, i.e., they do not release the
object once the volunteer has grasped it.

• Wrong pose: as the volunteer initiates the transfer gesture,
the experimenter unexpectedly moves their arm towards
the volunteer’s left shoulder, an unnatural pose for right-
handed volunteers.

The original sampling rate of the dataset is approximately 7𝐻𝑧,
which we interpolated to a frame rate of 115𝐻𝑧 to increase the
number of window samples to analyse. We used wrist angular
velocity data from experiments where the same object, a ball, is used.
In this experiment, the magnitude of the triaxial angular velocity
is the only feature analysed for perceptible social cues. We use a
history length of 4with a unit time step of 0.14s for the Taken’s delay
embeddings. These numbers were selected empirically but could
be chosen based on model predictive quality. The average human
reaction time to detect visual stimuli is approximately 0.18-0.20s
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Figure 3: Frequency of occurrence of perceptible cues in the handover task (G - Giver; R - Receiver). The colour indicates the
frequency of the occurrence of perceptible cues at each time frame. Cues from the giver always occur before the cues from
the receiver. Two high cue count regions are usually identified in each graph indicating the start and end cues of handover
respectively (An example is highlighted for the normal scenario). The gap between high cue count regions shows the delay
between cues, and the concentration of high cue count regions shows the relative variance in time of the cue. Each graph
matches with their corresponding handover strategy.

[40], so 0.4s is a reasonable window to capture human reactions.
For cue detection, we set the 𝛼 = 0.005 and 𝛽 = 0.01, which gives
us 𝜏𝛼 = 1.7𝑠 and 𝜏𝛽 = 0.9𝑠 . We expect that perceptible cues occur
when the handover starts and ends with the giver initiating the
handover and the receiver reaching in response to their cues [32].

To demonstrate the ability of the framework, we detect the per-
ceptible cue regions for all the trials using the proposed framework
and generate plots that visualise the frequency of occurrence of
perceptible cues at each frame for different strategies and infor-
mation transfer directions. The results are shown in Fig. 3. We
trim the data so the frame consistently starts when the distance
between the two participants is 1m. In a regular handover scenario,
two main social cues should occur at the start and end of a han-
dover respectively [32]. We also expect the cues from a giver to
be followed by the cues from the receiver. This is visible in the
normal strategy result, with two high cue count regions in both
directions. The first and second regions correspond to the start
and end of the handover respectively. We can see that high cue
count regions in the receiver-to-giver (R2G) direction follow the
giver-to-receiver (G2R) direction. Using the normal strategy as a
baseline for comparison, we can also analyse the other scenarios. In
the quick scenario, due to the faster movements, the cues occur and
end faster when compared to the normal strategy; i.e, the spacing
between cue counts is comparatively shorter. The fast movement
of the giver could also confuse the receiver, resulting in a wider
spread of the receiver’s reaction cue. In the delay scenario, the
participant was not given instructions on how long to delay during

the experiment, thus the time of the starting cue of the handover is
widely distributed. We observe a large delay before the first high
cue count region appears, and the cues are more widely distributed.
For the holding strategy, the time gap between the starting and
ending cue should be longer compared to normal. This larger gap
is observed between the first and second high cue count regions
in both directions. For the wrong pose scenario, the wrong pose of
the giver could confuse the receiver, resulting in weaker responses
from the receiver. Therefore, the plots appear to be similar to the
normal scenario. However, we observe the first high cue count
region in the G2R direction has a lower cue occurrence frequency
compared to normal. This analysis demonstrates that the proposed
framework can identify when perceptible social cues occur. Addi-
tionally, interesting behaviour patterns can be extracted from the
TE analysis, which can be useful for downstream anthropomorphic
and personalized robot interaction design.

4.3 Spatial cue detection - Person-Following
We next apply the proposed framework to spatially analyse per-
ceptible social cue transfer in a socially-aware navigation scenario
requiring substantial non-verbal communication.

To maximise the exchange of perceptible social cues, we de-
signed a leader-predictor front-following task simulating a person-
following robot scenario (Fig. 4c) in a simulated intersection as-
sembled using retractable barriers in a Vicon motion capture arena
(Fig. 4b). The arena has a diameter of approximately 5.0m, and the
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junction size is a 1.6m×1.6m square to permit comfortable side-by-
side walking [9]. The scenario involves two human participants:
the predictor A and the leader B. At the beginning of each trial, B
is asked to secretly select one of the destinations shown in Fig. 4a.
A is asked to actively stay in front of B and attempt to reach the
unknown destination in advance of B. The starting position and
formation are illustrated in Fig. 4a. This design avoids potential
bias where the initial pose of participants might influence their
preference after entering the intersection. When each trial begins,
B walks naturally towards the selected destination, treating A as an
unknown pedestrian (i.e., keeping a comfortable distance, no direct
communication, but still following general social norms such as
adjusting speed to avoid collision). After entering the intersection
(the black circle in Fig. 4a), A can move freely, provided they do not
interfere with B’s progress. Direct communication channels such as
speaking or hand signals are forbidden, forcing participants to com-
municate via more subtle motion cues. This ‘front-following’ task
involves high levels of observation, prediction and collaboration,
providing an interesting setting to analyse the use of social cues.
Seven pairs (14 individuals aged 19 to 31, 3 females, 11 males) were
recruited from theMonash University Clayton campus. Participants
provided consent at the start of the experiment 4.

(a)

(b)

(c)

Figure 4: Person-following task design. (a) An illustration of
the starting position and formation. (b) A side view of the
experimental arena. (c) An example leader-predictor front-
following task (turning left scenario).

