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Figure 1: Alchemist is an end-to-end end-user robot programming system that leverages large language models (LLM) to enable
natural language based robot program authoring. 1) The 3D RViz Visualization Panel visualizes the robot and its environment.
2) Users interact with a LLM to create robot programs in the chatbox either through text or voice inputs. 3) Saved programs can
be executed using the terminal panel. 4) Users can also directly edit the generated programs for �ner control.

ABSTRACT
Large Language Models (LLMs) have the potential to catalyze a
paradigm shift in end-user robot programming—moving from the
conventional process of user specifying programming logic to an
iterative, collaborative process in which the user speci�es desired
program outcomes while LLM produces detailed speci�cations. We
introduce a novel integrated development system, Alchemist, that
leverages LLMs to empower end-users in creating, testing, and
running robot programs using natural language inputs, aiming to
reduce the required knowledge for developing robot applications.
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We present a detailed examination of our system design and provide
an exploratory study involving true end-users to assess capabilities,
usability, and limitations of our system. Through the design, devel-
opment, and evaluation of our system, we derive a set of lessons
learned from the use of LLMs in robot programming. We discuss
how LLMs may be the next frontier for democratizing end-user
development of robot applications.
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1 INTRODUCTION 
Robots have the potential to signi�cantly boost productivity across 
diverse �elds from factory �oors to research laboratories. Yet, de-
ploying robots can be complex and costly, often requiring teams 
of experts for system initialization and task-speci�c programming. 
Consider a scenario where a team of researchers is striving to en-
hance the e�ciency of photocatalysts for hydrogen production from 
water, a pursuit often described as the “holy grail” of chemistry [48]. 
This endeavor may require extensive experimental exploration of a 
diverse set of candidates and con�gurations; for instance, evaluat-
ing a search space with ten variables could present approximately 
98 million potential candidates. Even with optimization strategies 
applied to narrow down this search space, as many as 688 exper-
iments might still be required to identify superior photocatalyst 
mixtures. Robotic chemist [10] performed these experiments and ex-
empli�ed how robots can automate the repetitive, low-level testing 
procedures, liberating scientists to focus on high-level tasks. 

Nevertheless, robots deployed in such specialized roles are often 
laboriously developed for speci�c tasks and environments, pos-
ing a barrier to the widespread integration of robots in complex 
and dynamic work�ows such as life science laboratories. Unlike 
computers, which can be readily acquired and customized with 
various software applications, the accessibility and customizability 
of robotic platforms and programs by end-users, such as scientists, 
remain elusive. To democratize the use of robots, several end-user 
programming systems and frameworks have been proposed [2]. 
Approaches for lowering barriers to programming robots include 
utilizing behaviour trees [38], illustration-based systems [40, 41], 
�ow-based systems [5], programming by demonstration [3, 24], 
block-based systems [43] and a mix of methods that utilize high-
level coding abstractions to program robots [23]. However, these 
abstractions still require an understanding and explicit speci�cation 
of the programming logic which presents a signi�cant barrier. 

Large Language Models (LLMs), with their ability to generate 
code from natural language inputs [17], could help catalyze a para-
digm shift in end-user robot programming from the conventional 
process of user specifying programming logic to an iterative, col-
laborative process in which the user speci�es desired program 
outcomes while LLM produces detailed speci�cations. This para-
digm shift conceptually regards end-user programming systems as 
collaborators rather than tools. By enabling a more intuitive and 
collaborative robot programming experience for end-users, LLMs 
may help lower barriers to the deployment and e�ective use of 
robots in diverse settings. 

To explore the potential of using LLMs for end-user robot pro-
gramming, we developed Alchemist, an end-to-end system that 
aims to streamline the complex process of robot programming by 
empowering users to create, debug, test, and execute robot pro-
grams using natural language dialog through a one-stop interface. 
Alchemist integrates RViz for robot visualization, a chat-box for 

interacting with the LLM, and a terminal to run generated code (Fig. 
1). It is designed to be robot-platform and LLM agnostic to support 
various settings and technical advancements. It further supports 
authoring robot applications that involve automated processes (e.g., 
robotic chemist) and human-robot interaction scenarios. 

This work makes three key contributions: (1) An open-source, 
end-to-end system that utilizes LLMs to enable a collaborative 
and intuitive robot programming experience for end-users. (2) An 
exploratory study to test and understand system capabilities and 
usability. (3) A set of lessons learned to inform the design and 
development of future LLM-powered robot programming systems. 

