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ABSTRACT
Deploying perception modules for human-robot handovers is chal-
lenging because they require a high degree of reactivity, general-
izability, and robustness to work reliably for a diversity of cases.
Further complications arise as each object can be handed over in
a variety of ways, causing occlusions and viewpoint changes. On
legged robots, deployment is particularly challenging because of
the limited computational resources and the image-space noise
resulting from locomotion.

In this paper, we introduce an efficient and object-agnostic real-
time tracking framework, specifically designed for human-to-robot
handover tasks with a legged manipulator. The proposed method
combines optical flow with Siamese-network-based tracking and
depth segmentation in an adaptive Kalman Filter framework. We
show that we outperform the state-of-the-art for tracking dur-
ing human-to-robot handovers with our legged manipulator. We
demonstrate the generalizability, reactivity, and robustness of our
system through experiments in different scenarios and by carrying
out a user study. Additionally, as timing is proven to be more im-
portant than spatial accuracy for human-robot handovers, we show
that we reach close to human timing performance during the ap-
proaching phase, both in terms of objective metrics and subjective
feedback from the participants of our user study.

CCS CONCEPTS
• Computer systems organization→ Robotics.

KEYWORDS
legged robotics, physical human-robot interaction, human-robot
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Figure 1: ANYmal with the 6-DoF Dynaarm performing
human-to-robot handovers with four different objects.

1 INTRODUCTION
Human-robot handover is a challenging collaborative manipulation
task with three different phases: approach, object transfer, and post-
handover [25]. Each phase requires motion coordination, robust
and real-time perception, and quick reaction to changes, regardless
of the environment and the object that is being passed. This work
focuses on the scenario where a human (giver) hands over an object
to a robot (receiver). Simple approaches for human-to-robot han-
dovers require the human to place the object in a stationary robot
gripper [3, 18]. While such pragmatic approaches work in simple
cases, they do not reflect the ’natural’ motion coordination when
handing over an object. Moreover, in assistive scenarios, where the
human range of motion is constrained, it is essential that the robot
actively contributes to the handover process.

Even though significant progress has been made in enabling
seamless autonomous human-to-robot handovers [25], one un-
solved challenge remains the visual perception during the approach
phase. Existing works focus on fixed manipulators, yet several
real-life handover scenarios (e.g. fetching an object from another
room) require a mobile platform. While several mobile robots exist,
legged robots have become increasingly popular as progress in
quadrupedal locomotion [22] shows that such systems are ready to
be deployed among humans and perform collaborative tasks. En-
gaging in physical human-robot interaction with a legged platform
comes with advantages, such as navigating on rough terrain and
extending the reach of the manipulator via whole-body motion.
It comes, however, with some perception challenges: 1) having to
use on-board cameras only, which leads to significant viewpoint
changes and image-space noise caused by locomotion; 2) limited
battery capacity and payload (and hence, limited computational
power). Therefore, existing algorithms for the approach phase are
not directly transferable to legged manipulators.
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2 RELATEDWORK
Some works assume that geometric [21] or visual [10] a priori
knowledge of the object is available. Demonstrating some degree of
generalizability to novel objects, Chang et al. [8] introduce an end-
to-end RL-based grasping approach. Using pixel-wise affordance
predictions to infer possible gripper positions and angles, they
show that their method outperforms the state-of-the-art in terms
of grasp success for the objects they trained on, especially for high
occlusions. However, the performance decreases for novel objects.

Other works restrict the a-priori knowledge to the class informa-
tion of the object. Sanchez-Matilla et al. [29] extract the centroid
and dimensions of cups in real-time using an object segmentation
network specifically trained on the object class. The proposed setup
uses two external cameras to monitor the workspace. The 3D cen-
troid of the object is obtained by triangulating the 2D centroids
generated in each image. In a more practical setup, Rosenberger
et al. [28] use a generic object detector on images from a wrist-
mounted camera to detect the object in the hand. A body and hand
segmentation network is used to remove the points belonging to
the human from the point cloud of the bounding box. The occlu-
sions of the object by the human hand are limited and the human is
constrained to not move after the robot starts moving. This impacts
negatively the fluency of the handover. Although class information
is less constraining for handovers, the objects have to be within the
classes known by the detector, and occlusion handling is limited.

To tackle human-to-robot handovers of unknown objects, Yang et
al. [35] use a body skeleton tracker on an image from a conveniently
mounted external camera to detect the human hand. A 3D bounding
box of predefined size is cropped around it and the resulting point
cloud is used to classify the human grasp types into one of seven
predefined categories. The robot trajectory is adjusted depending
on the label. Building up upon this framework, the same authors
introduce a pixel-wise hand segmentation method to assign the
points in the cropped 3D bounding box to the human hand or the
object [36]. This way they obtain an object point cloudwhich is used
to generate grasps. Their vision framework runs at 9 𝐻𝑧 and the
grasps are generated with 5 𝐻𝑧. This perception framework is used
in several works to develop better-performing control strategies [9,
37]. Taking advantage of recent developments in joint hand and
object detection, unknown-object handovers with anthropomorphic
hands have been considered by Duan et al. [11]. Their system can
handle object occlusions and generalize to unknown objects, but
significant processing time is required for image processing and
grasp generation, which impacts negatively the handover time.

