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ABSTRACT 
As robots enter human workspaces, there is a crucial need for robots 
to understand and predict human motion to achieve safe and fluent 
human-robot collaboration (HRC). However, accurate prediction is 
challenging due to a lack of large-scale datasets for close-proximity 
HRC and the absence of generalizable algorithms. To overcome 
these challenges, we present INTERACT, a comprehensive multi-
modal dataset covering 3-D Skeleton, RGB+D, gaze, and robot joint 
data for human-human and human-robot collaboration. Addition-
ally, we introduce PoseTron, a novel transformer-based architecture 
to address the gap in learning algorithms. PoseTron introduces a 
conditional attention mechanism in the encoder enabling efficient 
weighing of motion information from all agents to incorporate team 
dynamics. The decoder features a novel multimodal attention mech-
anism, which weights representations from different modalities and 
the encoder outputs to predict future motion. We extensively eval-
uated PoseTron by comparing its performance on the INTERACT 
dataset against state-of-the-art algorithms. The results suggest that 
PoseTron outperformed all other methods across all the scenarios, 
attaining lowest prediction errors. Furthermore, we conducted a 
comprehensive ablation study, emphasizing the importance of de-
sign choices, pointing towards a promising direction for integrating 
motion prediction with robot perception in safe and effective HRC. 

CCS CONCEPTS 
• Human-centered computing → Collaborative interaction; • 
Information systems → Multimedia and multimodal retrieval. 
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Figure 1: Samples of Close-proximity Human-Human and 
Human-Robot Collaboration from the INTERACT Dataset. 

1 INTRODUCTION 
Collaborative robots (cobots) capable of safely operating in close-
proximity to humans have the potential to significantly enhance 
efficiency and productivity across various industries, ranging from 
manufacturing to fulfillment [50]. At the core of achieving effec-
tive and fluent close-proximity human-robot collaboration (HRC) 
lies the crucial ability of robots to perceive and anticipate human 
intentions [11, 17, 18, 28, 31, 47, 48, 65]. This imperative need for 
anticipation and adaptability mirrors the fundamental aspects of 
human interactions. Tasks such as navigating through crowded 
environments or exchanging objects heavily rely on our innate ca-
pacity to observe and anticipate the actions of others [10, 13, 61, 62]. 
This anticipatory capability would empower robots to proactively 
adjust their actions, avoid collisions, and provide valuable assistance 
to humans in dynamic and often unpredictable environments, simi-
lar to how humans employ anticipatory and feedback mechanisms 
to develop suitable motor behaviors [51, 56]. 

The concept of anticipation has received extensive attention par-
ticularly in the social navigation and collaborative manipulation 
domains. The primary goal in the former is to navigate safely in 
the presence of humans, thus avoiding any potential interference 
[36, 38–40, 50]. On the other hand, anticipating the next human ac-
tivity would enable robots to contribute to the task proactively, im-
proving efficiency and taking preemptive action to enhance safety 
[13, 22, 30, 58, 59]. However, with the introduction of cobots, which 
are expected to engage with humans over extended periods in close-
proximity settings, there is a need to anticipate human motion at a 
higher spatial and temporal granularity [19, 23, 63]. Anticipation 
in this scenario would entail predicting future human motion con-
ditioned on past motion, representing a shift from the 2-D global 
position predicted in social navigation or categorical human activi-
ties in collaborative manipulation to 3-D skeletal joint positions. 

While the concept of anticipation is crucial for cobots, the cur-
rent state-of-the-art in motion prediction needs to be revised when 
addressing the specific challenges in close-proximity HRC. These 
challenges are multifaceted, with one of the primary bottlenecks 
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Table 1: Summary of Publicly Available Multimodal Human-Robot Interaction Datasets. 

Datasets Setting # Agents Sensor Modalities Duration of Recordings 
# 3-D Skeletons RGB Multi-view Depth Multi-view Ego Data No. of Person Robot Joint Positions (Approximate) 

HARMONIC[42] HRI (Shared Autonomy) 1 1 ✔ ✗ ✔ ✗ ✔ 1 ✔ 5 hours 
MHHRI [8] HHI and HRI 2 1 ✔ ✔ ✔ ✔ ✗ N/A ✗ 7 hours 
MoGaze [26] HI 1 1 ✗ ✗ ✗ ✗ ✔ 1 ✗ 3 hours 
UE-HRI [4] HRI 1 1 ✔ ✔ ✔ ✗ ✗ ✗ ✗ 12 hours 

FACT HRC [55] HRC 1 1 ✔ ✔ ✔ ✔ ✔ 1 ✔ 20 hours 
INTERACT (Ours) HHC and HRC 3 (HHC) & 4 (HRC) 3 ✔ ✔ ✔ ✔ ✔ 2 ✔ 9 hours 

being the scarcity of comprehensive real-world datasets that fea-
ture scenarios involving robots collaborating with one or more 
humans [6, 10, 55]. The availability of such datasets is essential 
as it is a fundamental requirement for developing and validating 
algorithms capable of accurately predicting human motion and in-
tention. Furthermore, there is a notable gap in learning algorithms 
capable of reliably predicting the motion of multiple humans. Exist-
ing research on human motion prediction predominantly focuses 
on dyadic scenarios – involving one human and one robot [5, 55], or, 
in some cases, excludes robots altogether [26]. This limitation con-
strains the robot’s anticipation capabilities to dyadic collaboration, 
which may not always reflect the nature of real-world scenarios 
which may haave multiple humans and/or robots. 

To address the aforementioned challenges, we introduce INTER-
ACT, a comprehensive human-human and human-robot collabo-
ration dataset. INTERACT stands out by featuring a large-scale 
collection of multimodal data encompassing both Human-Human 
Collaboration (HHC) and Human-Robot Collaboration (HRC). Each 
collaborative task contains at least three participants, presenting a 
shift from dyadic to team interaction. INTERACT comprises assem-
bly tasks involving three participants in HHC scenarios and four 
participants in HRC scenarios, with one of the participants being a 
robot (see Fig. 1). The dataset comprises 3-D human Skeleton joint 
positions of 3 participants, RGB and depth data of the workspace 
and the interaction from two viewpoints, ego-view data from the 
two human participants, eye-tracking and gaze data from two of 
the humans, and robot joint data, all synchronized to provide an 
exhaustive picture of the collaboration task. As part of the data col-
lection effort, we recruited 63 participants, which amounted to 21 
groups of three human participants for HHC and three humans and 
a robot participant for HRC scenarios, amounting to approximately 
1 M samples of synchronized multimodal data. 