2 RELATED WORK 
Recent strides in LLMs and their code generation capabilities pro-
vide an opportunity for developing a new end-user robot program-
ming paradigm. In this section, we summarize prior work and iden-
tify gaps in end-user robot programming systems, LLM-enabled 
code generation and LLMs for robot programming. 

2.1 End-User Robot Programming Systems 
Robot programming traditionally demands domain-speci�c exper-
tise [22, 45], posing a barrier for the general population. Several 
di�erent modes of programming have been explored to enable end-
user robot programming [2], aiming to democratize the utilization 
of robots. A common mode is visual programming including block 
based programming [4, 15, 23, 53, 59], �ow diagrams [7, 19], rule 
based programming [33], and behaviour trees [8, 39]. Mixed reality-
based end-user programming systems have also been developed 
and evaluated [21, 27, 35]. Apart from these, a hybrid approach 
utilizing natural language chat and block based programming has 
been shown to be possible [20]. These existing approaches, while 
valuable, often still require end-users to possess some knowledge of 
programming logic, limiting their accessibility to the broader popu-
lation. The rise of large language models (LLMs) presents an unique 
opportunity to address the limitation posed by programming logic 
complexity; by leveraging the capabilities of LLMs, this paper ex-
plores how natural language can serve as an intuitive means for 
individuals to interact with and program robots. 

2.2 LLM-enabled Code Generation 
As LLMs code generation capabilities have improved signi�cantly, 
there has been a shift in utilizing them as programming assistants 
such as GitHub Copilot [17]. Unlike these coding assistants which 
assist in the process of writing code, our system, Alchemist, gener-
ates code autonomously as it is designed for users with minimal 
coding skills. Additionally, Alchemist is tailored speci�cally for 
robotics applications. LLMs such as GPT-3 exhibit substantial code 
generation capabilities [13, 14]; however, there are notable limita-
tions [44, 46]. Usability studies reveal that while LLM-based tools 
can provide helpful starting points, understanding, editing, and 
debugging the generated code can be challenging for programmers 
[50]. Furthermore, evaluations underscore concerns about func-
tional correctness, suggesting that not all code generated by LLMs 
is error-free [30, 37]. Therefore, there is a need to identify common 
mistakes made by LLMs [12] and develop a general approach to 
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rectify these errors e�ectively. To address errors in generated code, 
Alchemist includes quality assurance methods (Section 3.3.3). 

2.3 LLMs for Robot Programming 
The incorporation of LLMs into robot programming has recently 
gained considerable attention, opening up possibilities for enhanc-
ing human-robot interactions. Generating code from natural lan-
guage descriptions facilitates the control of robots through human-
readable instructions. These capabilities have the potential to stream-
line robot programming. For instance, ChatGPT has been used to 
generate code for controlling robots using natural language instruc-
tions in a zero-shot fashion [51]; however, one limitation of this 
work is the absence of an integrated code editor and visualization 
panel, which makes it challenging for users to directly interact with 
the system and debug errors when they occur. Other studies have 
also investigated the application of pre-trained LLMs in robotic 
task planning [16, 25, 49, 55] and reasoning [1, 18, 28, 56]. While 
these studies demonstrate the potential of LLMs in robotics, they 
do not provide a straightforward means for end-users to interact 
with robots or troubleshoot issues in case of errors or unintended 
actions. In our system, we address these limitations by providing an 
end-to-end, one-stop system that incorporates a visualization panel 
and an embedded code editor to facilitate iterative and collaborative 
interaction between the user, the LLM, and the robot. 

Perhaps the work by Inagaki et al. [26] is closet to ours; it ex-
plores the integration of LLMs in robot programming, particularly 
focusing on its application in automating biological laboratories. 
Although it showcases the potential of using LLMs to enable indi-
viduals with limited robotics experience to program robots, it does 
not fully address the challenge of preventing undesired actions or 
errors in the code generated by LLMs. Our system addresses this 
challenge by employing grounded prompting and a code veri�ca-
tion process to enhance the code quality. 

3 ALCHEMIST: LLM-POWERED END-USER 
ROBOT PROGRAMMING SYSTEM 

Alchemist is an open-source1, end-to-end system that empowers 
users to create, edit, and test programs for robots through natural 
language-based dialog by using large language models as its code 
generation backbone. We outline our core design objectives (DO) 
for Alchemist in Table 1 and present an overview of the system 
followed by details on system implementation in this section. 

3.1 System Overview 
Using Alchemist, users initiate the robot programming process 
by placing AR markers to identify objects of interest in robot’s 
workspace. These markers enable the system to track, update, and 
visualize the robot’s world model. Subsequently, users prompt the 
LLM to generate code via the Chat Panel. They can then edit and 
debug the generated programs, either by prompting the LLM further 
or by utilizing the Editor. Once satis�ed, users can preview, execute 
and test the programs via the Terminal Panel. 