The Vicon system provides a default frame rate of around 200
Hz. Vicon markers on a cap and a belt are used to track A and B’s
head and hip pose, with the centre position and the head and hip
orientation recorded for each participant.5 Head and hip velocity
are post-calculated using the positional information. Orientation
and velocity vectors are projected onto the xy plane and then nor-
malised. To apply the proposed framework, we take position, ve-
locity, head and hip orientation as potential sources of cues and set
each participant’s position as the target. A variational autoencoder
4Approved by the Monash University ethics committee. Project ID: 33090
5The data is publicly available at https://doi.org/10.26180/24719034.v1

model is fit to the target using embeddings with a history length of
4 and a unit time step of 0.1s. For cue detection, we set the 𝛼 = 0.01
and 𝛽 = 0.05, which gives us time constants 𝜏𝛼 = 0.5𝑠 and 𝜏𝛽 = 0.1𝑠 .
Compared to the handover task, the cues in this experiment can
be quicker, subtler and noisier. Our hypothesis is that perceptible
cues appear in locations where a decision needs to be made or
communicated about travel direction.

Similar to the handover experiment, we detect perceptible cue
regions for all the trials using the proposed framework and generate
plots that visualise the perceptible cue frequency at each spatial
location in a 2-dimensional grid space representing the experiment
arena. The results are shown in Fig. 5. We observe that for the leader
to predictor (B2A) direction, most high-frequency cue regions ap-
pear in the region leading to the intersection. For the predictor to
leader (A2B) direction, high-frequency cue regions often appear
inside or slightly before the intersection. This outcome is consis-
tent with the leader’s role in the front-following task, who first
transfers cues to the predictor (B2A) prior to entering the intersec-
tion. This communication is usually followed by cues confirming
the travel direction sent by the predictor (A2B) before leaving the
intersection. This pattern of cue communication in physical space
is clearly shown in Fig. 5. Although in theory, we would expect
the perceptible cue regions to be similar for tuning left and right
scenarios, the results show that they have noticeable differences.
Most predictors (A) preferred to stay in the top left corner of the
intersection while waiting and observing the leader (B) during the
experiment 6. This matches with post-experiment survey results
that showed 42.9% of the predictors usually prefer to walk on the
left side of the road or a corridor (28.6% right and 28.6% no prefer-
ence). Therefore, physical space occupancy could be an influential
factor for information transfer. This highlights the potential of the
framework to capture information about cultural navigation biases.

The analysis above shows the proposed framework can identify
where perceptible social cues occur.

5 DISCUSSION
Our experiments have demonstrated the capability of the proposed
framework. In addition to detecting perceptible social cues, the
proposed framework can be potentially used to conduct further
analysis. For instance, it has good scalability in the sense that it
allows us to analyse detailed cues related to individual motion
features, or combined cues if we consider all motions together. This
scalability can be used to zero in on the source of cues embedded in
motion. In addition, as shown in 4.1, themagnitude of TE potentially
represents the strength of information transfer. This means it is
possible to compare the strength of each cue in a setting.

While our experiments have focused on human interactions, we
believe the proposed framework is broadly applicable in the field of
HRI. Studying human-human cues can help robot designers identify
suitable sources of information or cues for more natural human-
robot interaction. The proposed framework could also be used to
analyse social cues or information transfer during collaboration
between humans and robots, for example in handover between hu-
mans and manipulators. In the context of socially-aware navigation,

6This experiment is done in Australia where the norm is to keep left on sidewalks.
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Figure 5: Frequency of occurrence (cue count) of perceptible cues in the front-following task (A - Predictor; B - Leader). The
colour indicates the frequency of the occurrence of perceptible cues at a physical location. Cues sent from the leader to the
predictor to communicate the goal usually occur further away from the intersection, while cues sent from the predictor to the
leader to confirm direction usually occur closer to or inside the intersection. High cue count regions are annotated in the left
turn scenario as an example. This pattern in physical space is consistent for the three scenarios.

we could design navigation algorithms to control the strength of in-
formation transfer. For example, we could intentionally reduce the
influence on pedestrians during socially-aware navigation by min-
imising TE, thus minimising the influence of a robot on pedestrians.
A robot could also take actions to increase information transfer
to convey more information and potentially influence pedestrian
motion if needed. This approach is potentially more flexible, adap-
tive and inclusive than current methods [42][28][20], which are
designed based on Hall’s proxemics theory and the concept of social
zones [16] that has been criticised for not considering the diverse
range of social norms demonstrated by humans [34].

6 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a framework for analysing perceptible so-
cial cue information transfer using transfer entropy. We have used
a group-joining experiment to show the ability of TE to analyse
information exchange during social interactions. We have applied
the proposed framework to two unique settings, namely: object-
handover and person-front-following, and demonstrated its capabil-
ity of identifying the temporal and spatial occurrence of perceptible
social cues. The proposed framework can be used for analysing cue
information transfer of human-human interactions to identify cues
of potential interest to robot designers, but could also be applied to
analyse social cue transfer during human-robot collaborations.

Extending the proposed framework to real-time human-robot
collaboration is a particularly exciting area of future work. This
would require technical advancements and modelling choices to
allow for distributions to be learned online in new settings, but this

could be simplified if pre-trained distributions are obtained from
previously observed settings. Further user studies are needed to
determine if similar social cues can be elicited or generated when
a robot is a participant in an interaction, and these studies are an
exciting next step for us. We plan to assess the capability of the
proposed framework in less controlled settings and compare it with
other existing cue detection methods.
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