INTERACT has three novel characteristics that distinguish it 
from prior datasets such as Mogaze [26], Thor [47], and FACT-
HRC[55] (see Tab. 1). First, INTERACT represents close-proximity 
collaboration in groups of three humans + one robot for the HRC 
scenarios, which provides a novel and highly interactive scenario 
for data collection, distinguishing it from other datasets [26, 55] 
which were limited to dyadic interaction. Second, we introduce 
a simple but effective setup for data collection where the robot 
was completely autonomous in close-proximity settings with hu-
mans, which is a shift from other datasets that were primarily 
tele-operated or featured a form of shared autonomy. Finally, to 
understand the present state of HRC, we collected data on the 
same task comprising only human participants. This allows us to 
investigate how HRC compared to HHC and provides a mechanism 
to systematically analyze how humans behave differently in the 
presence of a robot collaborator. In addition, it allows the research 
community to evaluate the generalizability of their algorithms by 

training them on data from HHC scenarios and testing in HRC 
scenarios. 

To address the gap in learning algorithms that can accurately pre-
dict the motion of multiple agents, we propose a novel and efficient 
transformer architecture [60], PoseTron (pronounced “pos·i·tron” ). 
PoseTron employs an encoder-decoder framework where the en-
coder is tasked to extract spatio-temporal representation in human 
motion, fuse representations from diverse modalities, and learn 
the interaction dynamics among all agents. Additionally, we intro-
duce specialized attention modules to capture agent-specific mo-
tion patterns. We employ self-attention mechanisms for extracting 
spatio-temporal features within each agent’s motion and condi-
tional attention mechanisms that enable agents to incorporate team 
dynamics by querying another agent’s representations. The encoder 
output comprises encoded representation from non-skeletal modal-
ities and skeleton representation that encapsulates the complexity 
of individual human motion and team dynamics. 

The output of the encoder, along with the last observed motion, 
is passed to the decoder. The decoder employs an auto-regressive 
mechanism for future motion prediction. Additionally, the decoder 
utilizes a conditional attention mechanism to incorporate salient 
representation from its generated output and the encoder’s repre-
sentations. 

We conducted extensive experiments to assess the efficacy of 
PoseTron by deploying on the INTERACT dataset. Our experiments 
included evaluating the performance of PoseTron on i) HHC-train, 
HHC-test, ii) HRC-train, HRC-test, and iii) HHC-train, HRC-test 
setups. Our results suggest PoseTron consistently outperformed 
the state-of-the-art approaches over all three evaluation scenarios. 
Furthermore, we conducted a comprehensive ablation analysis of 
PoseTron’s learning modules and the relevance of multimodal data 
in the INTERACT dataset. The results validate PoseTron’s architec-
tural choices and underscore its ability to leverage complementary 
information from diverse data sources. The outcomes of these ex-
periments promise to narrow the gap in close-proximity HRC by 
providing a substantial dataset and valuable insights for advancing 
state-of-the-art anticipation techniques. 

2 RELATED WORK 

2.1 Multimodal Datasets in HRI 
Multimodal datasets have piqued the interest of diverse commu-
nities, spanning human–robot interaction [42, 47, 55], computer 
vision [14, 29], action recognition [7, 25, 52], and natural language 
processing [27, 32]. In the context of Human-Robot Interaction 
(HRI), the capture and analysis of data from various modalities 
are crucial, empowering robots to comprehend, anticipate, and 
coexist with humans in diverse environments. In alignment with 
this, recent datasets have emerged, providing multimodal data for 
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shared-autonomy [42], social navigation [47], and dyadic Human-
Robot Collaboration (HRC) [55]. 

Newman et al. [42] introduced the HARMONIC dataset, captur-
ing multimodal data, including RGB, Gaze, and Robot information, 
during human-robot collaboration tasks. However, the dataset is 
confined to shared autonomy in a table-manipulation scenario. 
Celiktutan et al. [8] proposed the MHHRI dataset, encompassing 
dyadic (Human-Human) and triadic (Human-Human-Robot) inter-
actions but is limited to human-side interactions, lacking human 
perspective (ego-centric) data crucial for understanding human in-
tent [42]. Tian et al. [55] presented the FACT-HRC dataset, focusing 
on human-robot handover interactions in collaborative environ-
ments but restricted to dyadic (human-robot) scenarios. 

While existing datasets have made strides in addressing vari-
ous aspects of HRI, a noticeable gap persists in the availability of 
datasets tailored to close-proximity HRC scenarios involving mul-
tiple humans. Furthermore, many of these datasets rely on tele-
operation within Wizard-of-Oz setups, which does not accurately 
represent how humans will naturally interact with an autonomous 
robotic agent. The challenges of recruiting human participants, 
physically co-locating robots and humans, and the imperative to 
uphold human privacy rights further compound the limitations of 
such datasets. As a result, most datasets feature a limited number 
of participants, which often fails to capture the complexity and 
diversity of behaviors encountered in real-world HRI settings. 
2.2 Human Motion Prediction 
Human motion prediction is widely considered one of the essential 
parts of robotic intelligence that would enhance robot perception 
and allow for rapid and high fidelity reactions towards complex 
environment changes [35, 37, 48, 54]. The notion of prediction has 
found application in diverse areas within HRI, spanning shared 
autonomy [42, 45], social navigation [40, 41], and autonomous ve-
hicles [16, 43, 49]. Ngiam et al. [43] proposed a model for predicting 
joint trajectories of multiple agents, using a masking strategy and 
attention mechanisms. Tang et al. [54] illustrated the relevance of 
motion prediction in planning, computing conditional probability 
density for the trajectories of other agents based on a hypothetical 
rollout of the self-agent. Yasar et al. [64] proposed a multi-agent 
adversarial auto-encoder approach for predicting future human mo-
tion, with the authors using a self-attention mechanism to weigh 
the different agent representations before predicting future motion. 
Adeli et al. [1] proposed a social pooling mechanism on top of the 
seq2seq architecture for predicting multi-agent motion prediction. 

Accurate human motion prediction is pivotal for ensuring the 
safety of HRI, particularly in close-proximity HRC. Despite recent 
improvements, there’s a notable gap in their application to HRC 
scenarios [47]. The challenge lies in their training on datasets pre-
dominantly featuring single-agent human motion [26], often lack-
ing the context of robots within the workspace. This limitation 
hinders their applicability to collaborative environments. 