Alchemist has two distinct task-level capabilities: 

1https://tinyurl.com/alchemist-github 

Table 1: Alchemist’s Design Objectives (DO) and Rationales 

DO1: Faciliate Programming with Natural Language 
We seek to use LLMs to facilitate an intuitive robot program-
ming experience through natural language communication, aim-
ing to reduce the need for programmatic thinking of end-users. 

DO2: Enable End-to-end Robot Development Work�ow 
Robot programming is a complex multi-step process. We seek 
to simplify this process by providing a one-stop shop for devel-
opment, testing, debugging, and execution of robot programs. 

DO3: Support Varied Programming Pro�ciencies 
End-users of robotic systems have varying programming pref-
erences. We aim to o�er a dynamic framework that adjusts the 
level of code generation abstraction, allowing users to choose 
between more �exible, general-purpose code that requires in-
creased oversight and debugging, and more rigid, task-speci�c 
code that demands minimal oversight. 

DO4: Visualize Robot World and Actions 
Robot programs have real-world physical outcomes which ne-
cessitates previewing of program execution for ensuring safety 
and supporting debugging. We visualize the real-time robot 
world model and enable preview of actions to prioritize user 
understanding, control and safety over programs. 

DO5: Ensure System Modularity 
We seek to accommodate various LLMs and robot platforms 
with ease. Our system-level design ensures adaptability to evolv-
ing needs or technological updates without altering the interac-
tion paradigm. 

1) Automation: Alchemist allows users to automate entire pro-
cesses (see Fig. 2-a). This can be done by either breaking tasks into 
smaller sub-tasks and then creating and integrating individual code 
segments for each sub-task or by devising a single comprehensive 
program for the entire task; this choice depends on user preference 
and task complexity. 

2) Collaboration: Alchemist allows users to program the robot 
to be collaborative in a way that they can verbally instruct the 
system to execute speci�c actions, aiding them in task completion 
or they can specify how or when they would need the system 
to do certain actions in response to user actions or changes in 
environment (see Fig. 2-b). 

3.2 Front-End Components 
We designed Alchemist’s interface (Fig. 1) to be plain and functional 
to simplify the programming process and lower barriers to robot 
programming for end-users. It consists of three primary panels: 3D 
visualization panel, Terminal panel, and Chat panel. Moreover, the 
system incorporates two supplementary panels (Text Editor and 
File Tree), accessible to users via toggle buttons (top menu bar). 

3.2.1 3D Visualization Panel. This panel has an embedded RVIZ 
interface to visualize the information from the motion planning sys-
tem regarding the robot’s physical environment (see Fig.1-1). Here, 
users can identify and address discrepancies between the physical 
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Example 1: Automation 

User: excute code Robot: reach Robot: grasp Robot: pour Robot: place 

Example 2: Collaboration (user verbally requests an assistance) 

User: “Now, pick up the 100 Robot: reach & grasp Robot: pour Robot: pour Robot: place 
milliliter graduated cylinder and 
pour into 500 milliliter beaker.” 

Figure 2: Example development and execution �ow of di�erent system capabilities. 

and the virtual worlds used in motion planning. Additionally, the 
panel is designed to be versatile: when paired with a Gazebo ROS 
node, it can act as a fully simulated environment. 

3.2.2 Chat Panel. This panel allows users to interact with the LLM 
to generate the code required for their tasks (Fig. 1-2). It provides an 
input box for users to communicate with the LLM and contains the 
complete chat history. Once the LLM generates code and provides 
an explanation, only the explanation is presented in the chat history. 
Additionally, the chat panel allows users to communicate via voice 
input in addition to manual typing; this is enabled by speech-to-text 
functionality implemented using OpenAI’s Whisper [42]. 

3.2.3 Terminal Panel. This panel is a Python terminal enriched 
with built-in functions to let users inspect, run, and save code and 
reset the system as needed (see Fig.1-3). The built-in functions and 
their usage descriptions are presented in Appendix A. 

3.2.4 Text Editor and File Tree Panels. The text editor constitutes a 
comprehensive text editing tool enriched with syntax highlighting 
features tailored for Python code (Fig. 1-4). Meanwhile, the �le tree 
panel exclusively displays �les generated by LLM and subsequently 
saved by the user. Its principal function is to facilitate users in 
monitoring the quantity of �les they have saved, enabling them 
to rerun these �les through the terminal when needed. By default, 
these panels are hidden, and users can unveil them by selecting the 
“Editor” or “File Tree” buttons located within the upper horizontal 
menu bar. This design approach, wherein the panels remain hidden 
by default, serves a speci�c purpose: to prevent users from feeling 
overwhelmed by an excessive array of panels and code. 

