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ABSTRACT 
Large Language Models (LLMs) have been recently proposed for 
trajectory prediction in autonomous driving, where they poten-
tially can provide explainable reasoning capability about driving 
situations. Most studies use versions of the OpenAI GPT, while 
there are open-source alternatives which have not been evaluated 
in this context. In this report1, we study their trajectory prediction 
performance as well as their ability to reason about the situation. 
Our results indicate that open-source alternatives are feasible for 
trajectory prediction. However, their ability to describe situations 
and reason about potential consequences of actions appears limited, 
and warrants future research. 

CCS CONCEPTS 
• Computing methodologies → Motion path planning; Motion 
path planning; • Human-centered computing → Natural lan-
guage interfaces. 
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1 INTRODUCTION 
Human-robot interaction (HRI) is pivotal in integrating advanced 
robotic technologies into our daily lives, where the explainability of 
these systems plays a crucial role in ensuring that interactions are 
intuitive, safe, and benefcial for all. This is particularly evident in 
autonomous vehicles, where understanding human behavior, such 

1The code for the experiments is available on: https://github.com/aalto-intelligent-
robotics/llm-trajectory-prediction/ 
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Figure 1: Qualitative results of LLMs for ego-vehicle trajec-
tory prediction. 

as predicting pedestrian movements and interpreting other drivers’ 
actions, is fundamental. Trajectory prediction for autonomous vehi-
cles involves encoding information gathered from the surroundings 
for generating safe and feasible trajectories. Rule-based methods, 
while ofering interpretability, often struggle to handle the diversity 
of real-world driving scenarios. Conversely, data-driven models 
excel by learning from extensive human-driving behavior datasets 
but are criticized for their ’black box’ nature, compromising their 
interpretability [16]. Both the rule-based and learning-based meth-
ods lack the inherent common sense reasoning of human driving, 
limiting their efectiveness in addressing rare and complex driving 
situations. This highlights the necessity for models that not only 
imbue common sense reasoning but also strike a balance between 
explainability and adaptability in trajectory prediction. 

Recent literature shows eforts [8] to infuse human-like rea-
soning into autonomous vehicles, drawing inspiration from the 
capabilities of LLMs. One such strategy is re-imagining trajectory 
prediction as a language modeling problem. This method converts 
motion planner inputs, like detection and prediction outcomes, into 
unifed language tokens. LLMs then process these tokens, articu-
lating future driving trajectory waypoints as natural language de-
scriptions and fne-tuning these models for specifc tasks. Another 
strategy hierarchically employs LLMs within closed-loop environ-
ments, where the system generates queries infuenced by current 
observations and past experiences. These queries then direct the 
decision-making process, with the system continually assessing 
and learning from its decisions, enhancing its ability to respond 
appropriately in future scenarios [2, 14]. 

Modeling trajectory prediction using LLMs is key in human-robot 
interaction for understanding and anticipating human behavior, 
ensuring efcient, safe, and intuitive collaboration between humans 
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Figure 2: Illustrates the pipeline for deploying LLMs to pre-
dict the trajectory for autonomous vehicles. It includes fne-
tuning the LLMs with adapters on prompt database gener-
ated by ofshelf detection and prediction algorithms. The 
output language output is converted back to planned trajec-
tories using decoder. Note: the decoder is a simple regressive 
extraction of trajectories from language outputs. 

and robots. Existing LLMs methods use versions of OpenAI’s GPT, 
for trajectory prediction. However, there are several open-source 
alternatives available that haven’t been assessed for trajectory pre-
diction. These alternatives, potentially ofering diverse approaches 
and methodologies, remain unexplored and untested for their ef-
cacy and applicability for trajectory prediction. To this end, in this 
report, we explore the LLMs for ego-vehicle trajectory prediction 
problem. We explore some open-source alternatives of OpenAI’s 
GPT for trajectory predictions and how to fnetune them by us-
ing adapters for trajectory prediction tasks. Figure 2 illustrates the 
framework for using the LLMs for the trajectory prediction task. 

In our experimental analysis, we aim to answer the following 
research questions: 

(1) Can open-source models that run on a single GPU achieve 
similar results for trajectory prediction as querying the Ope-
nAI API? 

(2) When using LLMs for trajectory prediction, can we beneft 
from the general knowledge acquired by the model and pro-
vide meaningful explanations of the situation for a human? 

