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ABSTRACT
Many industrial tasks—such as sanding, installing fasteners, and
wire harnessing—are difficult to automate due to task complexity
and variability. We instead investigate deploying robots in an assis-
tive role for these tasks, where the robot assumes the physical task
burden and the skilled worker provides both the high-level task
planning and low-level feedback necessary to effectively complete
the task. In this article, we describe the development of a system
for flexible human-robot teaming that combines state-of-the-art
methods in end-user programming and shared autonomy and its
implementation in sanding applications. We demonstrate the use
of the system in two types of sanding tasks, situated in aircraft
manufacturing, that highlight two potential workflows within the
human-robot teaming setup. We conclude by discussing challenges
and opportunities in human-robot teaming identified during the
development, application, and demonstration of our system.

CCS CONCEPTS
• Human-centered computing → Collaborative interaction; •
Computer systems organization→ Robotic autonomy.
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1 INTRODUCTION
Collaborative robots, or cobots, are designed to work in human envi-
ronments and offer newways to engagewith industrial workers. For
example, a cobot can serve as an intelligent teammate, offloading
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Figure 1: In this paper, we describe the development of a
human-robot teaming solution for variable industrial sand-
ing tasks that combines the strengths of the operator and
robot through end-user programming and shared autonomy.

physically demanding or repetitive actions across a range of tasks.
However, the use of cobots in practice falls short of this vision. With
currently available methods to task robots (e.g., teach pendants),
the majority of collaborative robots are programmed to execute
basic skills, such as pick and place, and deployed to primitive tasks
such as machine tending [37]. Looking beyond these basic applica-
tions, there are opportunities to deploy cobots to more complex and
physically demanding jobs, such as sanding or sealant application,
to minimize hazardous worker conditions (e.g., high force loads,
enclosed spaces). Moving toward complex industrial tasks requires
moving from highly structured and deterministic task settings (e.g.,
moving objects in known locations) to less structured and highly
variable task settings (e.g., sanding a surface with intermittent de-
fects). This shift poses a number of challenges for task automation.
The required robustness and planning for variability is outside the
scope of traditional task automation pipelines and current research
technologies are not yet enabling reliable automation for many
complex, contact-rich tasks [48]. For example, in auto body repair,
each sanding task will be a different shape and require removing
different amounts of damaged material. As human workers already
possess the expertise (e.g., sensing, reasoning) required to com-
plete such tasks, there is a need for human-in-the-loop approaches,
where a skilled operator controls the robot to assure reliable task
outcomes. In this paper, we propose a human-robot teaming system
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that balances the task workload to leverage the strengths of the
robot, such as precision and offloading the physical task burden,
and the strengths of the human operator, including reasoning about
the task parameters and planning.

The split of workload in human-robot teams is often identified by
the level of automation [40], which provides a score for how often
and through what means a human interacts with a robot system.
Examples of these levels include manual teleoperation, shared con-
trol, supervisory control, and full automation. Within these levels,
the human and robot assume different roles; such as acting, decid-
ing, and suggesting [15]. Many methods select fixed human and
robot roles based on the needs of a particular task. In limited cases,
methods allow role-shifting throughout a task based on task and
user modeling [4, 38] to address different requirements for human
intervention. Following a similar premise, we posit that successfully
addressing variability in complex industrial tasks requires skilled
human teammates to interact with the system at multiple times
with varying levels of feedback. Rather than pursuing techniques
for role shifting, we base our human-robot teaming approach on ex-
plicitly identified needs for the skilled worker throughout industrial
tasks. Specifically, we desire to leverage the reasoning capabilities
of the human to help define the task and the low-level action plan-
ning and perception of the human to react to variability when the
process outcome is unexpected. Our resulting system meets these
needs by fusing two modern techniques within the human-machine
interface: end-user programming [5] and shared autonomy [45].