3.3 Back-End Components 
Alchemist’s back-end has several components to achieve the desired 
functionalities: Function Library, LLM Initialization Prompting, and 
Code Safety Mechanisms. We built upon the design principles laid 
out in Vemprala et al. [51] for the function library and LLM prompts 

but with enhanced functionalities tailored for end-user robot pro-
gramming. Fig. 3 provides a high-level overview of the back-end 
operations; the implementation details are provided below. 

3.3.1 Function Library. The function library is a platform-speci�c 
code library designed to be a broad set of tools for the LLM to use. It 
is a layer of abstraction over underlying ROS functions and services 
speci�c to achieve general actions (e.g., moving the robot, operating 
the gripper). The LLM is provided descriptions of these functions 
in its initial prompt and is instructed to use only these functions. 
We assign descriptive names to the functions in this library and 
their input to further leverage the natural language understanding 
capabilities of LLMs [51]. 

Our system is designed to cater to a wide spectrum of users, 
from those pro�cient in coding to individuals with little to no 
coding experience. We achieve this variability in LLM code output 
based on the chosen abstraction level through our initial prompt, 
rather than by altering the function library itself. In our current 
implementation, the function library contains functions with two 
levels of abstraction: high-level and low-level. This approach makes 
our implementation of the function library simple, easy to interpret, 
and interchangeable, resulting in a modular system. 

High level abstraction support novice users or those with limited 
coding experience. These high-level functions are closely inter-
connected, serving speci�c, task-oriented purposes, and possess a 
limited number of input parameters. An example high-level func-
tion is pour(target_name) which takes the target container name to 
pour as an input and pours the container that is gripped by the robot 
into the target container given in the input, as can be seen this is a 
highly engineered, abstract function. Conversely, low-level func-
tions are more versatile, encompassing a broader range of potential 
uses and interactions. They boast a greater degree of generality and 
o�er more extensive functionality, while tending to be more error-
prone. An example low-level function is move(x,y,z,roll,pitch,yaw) 
which takes the end-e�ector pose and moves the end-e�ector to 
that pose, as can be observed from this example this function is a 
small wrapper over the underlying robot API and not as abstract; 
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Figure 3: Illustration of back-end components of Alchemist: the function library, initialization prompt and grounded prompts 

notice that the move function can enable similar outcome as the 
pour(target_name) function but with more granular control over the 
speci�cs of the movement. More examples of di�erent abstraction 
level libraries can be found in supplementary materials. 

3.3.2 Initial Prompting of the LLM. For our initial release and ex-
ploratory study, we employed OpenAI’s GPT-4 [36]; we chose GPT-
4 due to its state-of-the-art reasoning capabilities and simple API 
usage. The key to e�ectively leveraging an LLM for programming is 
initializing the model with well-de�ned function library, a system 
role, and an environment prompts [51]. 

We instruct the LLM to act as a robot programming helper. We 
also specify the robot in terms of name, number of degrees of 
freedom, end e�ector, and type of code that it needs to return 
with some warnings, rules, and caveats (e.g., “always use �oating 
numbers” and “you are not to use any other hypothetical functions 
that you think might exist”). The function library prompt contains 
the names, inputs, functionalities, and outputs of each function that 
is available to the LLM along with axis and unit conventions; this 
prompt acts as a descriptive code documentation. 

The environment prompt is used to inform the system about 
the presence of physical objects within the workspace. For our 
exploratory study, we utilized various-sized beakers and graduated 
cylinders, all of which are listed in the environment prompt with 
their respective dimensions. If a sophisticated perception system, 
such as a vision language model [58], is used, the environment 
prompt could be omitted. 

The �nal component of the initial prompt is the example user 
prompt, coupled with the corresponding example code output. This 
element holds signi�cant importance in enabling the LLM to gen-
erate high-quality code. In our exploratory study, the provided 
example is thoughtfully crafted to incorporate a wide array of func-
tions from the function library. The example given in our system is 
designed in a way that utilizes most of the functions in the library 
to reinforce the correct usage of each function by the LLM. 

Lastly, to overcome the token limit issue arising from a lengthy 
conversation history inherent to iterative programming, we selec-
tively truncate the middle segment of the conversation history and 
resend the API call to aid in error recovery. 