Overall, related work on perception of unknown objects during
the approach phase of human-to-robot handovers concentrates on
fixedmanipulators and computationally intensive perception frame-
works, with conveniently mounted external cameras monitoring
the workspace. Even though the results are promising [9, 36, 37],
there is still a gap to human-human handover times [15]. In fact, the
perception pipeline in those works runs relatively slowly (process-
ing time 100𝑚𝑠 [36]) compared to the processing time for visual
stimuli in the human brain (20 − 40𝑚𝑠 [16]). We believe that re-
ducing the visual perception processing times to values closer to
those reported for humans can close the current performance gap
between human-human and human-to-robot handover timing.

In this paper, we present a fast visual perception algorithm for
legged systems which accounts for the high image-space noise,
view-point changes, and limited computational power. We aim to
enable a legged manipulator to successfully carry out human-to-
robot handover tasks while achieving close-to-human timing perfor-
mance during the approach phase. Our contributions are three-fold:
i) A computationally cheap and object-agnostic tracking framework,
which deals with partial object occlusions and viewpoint changes
and runs at speeds comparable to which visual stimuli reach the
human brain [16]; ii) A detailed user study on human-to-robot
handovers with a legged manipulator and a thorough comparison
to human handover and reaction times from independent studies;
iii) The first open-source human-to-robot handover dataset from a
legged manipulator with manually labeled 2D bounding boxes 1.

3 METHODOLOGY
A schematic of the proposed tracking and grasping framework is
depicted in Fig. 2. For tracking, we use an adaptive Kalman Filter
framework to fuse 2D bounding box measurements from different
sources running at different frequencies. To achieve object-agnostic
tracking, we rely on SiamRPN [20] as a main component. It consid-
ers tracking as a matching problem between an initial bounding
box, called a template, of the object and the search region in the
current image. Hence, solely a bounding box for initialization is
required without any knowledge about the object being tracked.
This bounding box is obtained from the object detection step, which
runs once at the beginning and can be re-triggered if the object is
lost. The disadvantage of such trackers is that they are computation-
ally intensive and can only run at a low frequency on commonly
available compute on legged robots. To overcome these limitations,
we integrate measurements from faster optical flow to correct for
the displacements that appear between capturing the image and
finishing the network inference. Additionally, we exploit depth
segmentation both to improve the 2D tracking, especially when the
object is close, and to get its point cloud, needed for grasp planning.

It is important to note that the presented framework is modular
and its components can be replaced depending on the advances of
the state-of-the-art algorithms and available computing power.

3.1 Object detection
We employ a two-stage object detection strategy. In the first step,
a pre-trained Yolov7 network [33] is used. If nothing is detected
we assume occlusions by the hand or unknown objects. Therefore,
in the second step, we use the Openpose skeleton tracker [7] to
draw a bounding box around the human wrist marker and use it
for initialization. Note that the object to be handed over has to be
at least partially visible in the first frame.

3.2 Object-agnostic tracking framework
After initializing each component with the bounding box from
object detection the tracking is started. In this section, we detail
the more accurate but delayed Siamese-network-based tracker, the
faster optical flow, and depth segmentation algorithms and explain
how we fuse them in our adaptive Kalman Filter framework.
1available at https://u.ethz.ch/Uuknf
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Figure 2: Overview of the proposed framework. The gray boxes depict the different components of the framework: input (RGBD
image), tracker, and grasping algorithm. The dotted arrows show that the object detection is triggered and the bounding box is
passed to the tracking framework (at initialization or when the object is lost).

3.2.1 Lukas-Kanade tracker. We calculate sparse optical flow us-
ing an iterative Lucas-Kanade method with pyramids [6]. This is a
fast 2D feature-based tracker, which we use to bridge the gap be-
tween the more accurate, but slower measurements of the Siamese-
network-based tracker. During initialization, we detect good fea-
tures in the initial bounding box of the object. We make sure that
the detected 2D features are efficiently distributed over the object
using [4]. These features are tracked and scored by their quality.
Features with low scores are re-initialized, while the ones with good
scores are used to compute the homography between the new and
old features. The resulting homography transformation is applied
to the previous bounding box to get a new measurement. If no good
features can be detected or other anomalies occur, the bounding
box is reinitialized with the current filter estimate.

3.2.2 Depth segmentation. To enhance image-based tracking with
depth information, we use the geometric depth segmentation in-
troduced in [12], from which we get the segment corresponding to
the object. We back-project this segment to 2D and compute the
minimum oriented bounding box on the pixels corresponding to
the object and feed this as a measurement to the Kalman Filter.

To reduce computational time, we perform this segmentation
in the region of interest (ROI) only, which is computed from the
previous bounding box of the depth segmentation, padded with
a specific number of pixels. The amount of padding is computed
based on the maximum displacement in image space for a maximum
3D velocity of 1𝑚/𝑠 between the robot and the human [15]. If the
ROI diverges from the bounding box predicted by the filter, we
reset it with the current filter estimate. We use the intersection over
union (IoU) of the ROI and the filter estimate to detect divergence.