In contrast to previous work, we target separate types of hu-
man interaction for the specification and execution phases of a task.
End-user programming aims to develop intuitive interfaces for task
specification that remove the burden of traditional robot program-
ming while maintaining expressiveness for operators to specify
nuanced and complex task plans. Shared autonomy aims to tightly
couple the human in the robot’s control loop such that the human
and robot can work together to plan appropriate actions during task
execution. By combining techniques that address the different ele-
ments of task variability, the resulting system can allow operators
to provide sufficient feedback to ensure reliable task outcomes.

This paper describes our development of a system for complex
industrial tasks that leverages the respective strengths of a human
operator and a robot. The main contributions of this work are:

• Describing a novel human-robot teaming approach that combines
techniques in end-user programming and shared autonomy to
achieve flexible automation for variable tasks;

• Developing a prototype system and corresponding workflows that
instantiates the human-robot teaming approach to complete rep-
resentative sanding tasks in aviation manufacturing.

We believe that systems enabling flexible automation can ex-
tend the use cases of cobots (including ergonomically hazardous
tasks like sanding) and increase adoption of cobot technology. In
the remaining sections, we first describe motivating scenarios in
aviation manufacturing and resulting technological requirements
for our system. We then describe our prototype implementation
and system workflows, which were used to complete representative
tasks in both a lab setting and on-site at an aviation manufacturing
facility. We conclude by discussing results and opportunities.

2 RELATEDWORK
2.1 Industrial Human-Robot Collaboration
Given the relative advantages of robots over human workers, such
as precision and repeatability, industrial robots have become per-
vasive in modern manufacturing. Industrial robots are deployed
across a range of jobs, including handling, welding, assembling, and
painting [20]. While in most cases, robots operate autonomously in
sequestered spaces and often employ custom hardware and tooling
(e.g., gantry systems for automated tape layup in aviation [44]),
there is a desire to develop methods that promote flexibility and
collaboration through the use of general-purpose robotic hard-
ware (e.g., cobots). For example, Fujii et al. [18] developed a semi-
autonomous system where an operator hand guides an industrial
robot when handling large components and the robot also com-
pletes some automatic subtasks, like fetching materials. Carmichael
et al. [10] similarly created a system for abrasive blasting where an
operator drives the robot behavior via physical interaction while
the robot assumes the physical burden of the task. Maric et al.
[33] apply a similar paradigm where the human guides a robot
through sanding of complex surfaces, from which the robot learns
object-centric trajectories. Other methods focus on scheduling of
interdependent tasks and timing in human-robot collaboration. For
example, Wilcox et al. [49] develop a scheduling paradigm that
adapts to temporal disturbances and synchronizes activities. Pearce
et al. [42] develop an optimization for task assignment for a human-
robot team that considers both time on task and ergonomic risk.

2.2 End-User Programming
End-user programming aims to reduce barriers for users without
formal programming experience to participate in the technology
development process. In robotics, end-user programming solutions
have been proposed across a range of development phases; includ-
ing during the setup, authoring, editing, and verification of robot
programs [5]. The use of end-user programming in our work fo-
cuses on the authoring phase. Authoring solutions employ a variety
of modalities to task the robot, including physical demonstrations
[41], visual programming [35], and extended reality. Our implemen-
tation uses screen-based augmented reality and focuses on iterative
workflows where the operator provides either partial task speci-
fication or programming to complete complex tasks. Augmented
reality has been leveraged in many prior authoring methods to pro-
vide contextualized visual programming [8, 9, 19, 32]. For example,
Akan et al. [6] use a robot-mounted camera to program manipu-
lations (i.e., pick and place) of objects using a gripper-mounted
robot camera. Several recent technologies focus on augmented re-
ality interfaces through tablets or other mobile devices [17, 29].
Our tangible interface was inspired by the Boston Dynamics Spot
controller’s touchscreen and game pad functionality [3] and was
focused on addressing common manufacturing challenges (e.g.,
registration, parameterization for surface-finishing tasks).

2.3 Shared Autonomy
Shared autonomy methods blend together the input of a human and
robot policy to provide adjustable assistance [45]. In this section, we
mainly focus on examples of methods involving assistance based on
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goal inference, methods for dynamic role allocation, and methods
to provide corrections to robot behaviors during execution. Dragan
et al. [14] proposed an early method where the system offered
conditional assistance based on likely operator goals. Many works
build on this formulation, such as to partially observable settings
with unknown goals [25] and to completely remove ex-ante goals
through a model-free deep reinforcement learning approach [43].