3 INTERACT: HHC AND HRC DATASET 
In this section, we present our first solution for enabling close-
proximity HRC: the INTERACT dataset1 . Our proposed dataset 
stands out from other datasets in close-proximity HHC and HRC 

1Dataset is available at https://bit.ly/posetron-interact. 

Exo-view 2 

Exo-view 1 

Depth-view 1 

Skeleton 

Ego-view 2 

Ego-view 1 

Figure 2: Human-Robot Collaboration samples from the IN-
TERACT dataset. The dataset comprises 3-D skeletons from 
three participants, and RGB+D Camera views from two per-
spectives and Ego POV from two Participants. 
scenarios by providing a large-scale collection of synchronized 
multimodal data, as illustrated in Fig 1 and summarized in Tab. 2. 
The dataset includes 3-D Skeletal joint data of human participants, 
RGB and depth data from two viewpoints in the workspace, ego-
view, eye-tracking, and gaze positions data from the two human 
participants, and robot joint data. The comprehensive dataset can 
be leveraged for various tasks, including motion prediction, goal 
prediction, and imitation learning. 

3.1 Study Apparatus and Implementation 
The objective of collecting each of the modalities in INTERACT is 
to provide the robot with a comprehensive understanding of the 
interaction and its surrounding environment. For data collection in 
INTERACT, we utilized the OptiTrack Motion Capture system [20] 
for collecting 3-D Skeleton data, 2 ZED Cameras from StereoLabs 
[21] to capture RGB and depth from two different viewpoints of the 
workspace, and 2 eye-tracking devices by Pupil Labs [15] for col-
lecting ego point of view data, eye-tracking and gaze data. For HRC, 
we introduce a Fetch Robot [12], which is a mobile manipulator in 
the shared workspace to collaborate with the other participants. 

Prior to data collection, all equipment were meticulously cali-
brated to ensure accurate data synchronization. For collecting 3-D 
Skeleton data, participants were equipped with a full-body motion 
tracking suit by OptiTrack, comprising 41 passive markers. The 
3-D Skeleton poses represent a lightweight and accurate source of 
information for predicting human intent. In addition to 3-D Skele-
ton data, we incorporated RGB and depth data obtained from two 
cameras in opposing corners of the workspace, as illustrated in 
Fig. 2. This setup allowed us to maximize coverage and provide 
diverse perspectives on the collaboration. To further enhance the 
prediction of human intent and motion, we equipped two partici-
pants with eye-tracking devices, enabling the collection of valuable 
first-person viewpoints in addition to the third-person perspectives 
captured by other sensors, with prior work showing the benefit 
of eye-tracking and gaze information for predicting human intent 
[26, 42, 55]. Finally, in HRC scenarios, we deployed the Fetch robot 
and collected robot joint data. 

3.2 Human Ethics 
Our study protocols were reviewed and approved by the Institu-
tional Review Board. All participants provided informed consent for 
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participating in the study and having their data recorded as part of 
a public dataset for research purposes. At the end of the study, par-
ticipants were compensated with a $30 gift card for approximately 
2 hours of their time. 

3.3 Participants 
A total of 63 adults participated in the study (31.7% female (𝑛 = 20), 
66.67% male (𝑛 = 42) and 1.58% non-binary (𝑛 = 1)). The mean age 
of the participants was 23.65 years (𝑆𝐷 = 3.91). The participants 
were predominantly right-handed 84.1% (𝑛 = 53) and 15.9% left-
handed (𝑛 = 10). Participants also recorded their experience with 
robots on a Likert scale from “no experience” (1) to “expert-level 
experience” (5), with the mean experience level at 2.21 (𝑆𝐷 = 1.19). 

3.4 Data Collection Procedure 
All the tasks involved three human participants in both HHC and 
HRC scenarios. This arrangement led to 21 groups from the 63 
recruited participants. Each group engaged in 12 collaborative as-
sembly task sessions, with an equal distribution of 6 HHC and 6 
HRC sessions. Within each scenario, two variations were intro-
duced – one with obstacles in the workspace and one without. 
Pre-Task Survey: Before beginning the study, participants were 
asked to review consent documents and task instructions. They 
then filled out a pre-task survey, which collected demographic infor-
mation and their prior robot experience. Next, all three participants 
were equipped with Motion Capture suits to collect 3-D Skeleton 
Pose data. Two participants (Participants 2 and 3) also wore the eye-
tracker, which would collect their ego point-of-view, eye-tracking, 
and gaze data during the task. 

The scenarios were counterbalanced, and each group was as-
signed either HHC or HRC as their initial scenario. After complet-
ing all the sessions for their initial scenario, they switched to the 
other. They participated in six sessions within each scenario, three 
for each variation. In Variation-1, there were no obstacles in the 
workspace, whereas in Variation-2, there were obstacles that par-
ticipants would have to move around. To minimize the learning 
effect, participants rotated roles after each session. For instance, if 
a person started as Participant 1 in the first session, they became 
Participant 2 in the second and Participant 3 in the third session. 
This rotation applied to all group members in both HHC and HRC 
scenarios, ensuring balanced role distribution across variations. 
Human-Human Collaboration (HHC) Scenario: In this sce-
nario, three human participants collaborated on an assembly task. 
In each session, Participant 1 transported cups to Workspace 2 and 
Workspace 3 three times each, while Participants 2 and 3 followed 
this workflow: 

• Received a cup from Participant 1. 
• Moved to Workspace 1. 
• Extracted Lego pieces and instructions from the cup. 
• Assembled Lego pieces as per instructions. 
• Repeated steps 1-4 for three times. 

The session was considered complete when Participants 2 and 3 
assembled the Lego structure as specified in the instructions. We 
used different Lego structures for different variations to minimize 
the learning effect. After three sessions, obstacles were introduced 
to the workspace, or the scenario changed. 

Table 2: Summary Statistics of the INTERACT Dataset. 

