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ABSTRACT 
Human-robot interactions rely on transparency to foster efective 
collaboration. Transparency can be assessed through metrics asso-
ciated with factors such as situation awareness. This manuscript 
presents an ocular metric to assess situation awareness for human-
machine teams. Participants used a decision support system to 
select a grasp for underwater manipulation. The participants’ gaze 
behavior and visual awareness was analyzed using a wearable eye 
tracker. An initial analysis that measures saccadic distance provides 
insight into the requirements of future techniques for objectively 
assessing situation awareness. 
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1 INTRODUCTION 
Transparency is the principle of providing easily exchangeable in-
formation to enhance humans’ comprehension [13]. Human-robot 
interfaces must provide transparency into the robot’s behavior in or-
der for humans and robots to collaborate efectively. Transparency 
fundamentally impacts many aspects of a human’s interactions 
with a robot (e.g., cooperation, communication, team performance, 
and team efciency). Providing objective transparency metrics is 
critical to improving the capabilities of existing human-robot teams. 
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Transparency is a complicated construct that is impacted by 
a broad range of factors (e.g., performance, usability). Situation 
Awareness (SA) is an indirect transparency factor that has broad 
implications. Two major aspects of transparency (i.e., performance 
and trust) are directly impacted by humans’ SA [13]. Prior work 
demonstrated that in situ SA Probe Questions can be used to assess a 
human’s awareness of the system but suggested that further insight 
can be gained via more objective metrics [12]. 

Eye-tracking is becoming an objective means of assessing SA 
[9, 16]; however, these metrics have never been directly applied 
to assessing transparency. Prior work leveraged metrics based on 
where the operator was interacting with a user interface as a proxy 
metric for operator gaze location to gauge SA, but these proxy met-
rics cannot be validated as representing aspects of the operator’s 
SA [12]. This work also leveraged SA Probe Questions representa-
tive of the three levels of SA (i.e., perception, comprehension, and 
prediction). Combining eye tracking metrics (e.g., saccadic distance, 
gaze locations) related to the SA Probe Question timing (e.g., before, 
during, and after prompt) can provide a more objective assessment 
of SA and deeper insight into the system’s transparency [12]. 

This manuscript presents an initial analysis of gaze-based metrics 
for objectively assessing SA and discusses requirements for future 
assessment techniques such that transparency in a human-robot 
team can be measured more reliably. A supervisory, shared auton-
omy human subjects evaluation was conducted for an underwater 
autonomous manipulation system [15], shown in Figure 1b. The de-
cision support system provided potential grasp locations [10], from 
which the human selected what they believed was the best option 
to allow the robot to successfully grasp an object autonomously. 
Example grasp options and the decision support system interface 
are shown in Figure 1a. Participants executed a series of marine 
robotic manipulation tasks where ocular metrics were collected 
with a wearable eye-tracker. 

Generally, the initial overall results demonstrate that saccadic 
distance is more variable in periods of lower SA. These initial results 
do specifcally demonstrate that participants are evaluating how 
to best grasp an object at a time when they are seeking to gather 
information (Level 1 SA: perception) and think through which 
presented grasp option (Level 2 SA: comprehension) is most likely 
to result in a prediction of successful grasp (Level 3 SA: projection) 
[2]. However, the results on a per-object basis were not clear and 

177

https://doi.org/10.1145/3610978.3640647
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3610978.3640647
mailto:adamsjuli@oregonstate.edu
mailto:baskarap@oregonstate.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3610978.3640647&domain=pdf&date_stamp=2024-03-11


HRI ’24 Companion, March 11–14, 2024, Boulder, CO, USA Favour Aderinto*, Josh Bhagat Smith*, Mark-Robin Giolando, Prakash Baskaran, and Julie A. Adams 

(a) User Interface 

(b) Underwater System 

Figure 1: Candidate grasps as presented to the operator (a) 
were executed autonomously by the Bravo 7 manipulator (b). 

require further analysis of how gaze-based metrics can be used to 
assess SA objectively. 