3.2.3 Siamese-network-based tracker. In a handover scenario, the
appearance of the tracked object might change for various reasons,
e.g. the human re-grasping or re-orienting the object. Hence, the
initial bounding box or template is not enough for accurate tracking.
This problem is addressed in [30], where the authors introduce a
framework for tracking holistic object representations (THOR),
which includes long-term (LTM) and short-term memory (STM)
buffers consisting of RGB templates of the object. The goal of the
LTM is to memorize the object in diverse conditions (e.g. lighting)
to improve re-detection and long-term tracking, while STM handles
short-term variations (e.g. partial occlusions).

The STM is updated every 𝑘-th iteration, using a first-in-first-out
strategy. The updated template corresponds to the search area at

that timestep. For all templates in this buffer a diversity measure 𝛾
is computed. This diversity measure is used to decide which of the
templates in the STM are added to the LTM, which contains the𝑀
most diverse templates of the same object. To get the final predicted
bounding box, bounding boxes with the highest score in STM and
LTM are chosen as candidates and an intersection over union (IoU)
operation between these two is applied to choose the best fit. If
the value is above a given threshold the STM prediction is used.
Otherwise, the LTM prediction is used and the STM is initialized.

3.2.4 Kalman Filter. The Kalman Filter state at time step 𝑘 is de-
fined as xk = {pk, vk,𝑤𝑘 , ℎ𝑘 } ∈ R6, where pk ∈ R2 is the center
of the bounding box, vk ∈ R2 its velocity in image space,𝑤𝑘 and
ℎ𝑘 its width and height. Each measurement yk ∈ R4 contains the
center position, width, and height of the bounding box. The state
space model is:

xk+1 = Axk + qk
y′k = H′

kxk + r′k,
(1)

where A ∈ R6𝑥6 is the the state transition matrix, Hk
′ is the mea-

surement matrix, qk ∼ 𝑁 (0,Qk) and r′k ∼ 𝑁 (0,R′k) are prediction
and measurement noise, respectively. We consider a constant veloc-
ity model, assuming𝑤𝑘 and ℎ𝑘 are constant over the horizon. For
the measurement update, we use the augmented observation model
from [13] and concatenate all available measurements at time 𝑘 :

y′k = [y1k , y2k , y3k ]𝑇

H′
k = [H1,H2,H3]𝑇

R′k = diag[R1k ,R2k ,R3k ],
(2)

withH1 = H2 = H3. Note that H′
k has different dimensions ∈ R12𝑥6

or ∈ R8𝑥6, depending on the availability of y3k , the measurement
of the Siamese-network-based tracker.

Time-delay compensation: In our framework, there is a sig-
nificant time delay when the measurement from THOR arrives, i.e.
the measurement at time 𝑘 is actually from time 𝑠 = 𝑘 − 𝑛:

yd3k = H3xs + r3𝒌 . (3)

One straightforward strategy to deal with this issue is to recalcu-
late the filter each time a delayed measurement arrives. However,
this is computationally intensive and we aim to exploit cheaper
methods introduced in literature [5, 19]. The idea is based on the
extrapolation of the delayed measurement to the present time using
the difference between current and past estimates of the filter and
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computing an optimal gain for the extrapolated measurement. If
the state from time 𝑠 is stored and we extrapolate the measurement
by computing the difference between the estimates at time 𝑘 and 𝑠 ,
the extrapolated measurement at time 𝑘 becomes:

yexp3k
= yd3k + H3x̂+k − H3x̂+s (4)

where x̂+ denotes the estimates after the measurement update at
the given times. Replacing 3 in 4 we get: yexp3k

= H3xs+r3𝒌 +H3x̂+k−
H3x̂+s . This can be reformulated into:

yexp3k
= H3xk + r𝒆𝒙𝒑

𝒌
, (5)

where r𝒆𝒙𝒑
𝒌

= r3𝒌 + H3𝜹𝒙𝒌 − H3𝜹𝒙𝒔 is the measurement noise
for the corrected measurement and 𝜹𝒙 𝒊 = x̂+i − xi denotes the
error between the estimated and true state at time 𝑖 . It can be seen
that the measurement noise depends on the state xs. Hence, to
ensure optimality, a new filter gain Kk for fusing y3k is derived by
minimizing the covariance of the estimation errors:

Kk = M𝑇H3
𝑇 [H3PsH3

𝑇 + R3k ]−1, (6)

where Ps is the measurement covariance matrix of the delayed
measurement,M =

∏𝑛−1
𝑖=0 (I−Kk−iH′

k−i)Ak−i−1 and𝑛 is the number
of steps by which the measurement is delayed. This gain is used
in the measurement update step to fuse the delayed measurement.
The updated estimation covariance after the measurement update is
P+k = Pk−KkH3M, with Pk being the previous estimation covariance
of the filter. The full derivation is presented in [19].

