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ABSTRACT 
Efective collaboration between humans and robots hinges on the 
robot’s ability to comprehend its human teammate. This collabo-
ration demands the development of machine learning models that 
bridge the gap between human physiological signals and their men-
tal states. However, the challenge lies in developing generalizable 
machine learning models using data collected in controlled exper-
imental conditions. This manuscript proposes a set of principles 
for designing human subject evaluations, emphasizing the crucial 
balance between experimental control and ecological validity while 
also balancing fundamental machine learning trade-ofs. 
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1 INTRODUCTION 
Successful human-robot teaming consists of humans and robots 
collaborating to achieve tasks in uncertain, dynamic environments. 
Deploying robots alongside humans in these environments will 
require the robots to have a robust and dynamic understanding 
of their human teammates. Endowing the robot with these capa-
bilities is most commonly accomplished by developing machine 
learning models. For example, workload estimation models and task 
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recognition models learn the relationships between the human’s 
physiological signals and their mental and physical state. 

Collecting data to train these models requires conducting human 
subject evaluations that mimic the desired applications domain (e.g., 
disaster response). Many evaluations are conducted under tightly 
controlled experimental conditions to ensure the precise manipula-
tion of independent variables. However, prioritizing experimental 
constraints over ecological validity inevitably results in machine 
learning models that fail to generalize in real world settings. This 
lack of generalizability is the result of training data that is not fully 
representative of real world conditions. 

Designing human subject evaluations such that resulting ma-
chine learning models generalize efectively requires carefully an-
alyzing the machine learning and human-robot interaction (HRI) 
considerations that are often ignored for the sake of experimen-
tal control. These considerations are discussed and principles for 
designing HRI domain machine learning models that generalize 
more efectively are presented. These principles highlight the im-
portance of prioritizing the ecological validity of human-robot 
teaming dynamics and experimental conditions, while also balanc-
ing key machine learning trade-ofs. These principles also enable 
experimenters to better understand the extent to which their mod-
els generalize (i.e., performance in the real world) and the way in 
which their models generalize (e.g., across individuals, across tasks). 

2 RELATED WORK 
A major takeaway from the machine learning community is the im-
pact of data quality and modality on machine learning models [20]. 
Acknowledging these factors is imperative to draw meaningful 
conclusions and to understand how models can be deployed. These 
factors are particularly important when building machine learning 
models of human behavior, as these models can only be developed 
using data from human subject evaluations (i.e., small datasets). 
Experimental design has been extensively explored in structured 
environments, where the primary focus has been on evaluating 
the HRI dynamics under specifc experimental conditions [11, 13]. 
Prior work emphasized the limitations of relying on a single eval-
uation method, advocating for integrating diverse methods (e.g., 
psychological measures, performance metrics, and behavioral mea-
sures) [3]; however, little work has been done to understand how 
these factors impact resulting machine learning models. 
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Successfully developed workload estimation [4] and emotion 
recognition models [22] have drawn attention to the importance 
of recognizing physiological changes in the human’s mental states. 
These approaches are sensitive to sensor noise and the variability 
of human physiology [5]. Constructing models is also heavily infu-
enced by the inconsistencies between experimental conditions and 
the real world. Task design is critical to ensure tasks are ecologically 
valid. The task complexity adds another layer of consideration, em-
phasizing the necessity of clearly defning the context to enhance 
the realism and relevance of interaction scenarios [14]. This synthe-
sis of insights from the literature sets the stage for a more holistic 
approach to designing HRI evaluations, aiming to capture complex 
human-robot interactions in varied and realistic settings. 

3 MOTIVATION 
Enhancing a robot’s capacity to estimate diferent aspects of its 
human teammates (e.g., task execution, situational awareness, work-
load, afect), such that it can make predictions or adaptations to 
accommodate that teammate, will enhance the efcacy of human-
robot teams in real world problem domains. Developing machine 
learning models capable of modeling these aspects is inherently 
complex due to the natural variability of human behavior [27]. Fur-
ther, collecting data sufciently representative of these behaviors is 
also difcult. The experimental design must consider how empha-
sizing ecological validity impacts the experimental design (e.g., data 
collection, human-robot teaming dynamics), key machine learning 
algorithm choices, and resulting model robustness. 