Dynamic role allocation methods use operator cues and task
modeling to identify appropriate human interventions with a robot
system. Medina et al. [36] devise a dynamic assistance scheme based
on measuring unexpected (i.e., disagreeing) interaction forces to
inform between model-free and model-based assistance. Similarly,
Evrard et al. [16] use physical interactions during collaborative tasks
to shift agents between leader and follower roles using a homotopy-
based controller. Li et al. [30] explore mixed role assistance by
modeling the shifting assistance problem as a game theoretic two-
agent system. Abbink et al. [4] explore practical factors related to
role shifting, such as smooth transitions and hand-offs of assistance.

Finally, corrective methods aim to address variability in a task or
environment. Many works rely on physical intervention to a robot
manipulator to infer desired changes to a behavior or underlying
policy [7, 31, 39]. Most relevant to the system developed in this
paper are methods that create intuitive real-time correction inter-
faces; including to modify the states of UAVs [34], mobile robots
[11], and robotic manipulators [23, 24]. The key difference from
existing technology is that the corrective interface in this work
is highly coupled with the uncertainty of task specification (e.g.,
proving a more expressive corrections interface when the robot
behavior is coarsely defined through visual programming).

3 OVERVIEW OF SOLUTION
Industrial environments pose many challenges toward designing
systems for human-robot teaming. To illustrate some of the key
challenges, we consider a motivating example in aviation manufac-
turing before describing our system approach.

3.0.1 Motivating Example. Imagine you are a factory worker on
the final assembly floor for a wide-body aircraft. Many of your
manual tasks, such as sanding, are highly variable. Each sanding
task may have different amounts of material to be removed and
may be subject to subtle variables including the sandpaper condi-
tion and wear of the sanding tool. Workers are incredibly adept at
adjusting their work to react to these nuanced differences. Thus,
an effective teaming solution should enable reactivity to the large
degree of expected process variability. Additionally, each task will
have very different requirements. Some tasks may require following
a predetermined procedure, whereas certain tasks, such as rework,
may require working with engineers to plan a specific interven-
tion. Thus, an effective teaming solution needs to enable flexible
tasking, where the end user can easily program or modify robot
behaviors to match the specific needs of a task. Finally, over the
course of a shift, you may spend time completing work in several
areas of the aircraft. For example, you may perform surface prep for
a large mating area of the fuselage sections and localized rework
(e.g., sanding) across areas of the fuselage with excess composite
resin. Thus, the platform requires mobility to move with workers.

Figure 2: Proposed approach. The worker leverages a mo-
bile augmented-reality interface and custom haptic device to
program and augment a robot completing a task. The robot
is on a mobile base and mounted with a RGB-D camera for
localization and contextualized programming.

3.0.2 System Approach. Tomeet these requirements, we developed
a system that tightly couples a skilled operator to an adjustable
robot platform, as illustrated in Figure 2. The setup consists of a
robot manipulator mounted to a mobile base. In this work, we con-
sider a basic setup with casters that can be manually repositioned,
however, future technologies could enhance mobility by mounting
the manipulator on an automated ground vehicle [27]. The robot
is equipped with a camera near the end effector to provide visual
grounding during robot programming and localization between the
robot platform and environment as the platform is relocated.

End-user programming – The robot is programmed by the
worker through a mobile interface (e.g., tablet) where workers
graphically specify tasks on an overlaid view from the robot camera
[47]. The operator’s role is to select and register objects (in the
case that the task model is known) and to select boundaries and
parameters for the robot behavior when the task is unknown.