3.3.3 Safety and �ality Assurance Methods. During the devel-
opment process, we identi�ed several common mistakes made by 

the LLM during code generation [12]. These errors can be roughly 
categorized into two classes: errors in interpretation and errors 
in execution (see Appendix B for details). Errors in interpretation, 
such as import errors, are usually detected by the program inter-
preter or compiler, and are relatively straightforward to rectify. On 
the other hand, errors in execution, such as adding an unnecessary 
action, are less obvious because they do not necessarily lead to an 
immediate code breakdown. Instead, these errors become apparent 
only when undesirable task outcomes are observed. We explored 
various methods, such as parsing the generated code or adding rules 
to the initial prompt, to address errors during execution; grounded 
prompting was the most e�ective approach. 

Alchemist relies on grounded prompting (e.g., [54]) to reinforce 
speci�c rules for code output towards ensuring safety, quality and 
executability of the generated code. We have two general grounding 
prompts that are added to all prompts issued by the users: (1) 
“By using the function library you are provided, ” is added to the 
beginning of each prompt to reinforce library usage and prevent 
LLM from using imaginary functions; and (2) “ make sure to move 
back to home after the task is �nished.” is added to the end of each 
prompt to ensure the robot’s proper positioning between tasks. 

In addition to these two groundings, we use three conditional 
groundings more speci�c to our exploratory study. If there is an 
“add” word in the user prompt, then we append the user input with 
“ Make sure to use marker location.”. If there is a “pour” word in 
the user prompt, then we add “Don’t move above the beaker before 
pouring; just call the pour function. Also, after pouring, make sure you 
place the object back to where it was on the table and then open the 
gripper to release it.”. If there are any of “function”, “generic”, “code” 
words in the user prompt, we add “If you wrote a function, remember 
to add an example function call at the end.”. These groundings were 
all added on an as-needed basis. The �rst one is to make sure when 
objects are being added to the virtual space, GPT uses markers as 
location indicators; the second is to address several issues in its 
call of pour function and assumptions it makes; and the third is to 
make sure when generic functions are written by GPT there is also 
an accompanying example function call. 

Other than prompt grounding, we added code veri�cation. The 
primary objective of the code veri�cation is to examine the code 
produced by GPT and make necessary general corrections such 
as imports (e.g., not importing rospy, etc.), ROS node and function 
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library initialization, as well as Python version check. This veri�ca-
tion ensures that the code created by GPT does not include errors 
resulting in failure of code interpretation. 

3.4 System Modularity 
3.4.1 Robotic Platform. Alchemist features modularized, inter-
changeable function library and initial prompts, allowing for the 
easy con�guration to di�erent robotic platforms with support for 
both physical and simulated robots and LLM used. In our initial 
system release, we provide implementations for two manipulators 
(Universal Robots UR5 and Franka Emika Panda) and one mobile 
manipulator (PAL Robotics TIAGo). 

3.4.2 Vision System. The vision system in Alchemist o�ers an easy, 
fast and low cost way for quick testing and development. We modify 
the AR Track Alvar [34] package to have object grasping orien-
tation information encoded in each marker. For this purpose, we 
created markers that have a pointy end indicating how the robot’s 
gripper should approach and align itself with the marker inspired by 
Se�dgar et al. [47] (for details see supplementary materials). Impor-
tantly, these markers play a pivotal role in establishing a connection 
between physical objects and their virtual counterparts. They are 
intentionally designed to be independent of speci�c objects, o�er-
ing users the �exibility to utilize them as reference points for object 
positioning. Users can strategically position these markers any-
where within the workspace, allowing for various orientations and 
placements. It is worth noting that Alchemist is engineered to sup-
port seamless integration of a full �edged perception system that 
has multi-modal sensing through its modular system architecture. 

4 AN EXPLORATORY STUDY 
We conducted an exploratory study to gauge the usability of our 
system and understand its limitations. Details of the experimental 
task and settings are provided in the supplementary materials 2. 

4.1 Context and Task 
Integrating robotic assistants in life sciences laboratories is emerg-
ing as a promising application domain [10, 11, 29]; the nature of lab 
experiments in life sciences requires precise and repetitive work 
with long operation duration and involves various health hazards. 
However, experts in life sciences rarely have experience program-
ming or working with robots. Changes in an experimental protocol 
require robotics experts to set up or update the con�guration of 
the robotic system to the new experimental requirements. We pro-
pose Alchemist as an alternative since its collaborative end-user 
programming paradigm is designed to help users with little to no 
robotics experience to be able to program robots to perform desired 
tasks. Thus, we chose a common biochemistry experiment as the 
basis for the programming task in our study. 