Measurement noise adaptation: Depending on the situation,
we want to adapt our confidence for the different measurement
sources, e.g. for fast movements optical flow is more accurate than
the THOR prediction. For THOR, the confidence depends on the
estimated velocity, for the depth segmentation on the distance to
the object, and for optical flow on the blur measure (computed
using the variance of the Laplacian [27]). To ensure smoothness we
use a fading factor 𝛼 , as in [2]:

R′k = 𝛼R′k−1 + (1 − 𝛼)R∗k
′
, (7)

with R∗k
′ the new measurement covariance matrix determined ex-

perimentally.
Note that as the depth segmentation uses the previous bounding

box from the algorithm itself to compute the ROI for segmentation,
we assume that the covariances of measurement and process noise
are uncorrelated.

Process noise adaptation: Since our Kalman Filter model does
not describe the process well at all times, e.g. when the human sud-
denly changes the approaching direction, we employ an adaptation
method for estimating the process noise online [2]. By reformu-
lating the process equation in Eq. 1 we get qk = xk+1 − Axk, and
hence:

q̂k = x̂+k+1 − Ax̂+k = x̂+k+1 − x̂−k+1, (8)
where x̂−k+1 is the estimate after the process update of the filter.
Knowing that the posterior estimate x̂+k = x̂−k + Kk𝝐𝒌 , we get q̂k =

Kk𝝐𝒌 with its covariance

𝐸{𝑞𝑘𝑞𝑇𝑘 } = Kk𝐸{𝝐𝒌𝝐𝒌𝑇 }Kk
𝑇 , (9)

where 𝐸{𝝐𝒌𝝐𝒌𝑇 } = R′k + H′
kP

−
kH

′
k
𝑇 = Sk is the covariance of the

innovation term. The adapted process covariance is:

Q∗
k+1 = KkSkKk

𝑇 . (10)

Similar to the measurement covariance adaptation, a forgetting
factor 𝛽 is introduced: Qk+1 = 𝛽Qk + (1 − 𝛽)Q∗

k+1.

3.3 6-DOF grasping
The grasping pipeline is based on primitive shape fitting on the
object point cloud similar to [23]. The point cloud is obtained from
the object segment output by the depth segmentation introduced
in 3.2.2 and post-processed to find the best-fitting cuboid. Other
primitive shapes, e.g. spheres or cylinders, can be used as well.

We use a particle filter with a constant velocity model in the
3D space for estimating the pose, size, and score of the best-fitting
box. Its state is xk = [pk, qk, dk, vk,𝝎𝒌 , 𝑠𝑘 ] ∈ R17, with pk ∈ R3
and qk ∈ R4 being the 3D position and orientation of the box in
the reference frame defined as a quaternion, dk ∈ R3 is the 3D
dimension, vk and 𝝎𝒌 are the linear and angular velocities of the
center of the box and 𝑠𝑘 is a similarity score between the point
cloud and the computed best-fitting box. The state space is:

xk = 𝑓 (xk−1, v𝒌−1)
yk = ℎ(xk, rk),

(11)

with v𝒌−1 and rk Gaussian process/measurement noise and yk =

[pk, qk, dk, 𝑠𝑘 ] ∈ R11 the measurements. The velocities, size, and
score are considered constant during the horizon. The position
update is pk+1 = pk + vkΔ𝑇 , while the updated quaternions qk+1 =

qk + 1
2 [𝝎𝒌 ]𝑥qkΔ𝑇 , with:

[𝝎𝒌 ]𝑥 =


0 −𝜔𝑥 −𝜔𝑦 −𝜔𝑧

𝜔𝑥 0𝑥 −𝜔𝑧 𝜔𝑦

𝜔𝑦 𝜔𝑧 0 −𝜔𝑥

𝜔𝑧 −𝜔𝑦 𝜔𝑥 0

 (12)

where 𝜔𝑥 , 𝜔𝑦, 𝜔𝑧 are the angular velocities along the axes.
We use the most likely predicted box to generate a grasp candi-

date by matching the end-effector orientation with the box orienta-
tion. The position is constrained to the lower object half to avoid
full object occlusions by the gripper and grasping human fingers.

4 EXPERIMENTAL VALIDATION
We analyze the performance of the proposed tracker and the han-
dover performance of our system separately, as the latter requires
significant integration of hardware, control, motion planning, and
perception. For the experiments, we use our ANYmal equipped with
a custom-made torque-controlled 6-DoF robotic arm (Fig. 3), but it
can be deployed on any mobile manipulator. The tracker runs on
the onboard NVIDIA Jetson Xavier AGX [1] at 30𝐻𝑧. For high-level
control, we use a state machine with four states:

(1) Walk base to object: the base moves towards the object
(2) Move end-effector to object: the object is within reach and

end-effector moves towards it
(3) Grasp object: the object is close, and the gripper grasps it
(4) Wait: standing still, waiting for detection
The state depends on the end-effector to object distance. As we

use a fixed camera mount on the arm, the end-effector orientation
is fixed at a convenient location while approaching (until Move
end-effector to object-state) to avoid significant object occlusions by
the gripper. The desired end-effector poses are the grasp candidates
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Figure 3: ANYmal with the 6-DoF Dynaarm equipped with a
Robotiq 2F-85 gripper and a realsense l515 lidar on the arm.

generated from Sec. 3.3. They are used as targets for the whole-
body MPC motion planner from [31]. The weights are tuned and
the velocity is capped to satisfy the human comfort criteria in [26],
e.g. peak speed of 1.5𝑚/𝑠 .