3.1 Experimental Design Considerations 
Achieving real world generalizability with HRI machine learning 
models requires evaluations that adequately refect the dynamic, 
uncertain nature of the real world while maintaining sufcient ex-
perimental control to properly manipulate independent variables. 
Striking this balance is a challenge that requires considering ecologi-
cally valid human-robot teaming dynamics, sufcient task diversity, 
and appropriate data collection procedures. 

Ecological validity refers to the degree to which an experiment 
can be used to predict behaviors in real world settings [13]. There 
are many diferent considerations experimenters must make to en-
sure the ecological validity of their evaluations. Ecological validity 
for human-robot teams is achieved by ensuring sufcient realism 
for all human-robot teaming dynamics. Enumerating the full spec-
trum of human-robot teaming dynamics that must be considered 
is outside the scope of this manuscript, but a few are important to 
highlight. First, the division of labor and interactions between the 
human and the robot must refect real world human-robot teams. 
Properly designed robot roles are especially difcult to achieve in 
Wizard-of-Oz studies [21], as the remote operator must strive to 
be consistent with how the robot is piloted and avoid misrepre-
senting the robot’s real world function. Second, tasks performed by 
the human-robot team must be refective of real world conditions. 
Task realism is critical to ensuring that the experiment will evoke 
the corresponding behavior and performance, such that the data 
collected is useful for developing the machine learning model. 

An equally important component is the task diversity. Conduct-
ing an evaluation with a single ecologically valid task constrains 

the conditions in which it is appropriate to deploy the resulting 
machine learning model. Human-robot teams perform a wide range 
of tasks that vary based on task coupling, duration, team expertise. 
HRI evaluations must capture, at least in part, the broad spectrum of 
real world tasks to successfully develop machine learning models. 

Complex HRI evaluations must also consider how these machine-
learning models will be deployed. Specifcally, collecting data in 
experimental conditions must not rely on sensors or systems that 
cannot be practically deployed in realistic environments. Workload 
estimation and task recognition algorithms map physiological sig-
nals to the corresponding aspects of the human’s state. Measuring 
these signals with static sensors (e.g., cameras), or sensors suscepti-
ble environmental noises (e.g., EEG [25]), prevents deploying these 
algorithms in unstructured, real world environments; thus, wear-
able sensors must be utilized. Real world considerations like these 
must be made when designing experiments. 

3.2 Machine Learning Considerations 
Collecting enough data to capture the full range of human behavior 
is intractable; thus, HRI machine learning models must be con-
structed using relatively small datasets. These constraints consti-
tute a low data regime and make the application of larger machine 
learning models impractical [7, 15]. Small datasets are rarely fully 
representative of the true distribution for a given problem domain, 
especially when collected in tightly controlled experimental envi-
ronments. There are three key machine learning issues that must 
be considered when learning with small datasets: Long-tail distri-
butions, Out-of-distribution (OOD) data and evaluation overft. 

A common problem with task recognition models is long-tailed 
data distributions. These distributions are characterized by certain 
tasks that account for the vast majority of data (e.g., ≥ 80% [28]); 
thus, key tasks are under represented within the dataset. Training 
machine learning algorithms on such imbalanced datasets will bias 
the algorithm and lead to performance degradation [16]. Conduct-
ing a task analysis [27] of human-robot teaming tasks often reveals 
that there are many subtasks that occur infrequently, especially in 
highly dynamic and uncertain real world domains, such as disaster 
response. Designing experiments such that the ecological valid-
ity of these tasks is maintained, but sufcient data is generated to 
mitigate this natural imbalance is a challenge. 