2 RELATED WORK 
Marine robotic environments present numerous challenges (e.g., 
noisy perception, constrained communication). The noisy, delayed, 
and potentially incomplete environmental perceptions can neg-
atively impact an operator’s SA and transparency into the true 
situation underwater. Interface design and efective decision sup-
port systems can intelligently process and convey information that 
enhances transparency and SA [10]. 

Transparency is critical to developing more efective human-
robot interfaces. Performance, trust, explainability, and usability 
are the highest-degree direct factors of transparency [13]. SA di-
rectly impacts performance and trust and is indirectly related to 
both explainability and usability. More objective SA assessment 
techniques will result in more reliable measurements of these high-
degree factors; thus, leading to deeper insights into transparency. 

SA assessment techniques have primarily relied on subjective 
questionnaires administered either while an individual is operating 
or after an individual has fnished operating a given system [2, 4, 14]. 
Some techniques (e.g., SA Rating Technique [2]) have individuals 
self-report various internal aspects of their mental state to generate 

Figure 2: The objects grasped by set in order from left to 
right. 

an aggregate SA metric. Other techniques (e.g., SA Global Assess-
ment Technique [2], SA Probe Question [4]) administer queries 
concerning a system’s current state to provide a more objective 
assessment. Prior work related to transparency used less intrusive 
but domain-appropriate in situ SA Probe Questions for each of 
Endsley’s three SA Levels [1]: perception (Level 1), comprehen-
sion (Level 2), and prediction (Level 3). These questionnaires often 
distract from the primary task, which hinders performance and 
may confound other key aspects of transparency; thus, unobtrusive, 
real-time SA assessment techniques are preferred. 

Real-time SA assessment techniques rely on an individual’s phys-
iological and behavioral patterns to estimate mental constructs re-
lated to SA [16]. For example, Level 1 SA (i.e., perception) is directly 
connected to where individuals dedicate their visual attention [3]. 
The distribution of visual attention correlates with SA, as spending 
more time looking for information indicates an individual exhibits 
lower comprehension of the system (i.e., Level 2 SA). 

Eye trackers can provide insights into SA, as they can collect the 
necessary ocular metrics to capture visual attention [5, 9, 11]. Many 
ocular metrics have been shown to correlate with SA, but some are 
more useful than others. Unconscious ocular metrics (e.g., pupil dila-
tion) are primarily involuntary responses to environmental stimuli 
and not directly connected to SA [16]. Conscious ocular metrics 
(e.g., fxations, saccades) are a direct indication of how visual atten-
tion resources are allocated, indicating where operators are looking 
for information required to understand the system’s state. Both 
fxation-based (e.g., area of interest, fxation duration) and saccade-
based metrics (e.g., saccadic amplitude, saccadic frequency) have 
been used in physiological SA assessments [6–8, 17]. Incorporating 
these metrics into objective SA assessment techniques can result in 
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a more informed transparency analysis and lead to better design 
recommendations [12]. Further, combining subjective and objective 
SA metrics can improve the analysis of transparency. 

3 EXPERIMENTAL DESIGN 
Participants were tasked with remotely grasping marine debris 
with an underwater robot arm. The participants completed a con-
sent form and a demographic questionnaire before donning several 
wearable sensors, including the Pupil Labs Core eye tracker. Par-
ticipants were presented with a brief instructional video before a 
training session where they grasped coral branches. 

The trial session required participants to use a computer-based 
decision support system to complete six trials, each of which re-
quired grasping a diferent object. Two object sets containing ob-
jects of similar complexity were used (see Figure 2). The object set 
presentation order was randomized, but the objects within a set 
were always presented in the same order. 

Fifteen participants (9 females and 6 males) completed the eval-
uation. Six participants were between the ages of 18 and 30, three 
were 31–40, three were 41–50, and three were over the age of 51. 
Four held a Bachelor’s degree, six held a Master’s degree, and the 
remaining fve were high school graduates. All but one participant 
was right-handed. Participants rated their profciency with comput-
ers (mean = 5.93, standard deviation = 1.22) on a scale from 1-low 
to 7-high. Five participants reported playing video games regularly, 
and ten participants reported never playing video games. 