4.1 Tracking performance analysis
To validate the tracking framework the following scenarios are
considered:

• simple handover: human hands over non-adversarially and
with minimum occlusions different objects: bottle, block,
joystick, toy. The object orientation can vary.

• fast handover: human moves the object fast into the end-
effector of the robot with minimum occlusion.

• occlusion handover: human partially occludes the object dur-
ing non-adversarial handover.

• adversarial handover: human changes the object pose when
the object to end-effector distance is < 30 𝑐𝑚, forcing the
robot to adjust quickly. Occlusions are minimal.

We consider simple handovers to evaluate the ability to han-
dle different objects. The other scenarios are chosen to evaluate
the impact of velocity, occlusion, and adversarial motion, which
we consider object-agnostic. We open-source the dataset contain-
ing manually labeled 2D ground truth bounding boxes of sixteen
handovers from all scenarios recorded on the robot. As the whole
handover sequence is recorded, the dataset contains images from
trotting, when the base moves towards the human, and during
stance with only the arm moving, after the object is within its
reach. We use this dataset for state-of-the-art comparison and to
perform an ablation study.

4.1.1 Comparison to state-of-the-art. We compare latency and
2D/3D accuracy to baseline state-of-the-art algorithms capable of
running in real-time on our platform, namely, Yolov7 [33] with a
Kalman Filter (Yolov7-f), THOR [30] and STARK [34]. Yolov7 and
STARK run at 30 𝐻𝑧, while THOR [30] runs at 10 𝐻𝑧, a frequency
comparable to state-of-the-art perception frameworks for human-
to-robot handovers on fixed manipulators [36]. Such frameworks
are based on skeleton trackers and even though they run in real-
time on our system, the tracking fails when the human shoulders
are not visible in the image, making it impractical for our setup.

For state-of-the-art comparison, we consider the sets containing
the handover of the bottle to avoid retraining Yolov7 on custom
classes. The detection threshold is set to 0.2 which we empirically
observed leads to the best results. It is important to note that Yolov7-
f is limited to a predefined set of classes, while the other methods
can track any object in the hand. Nevertheless, we use Yolov7-f as
a baseline because of its widespread usage in mobile manipulation.
Table 1: State of the art comparison using the bottle only

Dataset Method IoU min IoU P 𝑛CLE
Yolov7-f 71.17 24.70 91.13 0.75

Simple THOR 63.69 17.80 82.15 0.78
STARK 71.22 31.04 90.41 0.84
ours 71.93 34.15 92.37 0.67
Yolov7-f 65.50 25.21 85.89 0.78

Fast THOR 59.28 8.40 69.32 0.82
STARK 65.78 0 86.46 0.98
ours 66.79 25.82 86.79 0.69
Yolov7-f 52.76 0.0 53.60 0.88

Occlusion THOR 47.92 0.0 31.82 0.83
STARK 55.51 0.0 60.21 0.80
ours 58.22 10.97 65.17 0.78
Yolov7-f 65.24 14.96 70.23 0.83

Adversarial THOR 55.20 15.91 63.22 0.82
STARK 54.98 2.52 62.75 0.96
ours 66.54 31.19 73.60 0.68

2D Comparison: For comparison in the image space, we use
the following metrics: intersection over union (IoU), precision (P)
with true positives (TP) when 𝐼𝑜𝑈 > 50 % and RMSE of the nor-
malized center location error (𝑛CLE) [38]. We additionally consider
minimum IoU (min IoU), which we define as the minimum value of
the IoU among all the experiments in the specific scenario.

The results are presented in Table 1. We notice that our tracker
outperforms THOR, while Yolov7-f has a close performance in terms
of IoU, except for the occlusion scenario. There the detections are
rare and the Kalman Filter can not properly capture the motion
in the image. As in the adversarial scenario, the object is grasped
on the top, the occlusions by the human hand are small and the
performance of Yolov7-f is comparable to ours. STARK has a similar
performance to our method, except for the adversarial case. It han-
dles well object occlusions but can not deal with sudden changes
in the direction of motion. Overall, the min IoU is higher in all the
scenarios for our method, underlining its robustness. Furthermore,
the impact of the object velocity with respect to the robot base can
be noticed by observing the performance difference between the
fast and simple scenarios. In the simple scenario, the object speed
reaches 0.62𝑚/𝑠 , while in the fast scenario, it goes up to 1.06𝑚/𝑠 .