Data that is characterized by a diferent distribution than the 
training datasets is considered to be OOD [24]. Enumerating the 
broad scope of ways that a distribution can change such that the 
machine learning model is afected is outside the scope of this 
manuscript [19]; however, this problem is summarized. Broadly, 
machine learning is the process of learning a function, � (�), that 
maps from a domain (i.e., features), � , to a range (i.e., labels), � . Any 
meaningful changes to either � , � , or � (�) between the training 
dataset and the testing dataset constitute a meaningful distribution 
shift. These problems are prevalent in HRI application domains. 
One example is training a model on convenience participants and 
deploying the model on expert users. Another example is training a 
model on data collected from a single human, single robot team and 
deploying it on a single-human, multi-robot team. Understanding 
the impact of these diferences and developing models that are 
robust to these changes is an active area of research. 
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Evaluation overft simply means accidentally overftting to the 
unseen biases within the dataset. An evaluation’s tasks may be 
ecologically valid, but intrinsic aspects of those tasks (e.g., robot’s 
voice, capabilities) may bias participant behavior in unexpected 
ways. These biases may not be noticeable in cross-validation proce-
dures, such as leave-one-subject-out [10], as it is present in all data 
points. Additional validation is necessary to ensure these issues are 
avoided. All three of these issues are exasperated by humans’ indi-
vidual diferences. Fundamentally, human-centric evaluations are 
noisy. Individual humans have variable physiological responses to 
a task’s demands and may employ diferent strategies to complete 
that task. These individual diferences make building machine learn-
ing models of human behaviors and states for real world problem 
domains difcult. Additional considerations need to be made for 
increased sensor noise over time due to human factors (e.g., fatigue), 
sensor issues (e.g., slippage, drift), and environmental changes. 

4 PRINCIPLES 
Designing complex HRI evaluations that can be used to train ma-
chine learning models for real world application domains requires a 
broad range of experimental and machine learning considerations. 
The experiment itself must be adequately representative of the ap-
plication domain, practical considerations (e.g., sensor deployment) 
must be considered upfront, and the extent to which the machine 
learning models can applied must be thoroughly understood. 

4.1 Principle 1: Ecological Validity 
Ecological validity refers to the real world generalizability of an 
evaluation (e.g., tasks, interactions, robot’s capabilities, form [13]). 
Overly constrained experiments create artifcial human-robot team-
ing dynamics, which hinders real world generalization and intro-
duces bias into the machine learning models. The following sub-
set of experimental design factors must be considered in order to 
achieve ecologically valid human-robot teaming dynamics. 

Real world human-robot teams can be deployed for long periods 
of time (i.e., hours, days). Data based on short-duration tasks (e.g., 
ten minutes) does not refect a human’s behavior and perception 
changes over the longer-duration real world tasks. An evaluation’s 
ecological validity and machine learning models’ generalizability 
are heavily impacted by evaluation tasks’ durations. 

Task density is a common variable to modulate workload [26]; 
however, task densities necessary to manipulate the evaluation’s 
independent variables may rarely be encountered in the real world. 
These uncommon task densities may impact human behavior, and 
interactions with robots may bias the underlying patterns the ma-
chine learning model discovers and hinder generalizability. 

Ensuring that a fully autonomous robot can interact with a hu-
man in a reliably safe manner is challenging. The Wizard-of-Oz 
experimental technique [21] allows experimenters to remotely op-
erate the robot as needed to ensure safe and consistent behavior, as 
well as respond to any unforeseen scenarios (e.g., maneuvering the 
robot during navigational failures). However, operating the robot in 
a human-like manner may compromise the evaluation’s ecological 
validity. Developing specifc criteria for how the human operates 
the robot, such that it mimics autonomous behaviors, are essential 
when using Wizard-of-Oz techniques; otherwise, machine learning 

models may learn human-robot teaming dynamics uncharacteristic 
of real world teams with autonomous robots. 