2 PROBLEM FORMULATION 
Motion planning in the context of autonomous driving aims to 
devise a future trajectory, denoted as � , that ensures safety and 
comfort. The trajectory, represented by � , is defned as a sequence 
of waypoints corresponding to distinct � timestamps: � ∈ �� ×2 , 
denoted as 

� = {(�1, �1), ..., (�� , �� )}, (1) 
Here,(�� , �� ) represents the two-dimensional waypoints correspond-
ing to the vehicle’s location at the timestamp � . The trajectory pre-
diction inputs encompass the historical waypoints, along with the 
outputs from perception and prediction systems. These outputs 
include, for example, detected object bounding boxes and projected 
trajectories indicating their future movements. To conceptualize 

Ground-truth assistant message: 
Thoughts: 
- Notable Objects from Perception: None 
Potential Efects from Prediction: None 
Meta Action: MOVE FORWARD WITH A DECELERATION 
Trajectory: [(0.02,2.80), (0.03,5.27), (0.06,7.46), (0.08,9.48), 
(0.10,11.22), (0.11,12.79)] 

GPT-2 
**Autonomous Driving Planner** 
Role: You are the brain of an autonomous vehicle. 
Context 
- Coordinates: X-axis is perpendicular, and Y-axis is parallel to the 
direction you’re facing. You’re at point (0,0). 
- Objective: MOVE FORWARD WITH A QUICK DECELERATION 
Trajectory: [(0.02,2.78), (0.04,5.12), (0.05,7.15), (0.06,8.84), 
(0.07,10.25), (0.08,11.30)] 

Mistral-7B 
[THOUGHTS] 
Notable Objects from Perception: - car at (-3.03,-15.08) Potential Efects 
from Prediction: - car at (-3.03,-15.08) is predicted to be at (-3.03,10.16) 
in 3.0 seconds [/THOUGHTS] 
[META ACTION] 
Develop Meta Action based on thoughts: MOVE FORWARD WITH A 
CONSTANT SPEED [/META ACTION] 
[TRAJECTORY] 
Develop a safe and feasible 3-second Trajectory: [(0.01,2.89), 
(0.03,5.72), (0.05,8.50), (0.08,11.22), (0.11,13.90), (0.14,16.51)] 
[/TRAJECTORY] 

Zephyr-7B 
Thoughts: 
- Notable Objects from Perception: car at (-3.03,-15.08) 
Potential Efects from Prediction: within the safe zone of the 
ego-vehicle at the 2.0-second timestep 
Meta Action: MOVE FORWARD WITH A DECELERATION 
Trajectory: [(0.01,2.92), (0.03,5.65), (0.05,8.19), (0.07,10.51), 
(0.09,12.65), (0.11,14.57)] 
Thoughts: 
- Notable Objects from Perception: car at (-6.06,14.94) 
Potential Efects from Prediction: within the safe zone of the 
ego-vehicle at the 0.5-second timestep 
- Notable Objects from Perception: car at (-6.25,8.38) 
Potential Efects from Prediction: within the safe zone of the ego-veh 

Llama-7B 
Thoughts: 
- Notable Objects from Perception: None 
Potential Efects from Prediction: None 
Meta Action: MOVE FORWARD WITH A DECELERATION 
Trajectory: [(0.03,2.83), (0.05,5.43), (0.07,7.85), (0.09,10.16), 
(0.12,12.39), (0.14,14.49)] 

Llama-7B-Chat 
Thoughts: - Notable Objects from Perception: None 
Potential Efects from Prediction: None 
Meta Action: MOVE FORWARD WITH A CONSTANT SPEED 
Trajectory: [(0.03,2.89), (0.04,5.62), (0.06,8.20), (0.09,10.80), 
(0.13,13.34), (0.17,16.04)] 

Figure 3: Example for assistant message output from 
all tested models, fne-tuned with Low-Rank Adaptation 
(LoRA). 
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trajectory prediction as a problem within the domain of large lan-
guage modeling, the trajectory � can be represented as a sequence 
of words that concisely describe it. 

� = �({(�1, �1), ..., (�� , �� )}) = {�1, �2, ..., �� }, (2) 

Here, �� represents the �-th word in the sequence, obtained through
the application of a large language tokenizer, represented by �. By 
adopting this linguistic representation, the trajectory prediction 
problem can subsequently be reformulated as a language modeling 
problem: 

�Õ 
= − ���� (�̂� |�1, �2, .., ��−1) (3) 

�=1 

Here, �̂ and � correspond to the words from the predicted trajec-
tory �̂  for ego-vehicle and the human driving trajectory � , respec-
tively. LLMs can efectively generate trajectories by maximizing the 
probability � associated with the occurrence of words � derived 
from the human driving trajectory � . 