3D Comparison: Using the same dataset, we analyze the 3D
object position error and show the results in Fig. 4. The position
error is computed in the camera frame using 𝑒 = | |𝑥 − 𝑥𝑟 | |, where
𝑥 is the 3D object center from depth segmentation and 𝑥𝑟 is the
reference, defined as the 3D projection of the center of the ground
truth bounding box. The errors in the simple and fast scenarios are
similar. There is no substantial difference between the baselines and
our method, except when the object-gripper distance is < 5 𝑐𝑚. This
is expected, as the smaller this distance, the bigger the occlusion
by the robot. For the other scenarios, the differences are more
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Figure 4: Object position error with respect to the reference
object-end-effector distance in the camera frame, in a) simple,
b) fast, c) occlusion, and d) adversarial scenarios. The star
represents the position error average over all axes.

meaningful. With occlusions, the errors of the baselines increase
when very close (< 5 𝑐𝑚). For THOR and Yolov7-f the error goes
up to 15 − 20 𝑐𝑚, while for STARK it reaches 10 𝑐𝑚. This can be
explained by the high degree of occlusion, leading to detections
that are off and just part of the object being visible in the image. For
the adversarial scenario, the baseline errors increase significantly
when the object-gripper distance is < 30 𝑐𝑚. The main error comes
again from the y-axis, which can be explained by the occlusion.
Furthermore, the sudden movement direction changes cause issues
for the slower THOR baseline, but also for STARK. For THOR the
lateral error goes up to 5 𝑐𝑚 but decreases when the end-effector
to object distance is < 5 𝑐𝑚 because there is no bigger movement.
For STARK the errors keep increasing for all axes.

Looking at the performance of our method across the scenarios
we observe that it has similar performance in all of them. The
errors along the z-axis in the occlusion scenario are higher than
in the other cases and occur because the human hand holding and
occluding the object is sometimes considered part of the object. In
such situations, the fingers are aligned with the object and because
of the noise in the depth image small angles and discontinuities are
not properly detected by the depth segmentation. Moreover, the
error along the y-axis of the camera is dominant for our method,
especially when the distance is small. This is explained by the
partial object occlusion by the gripper, which leads to the object
center being estimated higher than it is. We also notice that in the
adversarial scenario, the x-axis error is small, which means that the
lateral object movement is tracked well by our tracker.

Latency: Lastly, we compare the latency of the three methods,
which we define as the total processing time needed for one frame.
For THOR the average latency is 0.1036𝑠 , for Yolov7-f 0.0352𝑠 , for
STARK 0.0333𝑠 , and for our tracking framework 0.0183𝑠 .

4.1.2 Ablation study. We carry out ablation studies for the mea-
surement sources (M) and the Kalman Filter (KF) using the same
metrics as for the 2D comparison to the state-of-the-art. For the
measurement sources, we consider THOR (THOR-f), THOR and op-
tical flow (THOR-fo), and our method (THOR-fod). For the Kalman
Filter, we compare a simple filter (simple) and a filter with delay-
compensation without the adaptive part (compensated) to our im-
plementation. The results are shown in Table 2. We observe that
optical flow and depth segmentation improve the overall perfor-
mance in all the scenarios, leading to results comparable to the ones
reported on visual object tracking benchmarks [14, 24]. We also
notice that delay compensation is crucial, especially in adversarial
and fast scenarios. Adapting process and measurement noise leads
to improvements in all cases, especially for min IoU, demonstrating
that it increases robustness and corrects inaccuracies.

Table 2: Ablation study results
Type Method IoU min

IoU
P 𝑛CLE

Si
m
pl
e

M THOR-f 63.42 18.13 76.25 0.74
THOR-fo 65.69 23.98 85.85 0.74
THOR-fod (ours) 70.51 30.48 92.89 0.66

KF compensated 64.70 16.79 77.76 0.77
simple 60.27 15.20 68.33 0.79

Fa
st

M THOR-f 59.39 10.62 84.02 0.67
THOR-fo 61.88 17.96 86.70 0.66
THOR-fod (ours) 66.79 25.82 86.79 0.69

KF compensated 60.30 14.79 73.80 0.73
simple 51.04 9.97 52.83 0.79

O
cc
lu
si
on

M THOR-f 48.26 0.00 42.39 0.83
THOR-fo 52.68 9.12 52.79 0.79
THOR-fod (ours) 58.22 10.97 65.17 0.78

KF compensated 54.92 0.0 55.90 0.80
simple 48.31 0.0 48.30 0.86

A
dv

er
sa
ri
al M THOR-f 55.33 18.56 57.42 0.76

THOR-fo 60.55 27.31 67.61 0.72
THOR-fod (ours) 66.54 31.19 73.60 0.68

KF compensated 59.61 10.64 69.40 0.76
simple 48.53 2.75 45.86 0.97

4.2 Integrated system performance
To thoroughly evaluate our system performance during the ap-
proach phase of the handovers we carry out two sets of experiments:
validation by ourselves (Sec. 4.2.1) and a user study (Sec. 4.2.2). We
use success rate and timing metrics such as handover, and reac-
tion time for this analysis. We consider the handover time the
time elapsed between the moment the robot starts moving the end-
effector (the object is within reach), and when it grasps the object.
We define reaction time as the duration between the moment the
object can be safely grasped and when the robot reacts by closing
the gripper. The time the object can be safely grasped is determined
by monitoring the distance between the object point cloud from
the raw point cloud of the camera and the end-effector from state
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estimation. Carrying out a timing performance evaluation is par-
ticularly important, as temporal precision has greater significance
than spatial precision in human-robot handover interactions [17].