Shared Autonomy –We follow the approach of Hagenow et al.
[23] and allow differential robot corrections of the form:

x = x𝑛 + 𝛿x, x𝑛 ∈ R𝑚, 𝛿y ∈ 𝑆 (R𝑚) (1)

where x is the final robot command (consisting of 𝑚 controlled
variables), x𝑛 is a nominal command from a task model or user
parameterization, and 𝛿x is a differential correction applied by the
operator. During execution, the role of the operator is to monitor
the robot execution and intervene with the differential corrections
(e.g., force, pitch, alignment, reversing) when the robot behavior
performs poorly. The specifics of the corrections (including dimen-
sionality and state variables) are discussed in the next section.

4 INTEGRATION ANDWORKFLOWS
To better understand the potential of the proposed human-robot
teaming approach, we developed a prototype implementation.While
such a system should support a range of industrial tasks, we focused
our initial implementation on sanding. The choice wasmainly based
on the prevalence of sanding tasks in industrial applications and the
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recent interest in flexible robot sanding platforms in the research
literature [26, 33] and industry (e.g., GrayMatter Robotics [1] and
Norbo Robotics [2]). Additionally, sanding tasks are a desirable
candidate for human-robot teaming given the physical challenges
of manual sanding and the high degree of process variability that
makes broad robotic automation challenging.

4.1 Tasks
Our prototype sanding platform was designed to support two use
cases that are based on the needs of common manual sanding tasks
in aviation manufacturing. The first is the sanding of interior com-
posite structures, such as section dividers and overhead bins. There
is a large number of different geometries that furnish the fuselage
interior. There is also a range of volumes from unique structures
(e.g., forward galley) to higher volume, common geometries (e.g.
window panels, overhead bins). Ideally, there exists enough repeti-
tion to partially automate such tasks. The geometries of the pieces
are known a priori andwhile there are difficult curvatures (e.g., tight
radii, concave features) and defects from upstream manufacturing
processes, the availability of the task geometry and possibility to
collect task data enables higher degrees of task planning.

The second task is inspired by fuselage rework.While the process
of fiber layup has been mostly automated for composite fuselage
sections, the composite structures still often require manual sanding
following the curing process. After exiting the autoclave, fuselage
sections are typically inspected for any problematic areas, for ex-
ample if there are areas with excess resin buildup. The areas that
require sanding will vary on a section by section basis and assume
various shapes and sizes. Given that each sanding job is unique,
this rework is less amenable to automation.

Figure 3: Overview of implementation. The worker’s inter-
face uses a touchscreen gamepad and (optional) low degree-
of-freedomhaptic device to interact with the robot. The robot
has a custom stand and end effector for sanding.

Figure 4: Example interfaces for the structured and unstruc-
tured workflow. The structured workflow mostly leverages
the scanned 3D view of the geometry. The unstructuredwork-
flow is programmed as an overlay on the current robot cam-
era view. Both workflows include state indicators (e.g., robot
state) and sandpaper monitoring.

4.2 System Setup
Our prototype setup is shown in Figure 3 and consists of a Franka
Emika robot mounted to a modified genie lift. The lift allows for a
worker to manually position the robot for a given task and make
manual adjustments to the robot height through a jackscrew at-
tached to the base of the robot. The robot is equipped with an
ATI Axia80 force-torque sensor and a random orbital sanding tool
as the end effector. The random orbital sander interfaces to the
force-torque sensor via a 3d-printed flexible vibration isolator that
helps to reduce the transmission of vibrations to the robot base.
To facilitate better contact control with the environment, the ro-
bot is operated in a compliance control mode using the measured
forces from the force-torque sensor. The orbital sander is powered
pneumatically and toggled through a computer-controlled solenoid
valve. Additionally, a Kinect Azure RGB-D camera on the robot’s
distal link is used for visual grounding and localization.

The operator programs and interacts with the robot through a set
of mobile interfaces. 1 The robot programming is achieved through
a mobile touchscreen interface. The interface was developed using
React javascript, and is served to the user via a webpage on a
touchscreen mobile phone (Google Pixel 3a XL). The phone has
an attached external gamepad to capture additional user input.

1Open source code (and CAD files) available at: https://github.com/mhagenow01/
panda_uli_demo

https://github.com/mhagenow01/panda_uli_demo
https://github.com/mhagenow01/panda_uli_demo
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The operator provides corrections either through the gamepad or
optionally through a one degree-of-freedom haptic input [13].