Scenario 
Number of Variation 

Average Total Total Multimodal 
Participants Duration (sec) Timestamps Frames (Million) 

HHC 3 H 
w/o obstacle 104.5 201 K 1.20 M 
w obstacle 127.0 263 K 1.58 M 

HRC 3 H + 1 R 
w/o obstacle 140.9 300 K 1.80 M 
w obstacle 149.8 306 K 1.84 M 

Total - - - 1.07 M 6.42 M 

Human-Robot Collaboration (HRC) Scenario: In this scenario, 
a Fetch robot (as Participant 4) joined three human participants to 
complete a similar assembly task. The robot received cups from Par-
ticipant 1 and transported them between Workspaces 2 and 3. Par-
ticipants 2 and 3 followed a similar workflow to the HHC scenario. 
Post-Session Survey: After each session, participants filled out 
a post-session survey containing questions that covered various 
aspects: participant-specific questions (e.g., “I needed to observe and 
anticipate the activities of group member-1/2/3”), group-specific 
questions (e.g., “Which group member had the greatest impact on 
the coordination of the group?”) and robot-specific assessments, 
rated on a Likert scale (e.g., “The robot was effective in coordinating 
the actions with both the group members”). 

4 MULTI-AGENT MOTION PREDICTION 
Our objective is to improve the robot’s perception by providing it 
with the capability to forecast the motion of all human collaborators 
in the team. Human motion prediction is formally described as the 
task of estimating the future human pose for a certain period, given 
their past pose. We will present the problem for single-agent motion 
prediction and later extend the formulation to multiple humans. We 
assume access to 3-D skeletal joint positions as the primary data 
source, along with additional modalities (e.g., RGB). Our notation 
consistently utilizes superscripts to indicate agents and subscripts 
to represent time across all formulations. 

We begin by considering the scenario of an individual agent, 
denoted as agent 𝑖 . The objective here is to predict the future tra-
jectory of this agent’s pose, given the observed pose trajectory 
spanning from time 𝑡 = 1 to 𝜏 , represented as X𝑖 = {𝑥𝑖 1, . . . , 𝑥

𝑖 
𝜏 }, 

and any additional sensor data from other sources, referred to as 
𝐷 = {𝑑1, . . . , 𝑑𝜏 }. In this context, each pose frame 𝑥 𝑖 𝑡 ∈ R𝑁 repre-
sents the skeletal pose in an 𝑁 -dimensional space. The dimension-
ality, 𝑁 , is determined by the number of joints, indicated as 𝐽 , in 
the skeleton and the dimension of each joint, with 𝑁 = 3 × 𝐽 . The 
input frame from other sensors, 𝑑𝑡 ∈ R𝑁 , comprises raw data from 
complementary modalities such as RGB and Gaze data. 

The model’s objective is to generate future trajectory frames 
within a time horizon 𝐻 , denoted as Y𝑖 = {𝑦𝑖 

𝜏 +1, . . . , 𝑦
𝑖 
𝜏+𝐻 }. Our pri-

mary goal is to acquire the underlying representation that enables 
the model to accurately predict plausible future human poses, which 
are denoted as Ŷ𝑖 = { ̂𝑦𝑖 

𝜏+1, . . . , 𝑦
𝑖 
𝜏+𝐻 }. We work under the assump-

tion that predicting future human poses relies on past observed and 
generated poses, and we predict each frame in an autoregressive 
manner, as described below: 

𝑝𝜃 ( ̂Y
𝑖 ) = 

𝜏+𝐻 

𝛿=𝜏+1 

𝑝𝜃 ( ̂𝑦 𝑖 
𝛿 |𝑦

𝑖 
𝜏 :𝛿 −1, 𝑥 𝑖 1:𝜏 , 𝑑1:𝑇 ) (1) 

In the context of multi-agent motion prediction, the input consists 
of the observed poses of all agents in the scene from time 𝑡 = 1 
to 𝜏 : X = {𝑋 1 , . . . , 𝑋 𝐾 } = {𝑥1:𝐾 

1 , 𝑥1:𝐾 
2 , . . . , 𝑥1:𝐾 

𝜏 } and additional 
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Figure 3: Overall Architecture of PoseTron. PoseTron con-
sists of two modules: Multimodal Pose Encoder and Decoder. 
The Encoder encodes the motion of all the agents and modal-
ities of all the data streams. The Decoder uses the encoded 
skeleton representation and the multimodal non-skeletal 
representation to forecast future pose. 

multimodal input: D = {𝑑1, . . . , 𝑑𝜏 }. The expected output of the 
model is the future trajectory frames over a horizon 𝐻 , which 
represents the ground truth poses over the horizon 𝑡 = 𝜏 + 1 to 
𝜏 +𝐻 : Y = {𝑌 1 , . . . , 𝑌 𝐾 } == {𝑦1:𝐾

𝜏+1, 𝑦 1:𝐾 
𝜏 +2, . . . , 𝑦 1:𝐾 

𝜏 +𝐻 }. Thus, the multi-
agent motion prediction problem can be formulated as follows: 

𝑝𝜃 ( ̂Y
𝑖 ) = 

𝜏+𝐻 

𝛿 =𝜏 +1 

𝑝𝜃 (𝑦𝑖 𝛿 |𝑦
𝑖 
𝜏 :𝛿 −1, 𝑥 1:𝐾 

1:𝜏 , 𝑑1:𝜏 ); ∀𝑖 = 1, . . . , 𝐾 (2) 

5 POSETRON 
We now introduce our proposed framework for multi-agent human 
motion prediction: PoseTron. PoseTron (see Fig. 3) is a multimodal 
sequence learning architecture that aims to accurately predict the 
future poses of all humans, irrespective of their number or their 
collaborative scenario (HHC/HRC). PoseTron comprises two spe-
cialized modules: the encoder (Sect. 5.1), which aims to encode the 
motion of all the agents and modalities of all the data streams, and 
the decoder (Sect. 5.2) which uses the encoded representation to 
forecast future human pose. 

5.1 Multimodal Pose Encoder 
The input to the Encoder is observed motion of all the agents, 
comprising agent-specific skeletal input X = {𝑋 1 , . . . , 𝑋 𝐾 } and 
non-skeletal input D = {𝑑1, . . . , 𝑑𝜏 }, as depicted in Fig. 3. For the 
skeleton sequence spanning 𝑇 timesteps, we extend the 3-D joint 
position with time derivatives: velocity and acceleration. Thus, the 
original input, comprised of 𝑇 tokens, is extended to 3𝑇 tokens. 