The robot’s capabilities and physical form signifcantly alter the 
tasks and interactions that can be performed. The tasks and inter-
actions directly inform the human’s response to the evaluation’s 
demands, which can artifcially alter the human’s behavior. These 
behavioral changes may constitute a meaningful diference in the 
resulting machine-learning model. Furthermore, the team composi-
tion (i.e., the number of robots and humans) signifcantly impacts 
human-robot teaming dynamics. Gathering data for diferent team 
compositions may constitute a meaningful diference, preventing 
the generalization of the machine learning model. 

Evaluating the ecological validity of the experimental design 
factors is critical to developing generalizable machine learning 
models; however, this list is not comprehensive. Ensuring that all 
environmental conditions, human-robot teaming dynamics, and 
participant-experiment interactions are grounded in the intended 
application domain is central to minimizing the artifcial aspects of 
an evaluation; thus, maximizing ecological validity. 

4.2 Principle 2: Variety in Tasks and Team 
Dynamics 

Machine learning models are only as expressive as the datasets 
used to train them. Ecologically valid evaluations ensure that data 
generated is representative of real world human-robot teaming, but 
machine learning models trained on a subset of tasks are likely 
to overft to specifc aspects of those tasks. Therefore, evaluations 
must be designed to refect the real world variability of a given 
application domain. Designing experiments that capture this di-
versity must abide by strict principles to ensure that Principle 1 is 
not violated. First, an evaluation must have clear defned HRI roles 
(e.g., supervisor, peer) assigned to all humans operating in the team. 
Second, the evaluation must ensure that the tasks executed by a 
team are appropriately grounded in the respective HRI roles and 
that tasks represent a given application domain’s diversity. 

Generally, human-robot teaming diversity is equally important 
as task diversity. For example, a peer-based human-robot team 
must accomplish a variety of tasks that are independent, loosely-
coupled, and tightly-coupled [18]. Machine learning models that 
make accurate estimates across these scenarios must be trained on 
data that fully captures these dynamics. Capturing this variability is 
best accomplished through domain expertise or collaboration with 
domain experts, as selecting tasks that fully represent the human-
robot teaming dynamics is difcult and varies across domains. 

An important teaming aspect for complex HRI evaluations is an 
evaluation’s task duration. Most evaluations consists of artifcially 
short tasks and it is difcult to capture meaningful HRI data when 
interactions last less than a minute. Experiments must incorporate 
longer tasks, or longer time periods consisting of a sequence of 
short duration tasks, to be representative of the real world. Models 
built to estimate such human-based responses need to account for 
these complexities to aford application to real world domains. 

4.3 Principle 3: Sensor Suite Selection 
Collecting data across the diverse tasks performed by human-robot 
teams hinges on selecting the appropriate set of sensors that can 
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accurately capture the human’s interactions, but can also be suc-
cessfully deployed in unstructured, dynamic environments. Sensors 
that restrict the human-robot team’s interactions spatially (e.g., 
environmentally embedded cameras), temporally (e.g., sensors with 
low battery life), or computationally (e.g., require high storage) 
must be avoided when possible and viable alternatives must be 
considered. For example, using whole-body IMU-based motion 
tracking, instead of optical motion capture systems, allows partici-
pants to move freely. Sensors used in experimental conditions to 
collect training data must be easily deployed in realistic settings; 
otherwise, the resulting machine learning cannot be used. 

Many wearable sensors exhibit increased sensor noise and vari-
ability over their non-wearable counterparts (e.g., stationary vs. 
mobile eye-trackers [8]). Using multiple sensors is necessary to 
prevent machine learning models from over relying on a single 
noisy sensor. Further, sensors must capture the full spectrum of 
human activity so that the developed machine learning models can 
be used in diverse scenarios. Sensors required to asses the human’s 
state for cognitive tasks are substantially diferent than the sen-
sors required for physical tasks [1]. Sensor suites allow machine 
learning models to learn non-trivial interactions between multiple 
aspects of the human’s mental and physical state. Experimenters 
must considered the real world constraints of utilizing a particular 
sensor suite and the extent to which that sensor suite fully captures 
the desired aspect of the human’s behavior. 