4.3 Supported Workflows
The prototype system was designed to support two workflows
inspired by the use cases in aviation manufacturing. The first use
case is designed for more structured tasks, such as sanding the
interior composite pieces, where it is possible to plan a priori and
leverage previous task data to minimize the required input from the
operator. The second use case is designed for less structured tasks,
such as the composite fuselage rework, where few details of the task
are known a priori and instead the focus is on allowing end-users
to effectively specify the parameters for the desired sanding task.
Both workflows use a common back-end which supports features
such as reachability checking of the robot behavior poses, real-time
corrections, and basic sandpaper monitoring (i.e., keeping track of
the time the current sandpaper has been in use). Examples of the
mobile interface for each workflow are shown in Figure 4. The two
workflows are explained in the following subsections, illustrated in
Figures 5-6, and shown in the supplementary video.

4.3.1 Structured Tasks. The high-level approach for structured
sanding tasks (e.g., interior composite structures) uses a data-driven
task model to identify the robot behavior and to inform the cor-
rections an operator can make during the robot execution. The
workflow assumes that the object geometry, task model (i.e., robot
trajectories), and corrections that the operator can make are known.

The role of the operator is to position the robot and workpiece,
register the task geometry, and correct the robot as the task model
progresses. Given that not all areas of the workpiece may be reach-
able from a single static robot and workpiece configuration, the
robot sands the reachable section of the task from its current con-
figuration and keeps memory of the parts of the task that have been
completed. While in some cases, it may be possible to complete an
entire sanding task from one robot configuration, in many cases
the geometry is larger than the dexterous robot workspace and
thus, our workflow for structured tasks is iterative in nature, where
the human re-positions the robot or workpiece (whichever is more
feasible for a given task) multiple times to complete the overall task.
The full workflow consists of the following steps:
(1) The operator sets up the task by specifying the geometry (i.e.,

CAD model) and providing demonstrations with an instru-
mented tool (our implementation task model was hard-coded
for simplicity) that are mapped to the object coordinate frame.

(2) The robot and mobile base are moved into position for the
sanding task.When the robot e-stop is engaged, themanipulator
can be guided to a pose where the robot’s end-effector camera
can view the task geometry. The robot e-stop is disengaged
which begins active control of the robot.

(3) Using the mobile interface, the operator presses a button to scan
the environment. The robot performs panning motions relative
to its current pose from which a 3D map of the environment is
built based on the robot-localized depth images [28].

(4) The worker is presented with the 3D scan of the environment
to identify the task geometry. The interface leverages a human-
in-the-loop method for geometrically registering objects [21].
The system attempts to automatically determine the task model

and object pose from the 3D scan. The operator verifies the fit
and provides any required modifications, such as switching the
geometry if it is incorrectly identified or adjusting the pose of
the fit using the interface gamepad controls. Leveraging this
registration process circumvents the need for custom tooling
to fixture the workpieces in a known location, enabling more
agile deployment to new tasks with varied geometries.

(5) Once the operator indicates a satisfactory fit, the system com-
putes the portion of the robot task model that can be completed
from the current workpiece and robot configuration (based on
reachability). The robot path is overlaid on the task geometry
with colors highlighting previously completed parts of the task
(gray), reachable sanding paths (blue), and paths that cannot be
reached from the current configuration (red). If the operator is
satisfied, they can proceed with the sanding. If not, the operator
can reposition the workpiece and restart the workflow.

(6) The robot executes the sanding task. As the robot executes, the
operator provides input. The operator can interrupt the work-
flow if the sanding disc is too worn, which pauses the sanding,
moves the robot to a configuration where the sanding disc can
easily be changed, then resumes the workflow where it left
off. The operator can issue corrections to the robot as it sands.
Given that the robot task model is based on previous success-
ful task data, we aim to decrease the need for and complexity
of operator corrections. For example, in our implementation
the operator can provide corrections to the abrasiveness when
sanding areas with defects (a combination of speed, force, and
tool pitch). The operator can also reverse the execution (i.e.,
backtrack) using a button when the sanding is insufficient.