We based our task on the LB Media preparation experiment, 
which is performed to create plates for growing live cultures in bio-
chemistry and related �eld labs. We modi�ed LB Media preparation 
task into a toy experiment by replacing reagents with beads and 
glass lab equipment such as beakers and graduated cylinders with 
plastic ones for safety reasons. At a high level, this task is about 

2http://tinyurl.com/supplementary-alchemist 

picking various graduated cylinders that have di�erent types of 
reagents and pouring them into a beaker to create mixture. 

In our main experimental task, we asked participants to use the 
system to generate general functions for re-usability but let them 
decide whether to use general functions or step by step prompting 
for the task execution. Before the main task, we used a training 
task to familiarize users with the system. Our training task was 
designed to give participants a complete overview of the system by 
requiring all system functionalities to be used. 

4.2 Procedure 
Participants were asked to �ll out the consent form, and right after, 
they were given a user manual and asked to read it entirely. After 
reading the user manual, they were asked to watch a short tutorial 
video that explains the training task and the system. The experi-
menter then gave the participants the sheet containing the training 
task and went over it once to ensure the participants understood 
everything. Then, participants started the training task and the 
experimenter guided the participants along the tasks to familiarize 
them with the system. Upon completing the training task, the ex-
perimenter gave the participant the main task sheet, and started 
the video and screen recording. After that the experimenter went 
behind a divider to let participants work independently with the 
system. From this time till task end, the experimenter did not inter-
vene unless there was a signi�cant failure with the system usage 
or participants have spent more than 45 minutes on the task alone. 
If the experimenter stepped in, the experimenter was instructed to 
give just enough support to have participants go on with the task. 
A post-interaction questionnaire that collected System Usability 
Scale (SUS) [9] responses and demographic information including 
self-reported expertise in programming and robot programming 
was administered. After the questionnaire, participants had a semi-
structured interview to conclude the study. The user manual, study 
procedure, interview questions, training task sheet, and main task 
sheet can be found in the supplementary materials. 

4.3 Measures 
We collected a range of metrics to understand the user experience 
of our system during the exploratory study (see Appendix C for 
details). Measures such as total programming time, debugging time, 
idle time, task completion time, number of errors, editor use, de-
bugging method, and use of general functions are extracted using 
post-study labeling of the video and screen recordings of the partic-
ipants interacting with the system and the robot during the study. 

4.4 Participants 
In this study, we recruited 5 (1 male, 4 female) graduate students 
or postdocs who work in biology, chemistry and biophysics �elds 
(“novice”). Their age ranged from 25 to 29 (" = 26.8,  (⇡  = 1.48). 
We additionally recruited 5 (4 male, 1 female) graduate students 
who work in the robotics �eld. Their age ranged from 25 to 28 (" = 
26.4,  (⇡  = 1.34). Participants who work in the robotics �eld are 
denoted as “experts” and provided us with additional insights about 
our system. Participants self-reported expertise levels were rated on 
a scale of 1 to 5 for coding and robot coding, with 1 indicating novice 
and 5 indicating expert. Novice users typically rated themselves 
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Table 2: Reported measures from the exploratory study with respect to user expertise level

PID Prog. Debugging Idle Task Comp. # Error Types Editor Debugging Use of Gen. SUS
Time Time Time Time Errors Use Method Func. 

Novice N1 00:32:48 00:24:18 00:08:24 1:05:30 2 Name, Physical no prompt Yes 72.5
N2 00:09:01 00:00:00 00:26:11 0:35:12 0 no - No 52.5
N3 00:13:24 00:01:20 00:59:28 1:14:12 1 Syntax no prompt No 72.5
N4 00:44:35 00:32:06 00:14:30 1:31:11 5 Name,Factual,Syntax,Import no prompt No 12.5
N5 00:15:57 00:10:35 00:22:33 0:49:05 1 Factual yes prompt Yes 70

Mean 00:23:09 00:13:40 00:26:13 1:03:02 1.8 56
Expert E1 00:20:09 00:13:25 00:33:12 0:54:46 2 Factual,Syntax yes edit code Yes 70

E2 00:32:29 00:14:21 01:14:17 2:01:07 1 Name yes edit code No 62.5
E3 00:14:00 00:04:02 00:50:57 0:56:59 5 Name yes edit code Yes 72.5
E4 00:06:46 00:00:00 00:34:36 0:41:22 0 yes edit code Yes 80
E5 00:10:01 00:01:24 00:24:15 0:35:40 1 Name no prompt Yes 57.5

Mean 00:16:41 00:06:38 00:43:27 1:01:59 1.8 68.5

as 2 for coding (" = 2.42,  (⇡  = 1.51) and 1 for robot coding (" =
1.71,  (⇡  = 1.25), while expert users rated themselves as 4 for coding
(" = 4.25,  (⇡  = 0.5) and 4 for robot coding (" = 4,  (⇡  = 0.82).