5.1.1 Input Embedding. 
Skeleton modalities: We separately encode the skeletal input for 
each agent, 𝑋 𝑖 

𝑖𝑛𝑝𝑢𝑡 ∈ X. The input sequence is first passed through
an embedding layer to convert pose information into 𝑑 −dimensional 
vectors. Next, we add positional encoding to each input frame. This 
is required as we are not using recurrent neural architectures, in-
stead relying on a simple feedforward architecture, following the 
transformer implementation [60], which lacks the inherent notion 

of token order or position. We use a learnable positional encoding in-
stead of the fixed sinusoidal positional encoding of the transformer 
architecture [60]. The operations can be formulated as follows: 

𝑋 𝑖 token = E(𝑋 𝑖 𝑖𝑛𝑝𝑢𝑡 ); 𝑋 𝑖 positional = PE(𝑋 𝑖 token) 

𝑋 𝑖 embed = 𝑋 𝑖 token + 𝑋 𝑖 positional 
(3) 

Here, E represents the token embedding function that maps in-
put tokens 𝑋 𝑖 

𝑖𝑛𝑝𝑢𝑡 to token embeddings 𝑋 𝑖 
𝑡𝑜𝑘𝑒𝑛 . PE represents the 

learnable positional embedding function that is required to inject 
information about the relative or absolute position of the tokens in 
the sequence. The operations in Eq. 3 are repeated for velocity and 
acceleration input. 
Non-Skeleton modalities: For vision modalities such as RGB, the 
encoding process involves leveraging a feature extractor to obtain 
representation over a time horizon, followed by a temporal encod-
ing of these features. We use a pre-trained SwinTransformer [33] 
architecture to extract features. This allows us to reduce the train-
ing footprint and leverage existing architectures for extracting rich 
representations. We pass the extracted representations, which have 
a dimension of RT×K with 𝐾 and 𝑇 being the feature dimension 
and timesteps, respectively, through the input embedding layers, 
using the same operations as Eq. 3 to add positional encoding. The 
overall operations are summarized as follows: 

𝑋 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑚, 𝑡 = FE(𝑋𝑚, 𝑡 ) 
𝑋 𝑒𝑚𝑏𝑒𝑑, 𝑚, 𝑡 = InputEmbeeding(𝑋 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑚, 𝑡 ) 

(4) 

Here, 𝑚 represents the modality, which can be one of RGB, Gaze, or 
any other available modality, and 𝑋𝑚,𝑡 is the raw input of the modal-
ity. 𝐹 𝐸 represents a pre-trained feature extractor, which is used to 
extract representations 𝑋 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠,𝑚,𝑡 . The extracted representations 
are then passed to the input embedding function, previously defined 
in Eq. 3. 

5.1.2 Multi-Head Self-Attention. The self-attention module is cru-
cial in establishing temporal connections among individual skeleton 
embeddings. These skeletal embeddings undergo a self-attention 
process, enabling our framework to assess the significance of vari-
ous tokens within the input sequence while handling each token. 
In this process, every position in the input sequence is linked to a 
weighted sum of all positions, including itself. These weights are 
determined dynamically based on the similarity between positions. 
The mechanism used to calculate a weighed representation for each 
position is as follows: 

𝑄 = 𝑋𝑒𝑚𝑏𝑒𝑑𝑊 𝑄 ; 𝐾 = 𝑋𝑒𝑚𝑏𝑒𝑑𝑊 𝐾 ; 𝑉 = 𝑋𝑒𝑚𝑏𝑒𝑑𝑊 𝑉 

Attention(𝑄, 𝐾 , 𝑉 ) = softmax 

 
𝑄𝐾𝑇 √︁ 
𝑑𝑘 

 
𝑉 

(5) 

Here, 𝑄 represents the query matrix representing the queries for 
each token, 𝐾 represents the key matrix denoting the keys for each 
token, and 𝑉 represents the value matrix denoting the values for 
each token. For each token, we calculate the attention scores over 
itself and all other tokens using the softmax function.  𝑄   𝐾   𝑉 𝑊 ,𝑊 ,𝑊

represent the linear projection weights and 1  √ is the scaling factor 
𝑑

for
𝑘 

 calculating the attention weights. 
We pass the token embeddings 𝑋 𝑖 through the attention 

𝑒𝑚𝑏𝑒𝑑 
mechanism (Attention) to obtain 𝑋 𝑖 𝑎𝑡𝑡 . We repeat the aforemen-
tioned operations in Eqs. 3, 5 for each agents, thus obtaining 𝑋 𝑖 𝑎𝑡𝑡 ; 
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∀𝑖 = 1, . . . , 𝐾 . The operations can be represented as follows: 

𝑋 𝑖 𝑎𝑡𝑡 = Self-Attention(𝑋 𝑖 
𝑒𝑚𝑏𝑒𝑑 , 𝑋 𝑖 

𝑒𝑚𝑏𝑒𝑑 , 𝑋 𝑖 
𝑒𝑚𝑏𝑒𝑑 ) (6) 

5.1.3 Multi-Head Cross-Attention. Having computed the attention 
weights over skeleton tokens for each agent, the next task is to incor-
porate team dynamics by learning the association between tokens 
of different agents. To achieve this, we compute cross-attention 
scores for each agent-specific token 𝑋 𝑖 𝑎𝑡𝑡 in the following manner: 
For a given agent, denoted as 𝑖 , we treat their tokens as queries 
and compute key and value matrices for the remaining two agents, 
𝑗 and 𝑘 . We then determine attention weights and calculate their 
averages to derive the ultimate token representation for each agent. 
These operations can be concisely summarized as follows: 

𝑋 𝑖, 𝑗 𝑐𝑟 𝑜𝑠𝑠 −𝑎𝑡𝑡 = Cross-Attention(𝑋 𝑖 𝑎𝑡 𝑡 , 𝑋 𝑗 𝑎𝑡 𝑡 , 𝑋 𝑗 𝑎𝑡 𝑡 ), 

𝑋 𝑖,𝑘 
𝑐𝑟 𝑜𝑠𝑠 −𝑎𝑡𝑡 = Cross-Attention(𝑋 𝑖 𝑎𝑡 𝑡 , 𝑋 𝑘 

𝑎𝑡 𝑡 , 𝑋 𝑘 
𝑎𝑡 𝑡 ), 

𝑋 𝑖 𝑐𝑟 𝑜𝑠𝑠 −𝑎𝑡𝑡 = Mean(𝑋 𝑖, 𝑗 , 𝑋 𝑖,𝑘 ). 