(7) Once the sanding is complete, the interface changes the color
of the completed portion of the task from blue to gray. If there
are still remaining areas to be sanded, the operator can then
reposition the workpiece (e.g., rotating the piece 180 degrees to
sand the other side) and iterate through the workflow steps.

4.3.2 Unstructured Tasks. The approach for unstructured tasks
(e.g., sanding a defect on the fuselage) combines a graphical method
for task specification with real-time user corrections. The premise is
to further leverage the expertise of the operator to compensate for
the lack of prior knowledge about the requirements of the sanding.
In this way, the unstructured task workflow can be more easily
applied to new sanding tasks, but requires more operator effort.
The role of the operator is to position the robot and workpiece,
identify the bounds of the required sanding and associated sanding
parameters, and to provide corrections as the robot executes the
task. The full workflow consists of the following steps:
(1) Similar to the first workflow, the robot camera is positioned to

provide a satisfactory view of the desired sanding area.
(2) The worker directly programs the desired sanding on the mobile

interface. The worker annotates the sanding bounds by posi-
tioning a set of markers on top of the robot camera view. As the
target sanding area is moved, the system provides reachability
checks on the interface as a grid of points that are colored based
on whether the point is reachable (green) or not (red).

(3) The operator specifies desired sanding parameters, such as the
number of passes, orientation (i.e., horizontal or vertical), ap-
plied force, tangential velocity, and tool pitch.
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Figure 5: Workflow for structured tasks. The task is to sand white paint off a curved composite structure. The workpiece is large
enough such that it requires multiple configurations of sanding to complete. Event timing (MM:SS) is reported in parentheses.

(4) Once the operator is satisfiedwith the sanding parameterization,
the execution is started and the operator provides feedback.
Similar to the structured workflow, the operator can change
sandpaper when necessary and issue real-time corrections to
the robot behavior. Because the task model is programmed and
not data-driven, the operator may need to provide corrections
to any robot variable which is accomplished by mapping the
gamepad joysticks and triggers to corrections to different robot
state variables (e.g., force, path, pitch).

(5) If the task is completed successfully, there is no additional work
for the operator. If the sanding was insufficient, the operator
can trivially execute the same sanding program a second time.
The operator can also make any required modifications, such as
adjusting the sanding area or parameters. Thus, this workflow
can also be completed iteratively for a given sanding task.

4.4 Case studies
Representative taskswere constructed for bothworkflows to demon-
strate the proposed prototype system (as seen in Figures 5-6). The
system was tested in two ways. First, we conducted a series of in-
formal lab tests (as shown in the supplementary video). Second, we
arranged a series of on-site sessions where the proposed system and

workflows were demonstrated to end users and engineers in an avi-
ation manufacturing facility. Due to confidentiality agreements, we
are unable to report specific data from these on-site demonstrations
and instead generalize the findings in the next section.

For the structured worfklow, the task consisted of sanding spray
paint off of a curved composite structure. The structure was large
enough such that the robot could not sand the entire piece from
a single configuration and thus the task requires two iterations of
the workflow. While the robot behavior and corrections could be
learned directly from expert demonstrations [24], for simplicity,
the robot task behavior used a hard-coded set of passes over the
surface. The corrections the operator could make were limited to
be one-dimensional (a combination of force, speed, and pitch) such
that they could be provided using a one-degree-of-freedom input.

For the unstructured workflow, the task consisted of removing
spray paint from a vertical composite structure (a similar orien-
tation to what would be expected during fuselage sanding) with
an identified area for sanding. The area to be sanded was marked
using a sharpie marker similar similar to the inspection process for
composite rework. Given that the robot behaviors were specified
using a basic parameterization, the operator was able to provide
corrections to all key robot state variables (e.g., force, path, speed)



A System for Human-Robot Teaming through End-User Programming and Shared Autonomy HRI ’24, March 11–14, 2024, Boulder, CO, USA

Figure 6: Workflow for unstructured tasks. The task is to sand the white paint in the area highlighted in sharpie marker. Event
timing (MM:SS) is reported in parentheses.

independently using the joysticks and triggers on the mobile inter-
face gamepad. While this increased control space complicates the
required user input during robot execution, the required expres-
siveness of the corrective input is a consequence of the lack of task
knowledge and simplicity of the programming interface.