4.5 Findings
From our exploratory study we observed some interesting similari-
ties and di�erences in how novice and expert users interacted with
the system (Table 2). Below, we highlight these observations.

Novices and experts both had similar average task completion
times which might be due to di�erent prior knowledge of both
groups, one group possessing prior knowledge about the task well
whereas the other group possessing prior knowledge on coding and
robots. This is supported by how the expert group on average took
less time programming and debugging but more idle time than the
novice group; idle time refers to time spent on the task other than
using the system (e.g., thinking, reading the user manual, etc.).

Novice users tended to debug their program by prompting the
LLM further rather than using the editor; this behavior can be
attributed to novice users avoiding directly dealing with code due
to their unfamiliarity as re�ected by N2: “It would be di�cult for me
to troubleshoot by myself, as I lack the con�dence to examine the code 
to determine exactly what’s going on.”. Similarly, we observed that
novice participants chose not to use general functions; N3: “Since
I’m not comfortable with coding, I prefer providing direct step-by-
step instructions to the robot rather than using a generic function.” A
prompt example by novice N3 illustrates this observation: “pour
the water from the 250ml graduated cylinder to the 500ml beaker. Put 
the 250ml graduated cylinder back to its original place gently.” On
the other hand, a prompt example by expert E1 for the same task
shows that experts tended to create generic functions and reused
them: “Can you write a generic function called "pick_and_pour",
which allows me to insert the input, and the robot will based on 
the input to grab the target and pour it into the 500mL beaker?”. We 
provide more examples of user prompts in supplementary materials
of this paper.

Overall, all novice participants had positive comments about the
potential of the collaborative programming paradigm in democra-
tizing robot programming especially in specialized domains such
as life sciences research laboratories. N3 commented that “Working
in a biochemistry lab, we need to prepare media almost every day, 

often in large quantities. It’s a routine protocol that takes up a signi�-
cant amount of time. However, if a system like this could be used to 
automate the process, it could save a substantial amount of time.”. N5
also commented that “I think the idea behind this project is really
novel. It can be used extensively, especially in biochemistry labs, where 
tasks like these are a frequent occurrence. I think this system could 
be extremely helpful.”. This feedback validates our rationale behind
developing Alchemist: empowering true end-users to intuitively
create, edit, and test robot programs for custom uses.

The main limitations of the system arose due to problems with
motion planning and visual perception resulting in failures in robot
action which occurred independent of the generated code itself;
our �ndings highlight the value of this collaborative programming
paradigm while underscoring the need to improve reliability in
task execution. Participant N4 experienced a signi�cant number of
vision and planning errors, which explains the outlier SUS score
of the participant; N4: “I don’t feel con�dent using this in a lab
because it keeps knocking over things several times.” . Yet, N4 still
acknowledged the value of a system like Alchemist: “I would love to
have a liquid handling system in our lab where I could simply press 
a button and say ’go’ without worrying about it failing, but I don’t 
think it’s at that stage yet.”. 

We note that although the occurrence of errors described in
Appendix B has decreased due to our code veri�cation mechanisms,
errors have not been completely eliminated.

5 LESSONS LEARNED
Our system design and development process, along with our ob-
servations in the exploratory study, elucidated a range of e�ective
practices for and limitations of our end-user programming approach.
We are sharing a set of lessons learned to guide future work on
LLM-powered end-user robot programming.

5.1 LLMs Can Output Unreliable Code
Robustness of LLM-generated code is critical for a successful end-
user programming experience [30, 50]. We adopted two key strate-
gies to enhance the reliability of the generated programs: (1) code
veri�cation through simple parsing and error handling mecha-
nisms helped eliminate most interpretation errors; and (2) grounded
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prompting helped reduce execution errors and re�ne LLM re-
sponses to �t domain-speci�c requirements. These approaches 
helped minimize errors ensuring that even novice users were able to 
successfully complete our study task; yet, some errors still persisted 
introducing overhead in the task completion time by necessitating 
debugging (see Table 2). Noticing that novice users largely relied 
on prompting the LLM for debugging further underscored the need 
for reliable code generation and iterative re�nement to enable end-
users to e�ectively author robot programs. Incorporating advanced 
formal software veri�cation methods [32, 52] into LLM-enabled 
end-user programming systems can further bolster the reliabil-
ity of LLM-generated programs and enhance the e�ciency of our 
proposed approach. 