(7) 

5.2 Multimodal Pose Decoder 
The input to the decoder is the agent-specific representation of the 
past motion and the multimodal representation from other non-
skeleton modalities (see Fig. 3). Unlike prior multimodal approaches, 
which fuse representations from different modalities at the encoder 
[9, 46, 57], we choose to fuse the multimodal representations at 
the decoder. Fusing the representation at the decoder allows the 
decoder to leverage the context and dependencies between different 
modalities, which could lead to a more accurate generation. The 
decoder is auto-regressive, meaning it predicts future poses one at 
a time, taking into account the previously generated poses. We use 
the same decoder to generate the agent-specific poses separately. 

5.2.1 Input Embedding. Similar to the encoder, the decoder has 
a separate input embedding and positional encoding. However, 
it must accommodate variable input sizes based on the size of 
the generated poses. In the initial decoding step, we pass the last 
observed pose along with the encoded skeletal and non-skeletal 
multimodal representations. We add each generated pose to the 
decoder’s input for each subsequent step while keeping the encoded 
representations constant. The operations are similar to Eq. 3, and 
is summarized below: 

𝑋 𝑖 
𝑑𝑒𝑐 −𝑒𝑚𝑏𝑒𝑑,𝑡 = InputEmbedding(𝑋 𝑖 

𝑑𝑒𝑐 −𝑖𝑛𝑝𝑢𝑡 ,𝑡 ) (8) 

5.2.2 Multimodal Attention. The embedding from the decoder in-
put, denoted as 𝑋 𝑖 

𝑑𝑒𝑐 , along with the output of the encoder rep-
resentation, is passed to the encoder-decoder attention module, 
𝑋 𝑖 𝑐𝑟𝑜𝑠𝑠 −𝑎𝑡 𝑡 and 𝑋 𝑒𝑚𝑏𝑒𝑑, 𝑚, 𝑡 . We use a similar attention mechanism 
as previously mentioned in Eq. 5. Here, the query is the decoder in-
put, and the value and key are the output of the encoder, 𝑋 𝑖 𝑐𝑟𝑜𝑠𝑠 −𝑎𝑡𝑡 
and 𝑋 𝑒𝑚𝑏𝑒𝑑, 𝑚, 𝑡 . The operations can be summarized as follows: 

𝑋 𝑖 𝑒𝑛𝑐 = Concat(𝑋 𝑖 𝑐𝑟 𝑜𝑠𝑠 −𝑎𝑡𝑡 , 𝑋 𝑒𝑚𝑏𝑒𝑑, 𝑚, 𝑡 ) 
𝑋 𝑖 
𝑑𝑒𝑐 −𝑎𝑡 𝑡 = Decoder-Attention(𝑋 𝑖 

𝑑𝑒𝑐 −𝑒𝑚𝑏𝑒𝑑,𝑡 , 𝑋 𝑖 𝑒𝑛𝑐 , 𝑋 𝑖 𝑒𝑛𝑐 ) 
(9) 

5.2.3 Output Embedding. The output of the decoder attention mod-
ule is finally passed through linear layers to generate the output 
pose. The operations can be formulated as follows: 

𝑋 𝑖 𝑜𝑢𝑡 𝑝𝑢𝑡 ,𝑡 = OE(𝑋 𝑖 
𝑑𝑒𝑐 −𝑎𝑡 𝑡 ) (10) 

Here, 𝑋 𝑖 𝑜𝑢𝑡 𝑝𝑢𝑡 ,𝑡 represents the generated future pose at time 𝑡 of 
agent 𝑖 . 𝑂𝐸 represents the output embedding, which is a linear 
projection of the decoder attention output to the pose space. 

6 EXPERIMENTS 
In this section, we present our experimental details and results. 
We introduce the dataset and evaluation metric in Sect. 6.1, the 
implementation details in Sect. 6.2, and the results and discus-
sion in Sect. 6.3. 

6.1 Experimental Setup and Evaluation Metric 
6.1.1 INTERACT Dataset. The proposed INTERACT dataset com-
prises 252 sessions of multimodal close-proximity collaboration 
data, which are evenly split into 126 episodes of HHC and 126 
episodes of HRC scenarios, providing a large-scale dataset of multi-
modal and multi-agent interaction. For all the evaluation scenarios, 
we adopt a cross-group evaluation strategy, where we train and 
test on separate groups. The training set comprises all the even-
numbered groups from 1 to 21, and the testing set comprises all the 
odd-numbered groups from 1 to 21 (recall that the dataset contains 
21 groups in total). We propose three evaluation setups: 

• HHC-Train, HHC-Test: In this setup, we trained and tested 
all the evaluated approaches on only Human-Human Col-
laboration data, using the aforementioned train and test sets. 
This approach allows us to establish how these approaches 
perform for multi-agent human motion prediction. 

• HRC-Train, HRC-Test: In this setup, we trained and tested 
all the evaluated approaches on only Human-Robot Collabo-
ration data. The purpose of this setup is to investigate the 
extent to which performance is influenced by the presence 
of a robot. 

• HHC Train, HRC Test: In this setup, we use the train set of 
the HHC setup and the test set of the HRC setup. Here, we 
investigate how models trained on HHC generalize to HRC. 

6.1.2 Evaluation metric. We report the Mean Per Joint Position 
Error (MPJPE) on 3D joint coordinates, a widely used metric for 
evaluating pose prediction performance [1, 2, 37, 64]. Since our 
dataset includes multiple agents, we also compute the Per Agent-
MPJPE (PA-MPJPE) by averaging this evaluation metric across all 
agents. PA-MPJPE quantifies the average 𝐿2-Norm differences be-
tween each agent’s predictions and ground truth. For all evaluated 
models, the input and output sequences have 25 timesteps. 

6.2 Implementation Details 
In all experiments, we employ 3-D Skeletons and RGB data from 
two camera views as input, with the output being all agents’ future 
3-D Skeleton poses. While PoseTron adopts a modular architecture 
capable of accommodating the additional modalities, we restricted 
to using only 3-D Skeleton and RGB data in this work. We will 
explore the other modalities as part of future work. The feature 
dimension for Skeleton joints is 3×51 for each agent, while the RGB 
data from the two ZED cameras is pre-processed to dimensions of 
3 × 224 × 224 for each view. Both input and output sequences have 
a length of 25. 

835



PoseTron: Enabling Close-Proximity Human-Robot Collaboration Through Multi-human Motion Prediction HRI ’24, March 11–14, 2024, Boulder, CO, USA 

Table 3: PA-MPJPE of different methods for the evaluation 
setup: HHC Train, HHC Test. 