5 DISCUSSION
In this section, we summarize the results from assessing our system
in the lab setting. We then discuss the outcomes and lessons learned
related to shared autonomy and end-user programming in our
prototype system. Finally, we describe key end-user feedback from
our on-site session and resulting opportunities identified for the
development of future human-robot teaming systems.

We generally found that the proposed system achieved appropri-
ate sanding quality (i.e., visibly removing all paint in the expected
regions) for the case study tasks in the lab setting. In a small few
instances, there were regions that were missed (e.g., boundaries
between sanding iterations or edges), however, we envision ad-
dressing these challenges by (1) tuning the overlap of broken-up
behaviors or (2) accepting there will be some manual cleanup re-
quired as, in practice, perfect automation would be too costly to
achieve. No concerns about sanding quality were raised during our
on-site demonstrations, which included the two case study tasks
and two additional surface preparation tasks.

Both EUP and shared autonomy were critical technologies in the
performance of the prototype system. EUP was required by design
for successful use of our system (i.e., each workflow had required
steps for the user to program at the task level). In the structured
workflow, we found that operator input through EUP was crucial
during registration (when the object was geometrically non-unique)
and in iterating on workpiece placement based on reachability.
For the unstructured workflow, the visual programming enabled

fast, iterative specification of robot behaviors. Given the coarse
specification (i.e., selecting the boundary on the touch screen), such
a technique would be best suited for tasks without needs for a
precision boundary (i.e., rework where a margin of sanding around
the damage is desired). We also observed that real-time operator
corrections were critical to achieve quality sanding, even for a well
tuned task model. For the structured workflow, the task model was
sufficient to achieve coverage and operator corrections could focus
on the sanding quality in each area. Even with a tuned task model,
we found that corrections were needed for the majority of the task
execution. These included corrections to the pitch to modulate
the material removal rate and to reverse and repeat the execution
for areas with excess paint. Without corrections, the robot would
undersand and oversand some areas. For the unstructured task, we
found found similar value in high-frequency corrections, such as
repeating passes with updated paths and adjusting the tool pitch.

Our feedback from industrial technologists during the on-site
demonstration identified three key limitations for future study.

(1) The collaborative robot solution is too slow and small.
Other industrial sanding solutions can sand wider areas
much faster for surface-scuffing (i.e., light sanding) tasks.
Collaborative robots are designed to work safely alongside hu-
man workers. However, this safety comes at the cost of robot
size and speed. As discussed in the introduction of the prototype
platform, the dexterous reach of collaborative robot platforms is
limited and often prohibitive for surface-finishing tasks. In par-
ticular, if the duration of the work is short (e.g., scuff sanding),
the preliminary process of setting up and resetting the robot
greatly affects efficiency. Additionally, for tasks involving large,
fast motions, allocating the work to a collaborative robot (e.g.,
breaking up the task, slower completion times) might be ineffi-
cient. We believe it is crucial for adoption to develop a model
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to assess whether a manufacturing task is well suited to the
cobot’s capabilities and limitations. For example, a composite
scarf repair may be amenable to a collaborative robot solution
as the sanding task typically involves localized, low-force, and
prolonged sanding to penetrate the many composite layers.

(2) It would be useful if the technology business case in-
cluded both improved ergonomics and improved worker
efficiency. Our solution clearly demonstrated improved phys-
ical ergonomics by distancing the worker from the force and
vibration loads associated with manual sanding during high
variability tasks. However, compared to existing sequestered ro-
bot sanding solutions where workers can set up tasks and then
complete secondary responsibilities, our workflows required
significantly greater user involvement (i.e., time). Coupled with
decreases in speed induced by the the platform velocity limits,
there was a desire to investigate ways to improve worker effi-
ciency. We imagine achieving this increased efficiency through
several means. First, we believe it may be possible to increase
the automation of the unstructured workflow by employing
automated suggestions for parameterization. For example, if
the damage is outlined or we could build a database of previous
sanding instances, it might be possible to classify the likely sand-
ing parameters and only require human input for verification
and corrections (similar to the registration process). Addition-
ally, for tasks requiring intermittent corrections (i.e., difficult
curvatures of sanding), we envision scaling opportunities where
a worker supervises multiple robots [22].