L��� 

3 EXPERIMENTS 
The application of zero-shot prompting in LLMs for trajectory pre-
diction yields sub-optimal outcomes [9, 13]. To address this, our 
experiments involve fne-tuning LLMs specifcally for the down-
stream task of trajectory prediction. However, fne-tuning is com-
putationally intensive and time-consuming because of the large 
model size. A more efcient strategy involves the use of adapters 
to train the model on domain-specifc data while maintaining the 
LLMs in a frozen state, which represents an advantageous design 
choice adopted in this study. 

3.1 Experimental Setup 
We conduct Parameter-Efcient Fine-Tuning (PEFT) [7] using a com-
bination of fve models and two adapters. Our implementation 
incorporates the following open-source models from the Hugging-
Face Transformers library [15]. We chose OpenAI’s GPT-2, as well 
as four recently proposed models with 7B parameters that can be 
trained on a single GPU. 

• GPT-22 [10]
• Llama-7B3 [11]
• Llama-7B-Chat4 [11]
• Zephyr-7B5 [12]
• Mistral-7B6 [4]

In our experiments with adapters, we explored the use of LoRA 

[3] and Prompt Tuning (P-tuning) [5]. Training was conducted on
the training split, while evaluation was carried out on the vali-
dation split of the dataset from GPT-Driver [8], which is derived
from the nuScenes dataset [1]. The training split comprises 23,388
instances, and the validation split includes 5,119 instances. All train-
ing processes were executed on a system equipped with a single
RTX 3080Ti GPU, boasting 16GB of memory. The input for all the
models is the prompt used by GPT-Driver [8]: a system message

2https://huggingface.co/gpt2
3https://huggingface.co/meta-llama/Llama-2-7b-hf
4https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
5https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
6https://huggingface.co/mistralai/Mistral-7B-v0.1

provides context for the driving task, and a user message describes 
the observations and ego-states specifc to each instance. 

�2 metric is opted as an evaluation metric. The average L2 error is 
determined by calculating the distance between corresponding way-
points in the predicted and ground-truth trajectories. This metric 
efectively refects the extent to which a predicted trajectory ap-
proximates a human-driving trajectory. The input prompt requests 
the generation of a waypoint (�,�) each 0.5 seconds. Therefore, we 
evaluate �2 for 2, 4, 6 waypoints from the predicted trajectory for 
the 1, 2, and 3 seconds measures. 

4 RESULTS 

4.1 PEFT with LoRA
For fne-tuning with LoRA, for both Llama-7B and Llama-7B-Chat 
models, satisfactory results were observed after just three training 
epochs. However, extending the training duration led to a decrease 
in the quality of results produced by the Llama-7B model due to 
overftting. The outcomes of fne-tuning with LoRA are detailed 
in Table 1. Among the models tested, the application of LoRA fne-
tuning techniques yielded the most accurate results for the Llama-
7B and Llama-7B-Chat models. These two models outperform the 
results reported in [8], based on the L2 metric. The other three 
models also achieve good results for the L2 metric for the predicted 
trajectories. The results for GPT-Driver are the ones reported in 
their paper [8]. 

Table 1: Results from PEFT fne-tuning with LoRA. 

L2 Empty traj. Model Average 
1s 2s 3s 

GPT-Driver [8] 0.21 -0.43 0.79 0.48 

GPT-2 0.19 0.40 0.73 0.44 224 

Mistral-7B 0.31 0.59 0.97 0.62 2185 

Zephyr-7B 0.27 0.60 1.07 0.65 1545 

Llama-7B 0.17 0.37 0.70 0.41 53 

Llama-7B-Chat 0.17 0.37 0.69 0.41 38 

In Figure 3, we provide examples of the model output for all fve 
models, fne-tuned with LoRA. Although the predicted trajectories 
are not too far from the ground-truth, the reasoning about the 
situation and understanding of the environment are not always 
consistent. We also experimented with asking follow-up questions 
to the model, such as "Are there any other vehicles on the road?"
or "What would be the efects of a diferent meta action?", but the
responses did not contain precise information. 

Figure 1 shows an example scene from the nuScenes dataset 
[1] with plotted the ground-truth trajectory and the trajectories
predicted from our fne-tuned models, as well as the bounding
boxes of the detected vehicles for this scene.