Approaches 5 10 15 20 25 
Joint Learning [1] 5.74 7.68 9.33 10.85 12.30 

Joint Learning + Social [1] 8.29 9.61 10.87 12.06 13.21 
MA-AAE [64] 3.27 5.06 6.75 8.39 10.01 

PoseTron (Skeleton Only) 3.35 5.04 6.51 7.83 9.03 
PoseTron (Multimodal) 3.21 4.86 6.34 7.65 8.84 

All the experiments were conducted using PyTorch [44] 2.0.1 
running on an NVIDIA A100 GPU. For all the evaluated methods, 
we utilized a batch size of 256 and fine-tuned hyperparameters for 
optimal results. For extracting RGB features, we use a pre-trained 
SwinTransformer [33]. For PoseTron, we configured the encoder 
and decoder to have 8 attention heads while keeping the feedfor-
ward layer dimension fixed at 256. We used two stacks of encoder 
and decoder. For training PoseTron, we use the AdamW [24] opti-
mizer with cosine annealing and warm restarts [34] with an initial 
learning rate of 0.001. We trained each evaluated approach for a 
maximum of 150 epochs, with a training time of approx. 3 hours. 

6.3 Results and Discussion 
In this section, we compare our approach, PoseTron, with three 
state-of-the-art multi-agent motion prediction approaches: Joint 
Learning [1], Joint Learning + Social [1] and Multi-Agent Adversar-
ial Auto-encoder (MA-AAE) [64]. Joint Learning and Joint Learn-
ing + Social represent sequence2sequence [37, 53] approaches for 
motion prediction using pooling mechanisms to obtain joint repre-
sentations over all the agents. On the other hand, MA-AAE uses a 
multi-agent adversarial auto-encoder with a self-attention mecha-
nism to obtain interaction dynamics between multiple agents. We 
report the PA-MPJPE at distinct frame intervals, 5, 10, 15, 20, and 
25, to evaluate model performances over different horizons. 

6.3.1 Human-Human Collaboration Scenarios. 
Results: In Table 3, we compare the performance of our method, 
PoseTron against state-of-the-art multi-agent motion prediction 
methods on the HHC Train, HHC-Test setup. We use the same train-
ing and testing strategy for all the evaluated methods. As can be 
observed in Table 3, PoseTron (Skeleton Only) and PoseTron (Mul-
timodal) strongly outperformed all the state-of-the-art approaches 
on majority of frame intervals, attaining the lowest PA-MPJPE. 
Discussion: The two variants of PoseTron outperformed all the 
state-of-the-art approaches, which underlines the architectural im-
provements over the other evaluated methods. While all the evalu-
ated approaches use recurrent neural networks for their sequence 
learning backbone, PoseTron adopts the transformer approach, 
which allows it to consider all the frames at the encoder and de-
coder. This allows PoseTron to extract salient representations from 
all the available frames. PoseTron also differs in its approach to mod-
eling the interaction between multiple agents. While Joint Learning 
+ Social [1] uses social pooling, an approach that has also been 
used in social navigation [3, 16], and MA-AAE [64] uses the self-
attention mechanism, PoseTron uses the conditional attention at 
the encoder where for a given query agent, it can separately attend 
and weigh over the different motion frames of the other agents. The 
combination of the conditioning and the feedforward architecture, 

Table 4: PA-MPJPE of different multi-agent motion predic-
tion methods for the evaluation setup: HRC Train, HRC Test. 

Approaches 5 10 15 20 25 
Joint Learning [1] 6.08 7.72 9.05 10.24 11.36 

Joint Learning + Social [1] 7.37 8.73 9.95 11.06 13.26 
MA-AAE [64] 3.34 5.08 6.77 8.44 10.03 

PoseTron (Skeleton Only) 2.90 4.46 5.89 7.22 8.38 
PoseTron (Multimodal) 2.71 4.22 5.51 6.64 7.65 

which allows each frame token to attend to all other tokens, enables 
superior representation learning at the encoder. 

6.3.2 Human-Robot Collaboration Scenarios. 
Results: In Table 4, we report the performance of PoseTron against 
state-of-the-art multi-agent motion prediction methods on the HRC 
evaluation setup. Similar to the HHC evaluation setup, we were 
consistent with the training and testing strategy for all the evaluated 
methods. The two variants of our approach PoseTron (i.e., Skeleton 
and Multimodal) again outperformed the state-of-the-art evaluated 
methods consistently over all the frame intervals. 
Discussion: The results presented in Table 4 emphasize the supe-
rior performance of PoseTron when compared to the other eval-
uated methods. Similar to the evaluation for HHC in Table 3, we 
observed that both variants of PoseTron achieved superior perfor-
mance. In addition to the encoder operations that provide PoseTron 
with superior representation and sequence modeling capabilities, 
it distinguishes itself from other approaches through its unique 
decoder strategies, which further enhance its performance. While 
all the approaches follow an auto-regressive approach, PoseTron 
stands out as the only one capable of attending to all generated and 
past frames. This capability is achieved without increasing com-
plexity, as it reuses the attention mechanism within the decoder. 
The key and value matrices are iteratively updated as the number 
of generated poses increases. Moreover, PoseTron (Multimodal) 
leverages multimodal representations in the decoder, enabling it to 
query multimodal features during the generation of future poses. 
The combination of these operations contributes to its improved 
performance over PoseTron (Skeleton Only) and other approaches. 

6.3.3 Training on HHC, Testing on HRC. 
Results: In Table 5, we present PoseTron’s performance against 
state-of-the-art multi-agent motion prediction methods, with all 
methods being trained on the HHC training set and tested on the 
HRC test set, ensuring no group overlap. This allows us to assess 
the generalizability of existing approaches exclusively trained on 
HHC to HRC scenarios. The test set is the same as in Table 4 for 
direct comparison. Both PoseTron variants consistently outper-
form state-of-the-art methods across majority of frame intervals, 
demonstrating superior generalizability over the two scenarios. 
Discussion: The results presented in Table 5 provide a strong indi-
cation of PoseTron’s generalizability compared to other approaches. 
PoseTron’s generalizability can be attributed to the attention mech-
anisms in both the encoder and decoder, which allows PoseTron 
to efficiently utilize the multiple streams of agent and multimodal 
data in the context of PoseTron(Multimodal). Compared to Table 4, 
we observed some interesting trends. Firstly, all the approaches had 
a performance drop when training on HHC and testing on HRC, 
compared to training and testing on HRC. As the test is the same, 
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Table 5: PPA-MPJPE of different multi-agent motion predic-
tion methods for the evaluation setup: HHC Train, HRC Test. 