(3) Future research should focus on the interaction mecha-
nisms and workflows, rather than the full system devel-
opment. We found that the graphical interface and reduced-
dimensionality corrective input garnered the most interest dur-
ing the on-site demonstration. While an original system goal
was to design a flexible platform for sanding tasks, specifically
for tasks that could leverage the same type of end-of-arm tool-
ing (e.g., a random orbital sander), we found that users were less
interested in the platform flexibility (i.e., completing multiple
types of work as needed by factory workers) due to a number of
environmental and certification challenges that limit the broad
applicability of a human-robot teaming solution. For example,
a painting application requires different hardware (e.g., electro-
static protection) from a setup for working in confined spaces
(e.g., kinematics and payload). Thus, rather than focusing on
the full robot platform , we believe future work should focus
on a human-machine interface for flexible tasking with flexible
hardware (e.g., manipulators tailored to specific factory tasks).
Development and adoption of such an interface could poten-
tially decrease required training for workers completing many
different jobs across the factory. For example, we imagine using
the same tools developed in this work to enable robotic fastener
insertion, where the operator uses end-user programming to
select locations for fastener installations and provides low-level
corrections to address alignment error during the insertions.

5.1 Limitations & Future Work
In this section, we discuss the limitations of our human-robot team-
ing system. Our approach was only evaluated informally. Going

forward, user studies are needed to quantify the benefits of the pro-
posed approach and workflows. This includes studies that measure
the impact of the human-robot teaming solution on performance
and ergonomics as well as studies that estimate end-user acceptance
[12] by evaluating the system with representatives of the target
user populations, including users of varied expertise. Additionally,
building toward our vision of flexible human-robot teaming will
require evaluating our approach across a range of physically de-
manding and variable tasks (i.e., evaluations beyond sanding – such
as fastening/assembly and composite layup). In addition to tasks
where the robot assumes full execution, the approach can be ex-
tended to consider tasks that require interdependent tasks by the
robot and the worker (e.g., highly dexterous and low risk sanding
where the operator can outperform the robot) [46].

There are also limitations in our implementation that we plan to
address in future system iterations. First, for assessment in realistic
industrial applications, significant efforts are needed to raise the
technological readiness level of the prototype system (e.g., com-
putational efficiency and robustness). Second, each workflow con-
tained tools related to reachability that were solved point-wise (i.e.,
not considering path-wise continuity). Future work will explore
how to include better tools for reachability that balance accuracy
with speed for use in human-in-the-loop workflows. Regarding
mobility, our case study focused on tasks where the workpiece was
repositioned (e.g., interior structures), but did not investigate repo-
sitioning the robot platform (e.g., large fuselage sections). Similarly,
our approach to monitor sandpaper health was based on a simple
model and not formally validated. In the future, we would like to
explore predictive methods that may enable better sanding through
accurate sandpaper tracking. Finally, the robot behavior for our
structured workflow was manually specified. Future work should
explore how end users can provide demonstrations to the robot.

6 CONCLUSION
In this work, we proposed a system for human-robot teaming that
leverages end-user programming and shared autonomy and imple-
mented an instantiation of our approach for sanding tasks. In our
approach, the operator is engaged throughout the full task work-
flow, including the initial programming and specification of the
task as well as during the robot’s execution. The implementation,
contextualized in sanding, involved two workflows targeted toward
more and less structured tasks where the operator interacts with
the robot via an augmented-reality tablet interface and custom
haptic device. We designed representative lab tasks to demonstrate
each workflow and discussed takeaways from our testing with avi-
ation manufacturing stakeholders, including remaining challenges
and recommendations for driving human-robot teaming forward
in physically demanding industrial applications.
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