4.2.1 Validation experiments. For this analysis, we carry out 40
handovers: 20 simple, 4 fast, 4 occlusion, and 12 adversarial scenar-
ios, as defined in Sec. 4.1. The different numbers of experiments in
each scenario come from the fact that in the simple scenario, we use
four objects, while for the others one. In the adversarial scenario,
we have 12 experiments to cover different motions.

Our overall success rate is 89.75 %, which outperforms the state-
of-the-art for human-to-robot handovers on fixed manipulators
(81.8 % [36]). We consider a handover successful if the robot takes
the object from the human. We report one failure in the simple and
three in the adversarial scenario. In the simple scenario, joint limits
were hit, while in the adversarial scenario, the object went once out
of the field of view and the tracker drifted away twice. The initial
distance between the human and the robot ranged between 1.6 and
3.1𝑚 and had no meaningful impact on the success rate.

Reaction time analysis: We compute the reaction time of our
system for the simple, fast, and occlusion scenarios. We group the
simple and fast scenarios for this analysis, as without prediction
capabilities, the approaching speed of the object does not affect the
reaction time. Adversarial is not considered as the times depend on
the moment the human stops moving.

Table 3 shows our average reaction time and the reaction times
for the different scenarios compared to the average human reaction
times to complex visual stimuli from an independent study [32].
We believe the study to be a fair comparison as both, our robot
and the participants have to react on a frame-by-frame basis after
processing complex visual stimuli, given as images. Similar to our
definition, in [32] the time between displaying the image and the
moment a button is pushed is defined as reaction time. We notice
that our reaction times for the simple and fast scenarios are close
to the ones reported in [32]. The occlusion dataset exhibits higher
reaction times due to increased tracking errors.

Table 3: Average reaction times for validation experiments
Scenario Human Simple+Fast Occlusion Average
T𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 (𝑠) 0.46 0.58 0.83 0.68

Handover time analysis: The approach phase for a mobile ma-
nipulator can be separated into two sub-phases: walk to object and
move end-effector to object when it is within reach. For this analy-
sis, we consider just the second sub-phase, because independent
human-human handover studies in a similar setup as our simple
scenario report values for that sub-phase [15]. Table 4 compares
the handover times for different scenarios, and for every object in
the simple scenario to human-human handover times from [15]. It
can be observed that we are close to the human-human handover
times.

Table 4: Average handover times for validation experiments
Object Av. Time (s) Scenario Av. Time (s)
Toy 2.36 Simple 2.38
Joystick 2.41 Fast 0.87
Bottle 2.26 Occlusion 3.24
Block 2.81 Human [15] 1.76

The average handover times for the objects are similar, except for
the wooden block. This is explained by the increased orientation
error, which we think comes from the holes in its structure. As
expected, the occlusion scenario has the highest average handover
time. The fast scenario has the shortest handover time, as the hu-
man is trying to accomplish the handover fast and contributes to
minimizing this time. The best handover times for human-to-robot
handovers are reported in [37] and [9]. Even though our handover
times are better, the setup has significant differences as they use a
fixed manipulator, and a direct comparison would not be fair.

4.2.2 User study. To get subjective feedback about the interaction
quality and the timing performance of our system we carried out
a user study with sixteen participants who were not familiar with
the robot. Each participant was asked to hand over three different
objects: a toy, a cup, and a bottle. We stopped the experiments after
one successful handover for each object, leading to three to five
handovers per participant. The order of the objects was randomly
chosen to avoid any bias. The participants were not instructed on
how to hand over the objects, just not to behave adversarially, and
to grasp the object on top or on the handle to avoid their fingers
being grasped. The last instruction led to small object occlusions,
making the setup similar to our simple scenario. The initial distance
between the participants and the robot is randomly varied between
1.6𝑚 to 2.5𝑚. A handover sequence is shown in Fig. 5.

To ensure maximum safety during the user study, manual val-
idation of the tracker’s initialization was required. This took up
to 5 𝑠 and was excluded from the experimental procedure to not
influence the participant’s perception of the interaction quality and
the handover times. Hence, we put the object on a table to initialize
the tracker before the actual handover. After initialization, the robot
started moving toward the participants, who automatically engaged
in the interaction. After the experiments, participants were asked to
fill out a questionnaire with Likert scale and open-ended questions.

We carried out 67 handovers during the user study with a success
rate of 85.48 %. The success rate per object is 91.3 % for the toy,
94.44 % for the bottle, and 70.83 % for the cup. The participants
tended to hand over the cup at a lower position with respect to the
gripper probably because they grasped the handle and not the top.
This lead often to almost full occlusions of the object by the gripper,
impacting negatively the tracking accuracy.