Lesson Learned: Enhancing LLM-generated code reli-
ability through code veri�cation and e�ective prompt-
ing is critical for end-user robot programming. 

5.2 E�ective LLM Prompting is Di�cult 
A signi�cant challenge stems from users possessing a skewed or 
incomplete understanding of the LLM and its capabilities [6, 31, 57]. 
This often leads to vague or implicit prompts, which in turn can 
produce undesirable code outcomes, ranging from coding errors to 
unintended robot behaviors. To address this issue, we implemented 
two strategies to improve how users prompt the LLM. 

Firstly, we used guided training assets (i.e., user manual, tutorial 
video, a training task) in our exploratory study to better familiarize 
the users with methods for LLM prompting. However, e�ective 
prompting of large language models remains a challenge for users 
and further work is needed to develop training methods that em-
power end-users to create high-quality prompts. 

Secondly, we also utilized grounded prompting to dynamically 
add contextual details to user prompts, e.g., when users prompted 
the LLM about a pouring task we added grounding to the prompt 
to state that the container once poured should be returned to its 
original location. However, this mechanism is domain-dependent 
and requires prompt modi�cation in case of a vastly di�erent appli-
cation domain re�ecting a limitation of this approach. One potential 
solution could be the structural integration of the LLM within the 
robot programming ecosystem to ensure the LLM has necessary 
contextual information. Moreover, enhancing dialogue between the 
LLM and the user about the task’s overarching purpose and char-
acteristics could strengthen the collaborative bond and enrich the 
LLM’s contextual comprehension. These approached could facilitate 
the automatic grounding of tasks, based on current requirements 
and conditions. 

Lesson Learned: E�ective LLM prompting requires 
end-user training and dynamic context-dependent prompt 
enhancement. 

5.3 End-User Aversion to Direct Coding 
End-users exhibit a wide range of knowledge regarding program-
ming and speci�cally robot programming. To cater to this diversity, 
Alchemist features a two-level abstraction in its function library 
which a�ects how the LLM generates code. The high-level abstrac-
tion functions aimed to guide the LLM to generate less error prone 

and easier to debug programs while the low-level abstraction pro-
vided the end-user with more control over program speci�cation. 
This distinction was important for novice users especially as we 
observed they tend to avoid directly viewing and editing code. 

LLMs are capable of generating general purpose code that can 
be reusable in later stages of a task. Alchemist provides users with 
a terminal panel function (see Appendix A for details) that allows 
them to call general functions with custom inputs without editing 
any code; however, we still observed that novice users hesitated to 
use general functions. Further integrating LLMs into the program-
ming ecosystem as a conversational assistant could allow novice 
users to call such functions without needing to using the command 
line interface, thus further enhancing a sense of collaboration. Fur-
ther work is needed to design methods to empower end-users to 
e�ectively use more advanced programming notions (e.g., general 
functions) to maximally exploit the generative capabilities of LLMs. 

Lesson Learned: Introducing abstractions to minimize 
code complexities while retaining programmatic expres-
siveness can enhance user con�dence in programming. 

6 LIMITATIONS AND FUTURE WORK 
Though our exploratory study provided an insight into the e�ective-
ness of Alchemist as well as how expert and novice users interacted 
with it, the sample size is small, limiting our ability to draw conclu-
sions regarding how people with di�erent levels of programming 
knowledge may use an LLM-based robot programming system; 
moreover, the stochastic nature of LLM outputs may result in vari-
ous programming/user behavior and user experience [37]. Future 
work should investigate methods to validate LLM-based robot pro-
gramming and conduct well-powered experiments. Furthermore, 
while the inclusion of expert users in our exploratory study o�ered 
valuable insights into how experts and novices di�er in using the 
system, it limited our ability to focus the study on true end-users. 

While true end-users (i.e., participants from life sciences) evalu-
ated our system, their interactions occurred in a robotics laboratory, 
rather than a real-world deployment environment which represents 
another limitation. Additionally, this paper centers on a singular 
use case for our system. However, its potential applications span 
diverse settings, from varying experimental protocols to entirely 
distinct domains like manufacturing or customer-facing services 
in hospitality and food sectors. Future research should explore de-
ploying this system or analogous ones in real-world contexts across 
various domains to discern both its capabilities and constraints. 
Lastly, future research should systematically compare our end-user 
programming system with existing state-of-the-art systems to bet-
ter evaluate and understand their di�erences. 

In conclusion, we see a shift toward a more collaborative para-
digm for end-user robot programming as powered by large language 
models and vast opportunities to use LLMs in advancing end-user 
development of robot applications in diverse domains. 
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