4.4 Principle 4: Robust Model Validation 
Deploying machine learning models of human behavior in realistic 
settings requires a comprehensive understanding of the circum-
stances in which these models perform well, which is achieved 
through robust model validation. Prior work designed human sub-
ject evaluations to build machine learning models capable of esti-
mating latent properties of the human’s internal state (e.g., work-
load [5], situational awareness [12]). These latent properties are 
not directly observable; therefore, they are difcult to verify. Ensur-
ing that the machine learning models’ output accurately refects a 
human’s internal state is paramount to the successful deployment 
of machine learning models in real world human-robot teams. 

Ground truth values collected during an evaluation of the models 
must be derived from objective sources whenever possible. Relying 
on subjective questionnaires to develop models automatically en-
codes the reporting errors and inherent biases [17]. These errors 
and biases introduce additional noise into the machine learning 
model’s training process, making it more difcult to learn the re-
lationship between the external aspect (e.g., physiological signals) 
and latent properties of the human’s state. 

Additionally, validating a machine learning model using stan-
dard techniques [23] (e.g., leave-one-subject-out) only measures 
the model’s ability to generalize within the evaluation’s context. 
These techniques do not speak to the model’s utility in unknown 
scenarios. Specifcally, evaluations may possess unexpected biases 
inherent in the experimental conditions (e.g., tasks, human-robot 
interactions), which machine learning models will inadvertently 
learn. Validating machine learning models in a separate evaluation, 
or in a real world deployment, helps experimenters verify the extent 

which the machine learning model can generalize and ensures that 
the model did not unintentionally learn these inherent biases. 

4.5 Principle 5: Dataset Composition Trade-Ofs 
Efective use of machine learning models in real world HRI do-
mains requires fexible models that account for human’s individual 
diferences. The dynamics of task execution vary day-to-day, be-
tween individuals, and are infuenced by external factors. Machine 
learning models developed in rigid experimental environments are 
unlikely to account for these individual diferences due to inter-day 
and environmental variances or diferences across individuals. Real 
world problem domains are inherently imbalanced, as some tasks 
naturally occur more frequently than others. Datasets that exhibit 
this level of variability and imbalance will exhibit either i) a long-
tail distribution, where certain classes (e.g., tasks) account for the 
vast majority of the data, while all the other classes are underrep-
resented, or ii) OOD data, where the training and testing data are 
drawn from diferent distributions, even though the context, task 
objective, and environment remain fairly similar. 

Overcoming these challenges can be solved experimentally or 
algorithmically, but with trade-ofs. For example, an experimental 
solution to long-tailed distributions explicitly incorporates infre-
quent tasks, which may result in compromising ecological validity. 
Downsampling overrepresented classes [6] and weighting under-
represented classes [9] are both algorithmic solutions that preserve 
ecological validity, but neither solution is guaranteed to overcome 
performance degradation due to class imbalances. Likewise, exper-
imentally incorporating untrained tasks (i.e., OOD data) for the 
purposes of using non-standard machine learning methods comes 
with similar trade-ofs. The degree of diference between trained 
and untrained tasks directly impacts the model’s ability to scale 
to untrained or novel real world tasks [2]. These trade-ofs must 
be considered, and the corresponding decision must be explicitly 
discussed in order for future applications to understand the circum-
stances in which the machine learning models will generalize. 

5 CONCLUSION 
Principles for designing evaluations that capture the complex dy-
namics of human-robot teams and result in generalizable machine 
learning models were presented. Complex HRI evaluations are re-
quired for building machine learning models that enable a robot to 
understand a human’s state, such that the two can efectively collab-
orate in dynamic, uncertain domains. These principles are an initial 
attempt at enumerating means of addressing these difculties. 
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