4.2 PEFT with P-tuning
In the context of P-tuning, the results for most models and data in-
stances did not yield meaningful outputs. These were characterized 
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either by text in an inconsistent format, or by formats that were 
nearly correct but lacked numerical values for the trajectory, as 
illustrated in Figure 4(b) and Figure 4(e). The fndings for Llama-7B 
and Llama-7B-Chat, when fne-tuned with P-tuning, are presented 
in Table 2. Notably, a high incidence of empty trajectories resulted 
in subpar performance in the L2 metric. Outputs from the other 
three models were not meaningful, and hence their results are not 
included. A single-word alteration in the prompt can dramatically 
afect the model’s performance [6]. P-tuning incorporates trainable 
continuous prompt embeddings with discrete prompts. With a given 
discrete prompt, P-tuning appends continuous prompt embeddings 
to the discrete tokens, feeding them into the language model. The 
P-tuning approach was unsuccessful in our case for trajectory predic-
tion, as specifc prompts are crucial for achieving accurate outcomes. 
Altering certain words alters the states and environmental observa-
tions, leading to incorrect outputs. The GPT-2 model predictions 
ofer insights into this issue in Figure 4(a). 

(a) The U.S. Department of Defense is developing a new system to 
detect and track the movement of a U.S. military plane, the Pentagon 
said Tuesday. 
The system, called the Joint-Missioned Tracking System (JMT), will be 
deployed to the U.S. military’s Joint Expeditionary Force (JEF), which 
is planning to deploy to the region in the next two years. The JMT is a 
system that can detect and track a plane’s fight path, and can also 
track the plane’s trajectory. 

(b) )), (4 9 -second route using-second bus data00),35-second route 
using 5 -second route using 
33. -second route using 5 seconds (.-second route using0-second route 
using-second route using3 5)0 
3)-second route using)0.3 

(c) Thoughts: 
- Notable Objects 
Barrier at (6.00,11.23) may cause an obstacle at (5.99,11.23) in 2.5 
seconds 
Barrier at (-7.66,1.63) may cause an obstacle at (-7.66,1.61) in 0.5 
seconds 
Adult at (-3.21,0.94) may cause an obstacle at (-3.21,0.94) in 0.5 seconds 
Adult at (-3.12,-0.08) may cause an obstacle at (-3.12,-0.08) in 0.5 
seconds 
Adult at (-3.08,0.34) may cause an obstacle at (-3.08,0.34) in 0.5 seconds 

(d) [THOUGHT] Notable Objects from Perception: None Potential 
Efects from Prediction: [/THOUGHT] 
[META]Meta Action: MOVE FORWARD [/META] 
[TRAJ] Trajectory (next 3 seconds): [(0.02,5.11), (0.05,10.15), 
(0.08,15.19), (0.11,20.23), (0.14,25.27)] [/TRAJ] 

Figure 4: Failure cases of output generated from our mod-
els. (a) P-tuning changed one too many words from the input 
prompt. (GPT-2 with P-tuning); (b) Message not following the 
expected format. (Llama-7B with P-tuning); (c) Message in the 
correct format, but with missing trajectory. (Zephyr-7B with 
LoRA); (d) Trajectory with less than 6 predicted waypoints. 
(Mistral-7B with LoRA); 

Table 2: Results from PEFT fne-tuning of the Llama2 models 
with P-tuning. 

Model 
1s 

L2 

2s 3s 
Average 

Empty traj. 

Llama-7B 1.71 3.51 5.41 3.54 3227 

Llama-7B-Chat 2.00 3.31 4.72 3.34 4519 

4.3 Failure Analysis 
For all models, a certain number of predictions resulted in empty 
trajectories. This issue was particularly observed with the Mistral-
7B model, where the majority of instances failed to yield trajectories 
in the correct format. The models were missing a correct trajectory 
prediction due to several reasons: 

• Empty output message. 
• Messages that deviate from the prescribed output format. 
An illustration of this can be found in Figure 4(b). 

• These messages adhere to the output format yet fail to in-
clude a trajectory. Instead, they might provide information 
about the environment or other scene participants. An ex-
ample is detailed in Figure 4(c). 

• Messages containing a complete trajectory but in a format 
that does not align with the expected standard are excluded 
from consideration as they do not constitute a valid output 
in general cases. 

• This involves trajectories that contain fewer than six predic-
tions. In such scenarios, we attempt to evaluate the predic-
tions based on the available data and compare them for the 
corresponding number of steps. An example is provided in 
Figure 4(d). 

5 CONCLUSIONS AND FUTURE WORK 
This research highlighted the efective use of open-source LLMs in 
the feld of trajectory prediction. Through detailed experimental 
analysis, it was shown that when these open-source LLMs were 
fne-tuned for specifc downstream tasks, they yielded results com-
parable with their counterparts. 

In the context of HRI, the use of LLMs for driving tasks would 
potentially allow the models to reason and provide explanations 
about the driving situation. This work serves as a pioneering step 
in employing open-source LLMs for trajectory prediction. While it 
does not introduce a novel learning method for training adapters 
in LLMs, it paves the way for future research in this direction, po-
tentially exploring innovative training techniques and applications 
in trajectory prediction and beyond. 
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