In terms of objective timing metrics, we notice that the average
reaction time during the user study is close to the average reaction
time of "simple+fast" from Sec. 4.2.1. On the other hand, the han-
dover times decreased compared to the simple scenario, showing
that on average the participants were naturally helping the robot
to get the object. We notice that the reaction time for the cup is
smaller, but the handover time is bigger than for the other objects.
The explanation is that it takes longer to get into a graspable po-
sition for the cup, as the tolerance between the gripper and cup
width is small compared to the other objects. The results of the
subjective timing performance analysis are presented in Fig. 6. Over
90 % of the participants agreed or strongly agreed that the system’s
timing during handover is appropriate and most participants had
the same opinion about not having significant idle time during the
interaction. These results underline our findings from Sec. 4.2.1 that
the reaction and handover times are close to human performance.
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Figure 5: User study setup: (1) starting positions, (2) the robot starts moving and the participant grasps the object, (3) the robot
starts moving its end-effector to the object, (4) the robot grasps the object, and (5) the participant releases the object.

Figure 6: Answers related to the timing performance.

Figure 7: Answers related to the interaction quality.
Moreover, we observed that participants have different prefer-

ences on handover location and motion. Additionally, several par-
ticipants occluded the objects partially. Some participants moved
more toward the robot, while others waited for the robot to get
closer. Some rotated the objects during the handover, while others
kept the orientation constant. Each person moved the different
objects with different velocities according to their preference. This
is reflected also in the handover time variance, which is half of the
average time, as shown in Table 5. The perception of comfort was
also slightly different. Some thought the robot came too close for
the handover, while others thought the distance was close to what
they experienced in human-human handovers. A similar difference
was noticeable in the approaching speed with some participants
preferring a higher speed, while others considered the speed com-
fortable. Nevertheless, even with such differences over 90 % of
the participants felt safe and comfortable during the handover, as
shown in Fig. 7. Furthermore, over half of the participants agreed
or strongly agreed that the robot’s actions were predictable and
that they worked together fluently to finish the handover.
Table 5: Handover and reaction times from the user study

Toy Bottle Cup Average
Tℎ𝑎𝑛𝑑𝑜𝑣𝑒𝑟 1.96 ±1.01𝑠 1.91 ±1.03𝑠 2.03±0.94𝑠 1.97 ±0.99𝑠
T𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 0.74±0.25𝑠 0.67±0.09𝑠 0.52±0.08𝑠 0.62±0.12𝑠
All participants thought the system could be improved in a few

ways mainly integrating intention recognition, such that the partic-
ipants decide when the handover starts and not the robot as in the
current state, and using a different gripper: a soft and preferably
anthropomorphic hand. We also noticed that the position of the
camera is unfavorable, leading to significant object occlusions when
the object is not handed over from the top, e.g. the case of the cup.

4.2.3 Limitations. One disadvantage of the proposed method is
the increased number of tuning parameters, which depend highly
on the camera being used. Additionally, the object has to be in the

field of view at all times. The rigid attachment of the camera to the
arm in addition to its mounting position limited the feasible grasp
locations which guarantee that the object remains in the field of
view or does not get fully occluded by the arm and gripper. This can
be alleviated by using a pan-tilt head for the camera and redesigning
the mounting position. Even though the tracker is object-agnostic,
some categories, such as small, thin, or non-convex objects can not
be handled properly. The latter is a limitation of depth segmentation
and can be relaxed by using a different algorithm.

To avoid grasping their fingers, the participants in the user study
were instructed to hold the objects from the top, while the robot
was constrained to grasp the lower half. However, because of the
occlusions caused by the gripper, the estimated object height might
be smaller than the actual one and therefore, the robot fails to grasp
the object in its lower half. In our experiments, it was enough to
avoid the fingers, but a more reliable and sophisticated avoidance
module is necessary.

Finally, as the user study shows, every person has different han-
dover preferences, e.g. in terms of approaching speed and stopping
distance of the robot. The perception algorithm adjusts to these
preferences, tracking the object reliably and generating feasible
grasps. The simple control strategy, however, lacks adaptiveness to
such preferences, as the robot approaches everyone with the same
velocity and stops at a specific distance without online adaptation.

5 CONCLUSIONS AND FUTUREWORK
In this work, we introduce an efficient object-agnostic perception
framework designed for human-to-robot handovers with legged
manipulators. It handles partial object occlusions and viewpoint
changes and runs at speeds comparable to which visual stimuli
reach the human brain [16]. We compare the proposed tracking
algorithm to the state-of-the-art on our open-sourced handover
dataset and show that we outperform them in 2D and 3D for all
four handover scenarios. Furthermore, we analyze the performance
of the integrated legged robot system in terms of handover success
rate and timing-related metrics. We reach close to human timing
performance for the approach phase of the handovers not only
in terms of handover and reaction time but also by considering
subjective metrics gathered from the user study.

Future work focuses on tackling the most important limitations,
such as human hand collision avoidance and integrating a pan-tilt
unit for the camera. Furthermore, we will focus on adaptive control
strategies to adjust to human preferences online during handovers.
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