Approaches 5 10 15 20 25 
Joint Learning [1] 6.29 8.19 9.78 11.23 12.57 

Joint Learning + Social [1] 8.77 10.33 11.85 13.32 14.73 
MA-AAE [64] 3.46 5.33 7.15 8.92 10.64 

PoseTron (Skeleton Only) 3.69 5.53 7.12 8.52 9.76 
PoseTron (Multimodal) 2.82 4.61 6.25 7.80 9.25 

and only the training data is different, this provides the strongest 
signal on the importance of HRC data. 

6.3.4 Ablation Results. In this section, we compare the perfor-
mance of PoseTron with ablated versions of itself, firstly at an 
architectural level where we remove the learnable positional em-
bedding: PoseTron w/o L.P.E (Multiple RGB View), and use the 
default non-linearity of the original transformer [60], instead of 
SwishGLU which was used in PoseTron. Next, for the same ablated 
version, we further remove the RGB modalities, instead using only 
Skeleton: PoseTron w/o L.P.E (Skeleton Only). Finally, we ablate 
the modalities, first keeping one RGB view: PoseTron (One RGB 
View) and then using only Skeletons: PoseTron (Skeleton Only). 
Results: We report the results of all the ablation experiments in 
Table 6, where we trained and tested on the HRC scenario. The 
results suggest that PoseTron using Multiple RGB View and Learn-
able Positional Embedding attained the best performance. The next 
best performing architecture was PoseTron with one RGB view: 
PoseTron (One RGB View). This was followed by PoseTron w/o 
L.P.E (Multiple RGB View), with PoseTron w/o L.P.E (Skeleton Only) 
performing worst of all the ablated versions. 
Discussion: The results in Table 6 validate the architectural de-
cisions made in designing PoseTron. Notably, PoseTron (Multiple 
RGB View) demonstrated superior performance, underscoring the 
advantages of incorporating multiple camera views alongside 3-D 
Skeletons. Following closely in performance was PoseTron (One 
RGB View), emphasizing two key insights: i) The utilization of ad-
ditional modalities can enhance performance, and ii) PoseTron’s 
cross-attention mechanism in the decoder effectively leverages 
multimodal features to construct a comprehensive representation. 

The next best performing architecture was PoseTron w/o L.P.E 
(One RGB View), which features a variant of PoseTron that uses 
fixed positional encoding [60]. In addition, we ablate the SwishGLU 
activation function and replace it with ReLU. As observed in Table 6, 
the removal of these architectural details resulted in a performance 
drop over all the horizons, justifying the design choices in PoseTron. 

Finally, the two Skeleton Only variants had higher prediction 
errors compared to the multimodal variants. Here again, PoseTron 
(Skeleton Only) with learnable positional embedding and SwishGLU 
activation outperformed PoseTron (Skeleton Only) without these 
features. This further emphasizes the effectiveness of incorporating 
multimodal information into the architecture. 

6.4 Overall Discussion 
The experiments provide several key insights in the context of 
motion prediction in HRC. One of the consistent themes across 
all the evaluation setups is the superior performance of PoseTron 
compared to state-of-the-art approaches in the field. One of the 

Table 6: Ablation Study: HRC Train, HRC Test. 

Approaches 5 10 15 20 25 
PoseTron w/o L.P.E (Skeleton Only) 3.11 4.76 6.17 7.46 8.64 
PoseTron w/o L.P.E (One RGB View) 3.00 4.56 5.92 7.15 8.23 

PoseTron (Skeleton Only) 2.90 4.46 5.89 7.22 8.38 
PoseTron (One RGB View) 2.85 4.40 5.75 6.97 8.05 

PoseTron (Multiple RGB View) 2.71 4.22 5.51 6.64 7.65 

key distinguishing factors of PoseTron is its encoding mechanism, 
whereby it uses learnable positional encoding to add the notion 
of sequence, unlike the other recurrent approaches. This allows 
PoseTron to exploit the full context of the input and the generated 
sequence for its prediction. Furthermore, PoseTron introduces a 
novel mechanism to model the interaction among multiple agents 
through conditional attention. This enables individualized atten-
tion to different motion frames of other agents. Combined with 
the self-attention mechanism, this design choice leads to superior 
representation learning at the encoder. 

Another contributing factor to PoseTron’s superior performance 
is its decoder strategy. PoseTron stands out from other approaches 
by attending to all generated and past frames. Additionally, it in-
corporates multimodal representations into the decoder, enabling 
it to query multimodal features when generating future poses. This 
enhanced approach, as demonstrated in all experiments (Tables 3, 
4, 5) and the ablation study (Table 6), leads to more accurate pose 
predictions. 

The experiments also highlight the significance of the data source 
in training motion prediction models. As observed in Tabs. 4, 5, the 
performance dropped when the models were trained in one scenario 
and tested in another scenario. This emphasizes the need for more 
specialized datasets catering to the HRC setups. Notably, even in 
this setup, we observe the PoseTron’s strong generalizability, as it 
attained the best performance. This generalizability is crucial in real-
world applications where the ability to adapt to different scenarios 
is essential. While PoseTron and all other approaches were trained 
on an NVIDIA A100 GPU for training efficiency, we successfully 
ran PoseTron on a consumer-grade GPU: the NVIDIA RTX 2080Ti. 
This provides a pathway for our future work, which will focus 
on deploying PoseTron in real-time human-robot collaboration 
scenarios as part of the robot’s perception stack. 

7 CONCLUSION 
In this work, we aimed to address two of the open challenges to 
enabling close-proximity human-robot collaboration by present-
ing INTERACT, a comprehensive multimodal dataset featuring 
Human-Human and Human-Robot Collaboration scenarios, and 
PoseTron, a novel transformer-based framework for multi-agent 
motion prediction. With INTERACT, we have laid the foundation for 
developing robust algorithms to facilitate close-proximity HRC. Fur-
thermore, PoseTron’s encoder-decoder framework, featuring novel 
conditional and multimodal attention mechanisms, has demon-
strated remarkable performance gains over existing methods in 
various HHC and HRC scenarios. Our extensive experiments and 
insights offer a promising direction to enable safe and fluent close-
proximity human-robot collaboration. As part of our future work, 
we will incorporate PoseTron to the robot’s perception stack and 
evaluate its efficacy in real-world HRC scenarios. 
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