3.1 Methodology 
The Pupil Lab’s Core eye tracker, employed to monitor participants’ 
gaze behavior during the grasping trials, records gaze location in the 
camera’s reference frame. The Pupil Lab’s Core eye tracker necessi-
tates a transformation to align the gaze location with the screen’s 
coordinates. Fiducial markers positioned at the monitor’s four cor-
ners were used to calculate the disparity between the eye tracker’s 
camera-based coordinates and the screen’s reference frame in or-
der to correct the participant’s gaze locations. This transformation 
aligned the participant’s gaze coordinates with the screen’s refer-
ence frame using OpenCV to detect the fducial marker positions. 
Gaze locations outside the screen’s boundaries were excluded. 

Gaze locations were recorded at three distinct time points: 15s 
before, during, and 15s after the selection of a potential grasp. Gaze 
locations over a 5-second window were collected; specifcally, 2.5s 
before and after each of these three time points. For example, all 
gaze locations between 12.5s and 17.5s were considered for the 15s 
Before selection time point. The primary metric utilized in this work 
is saccadic distance, which is defned as the length of a saccade 
between consecutive gaze locations. The mean and standard devia-
tion of saccadic distance were computed for each object at all three 
time points. Additionally, the overall mean and standard deviation 
for each object set, represented by Object Set A and Object Set 
B, were calculated to provide an overall analysis. The presented 
results are for 13 of 15 participants’ results due to data recording 
errors. It is important to note that although this evaluation did not 
incorporate the in situ SA Probe Questions, the evaluation does 
support developing objective eye tracking-based SA metrics. 

4 RESULTS 
Participants’ gaze variability was assessed by calculating the mean 
and standard deviation of saccadic distance for each object and 
object set (see Table 1). Generally, when comparing the results 
across the timestamps, the highest mean saccadic distance occurred 
for the less complex objects 15s before selecting a grasp, while the 
more complex objects (e.g., crate and cage) had higher variability 
at the time of selecting a grasp. The magnitude of these increases 
varies between objects, with the objects in Set A demonstrating 
more variability. Additionally, the mean saccadic distance 15s Before 
selecting the grasp is correlated with an object’s grasp complexity 
for objects within an object set, where the easy objects (i.e., can, 
bottle) have the highest mean distance and the difcult grasp objects 
(i.e., crate, cage) have the lowest. 

Table 1: Saccadic Distances Values: Mean (Standard Deviation) 
in mm 

Object 15s Before At Selection 15s After 
Can 
Jug 
Crate 

0.412 (4.332) 
0.303 (3.463) 
0.172 (1.920) 

0.174 (1.263) 
0.129 (0.330) 
0.305 (3.626) 

0.236 (2.763) 
0.204 (2.376) 
0.156 (2.124) 

Object Set A 0.295 (3.389) 0.203 (2.225) 0.199 (2.432) 
Bottle 
Tire 
Cage 

0.240 (2.020) 
0.158 (1.661) 
0.113 (0.587) 

0.160 (0.493) 
0.218 (1.903) 
0.143 (1.364) 

0.119 (0.224) 
0.242 (2.034) 
0.157 (0.452) 

Object Set B 0.169 (1.531) 0.174 (1.394) 0.173 (1.212) 

The mean saccadic distance is similar for all objects during the 
At Selection and 15s After periods, with the exception of the crate. 
The crate exhibited the highest mean and standard deviation across 
objects during the At Selection period. Mean saccadic distances were 
higher with larger standard deviations during the 15s After period 
for four of the six objects when compared to the At Selection period. 
Objects of similar grasp complexity also had a similar mean sac-
cadic distances across object sets during the same period, but easy 
and difcult objects had lower standard deviations. For example, 
the crate and the cage results 15s after selection had a mean of 
approximately 0.157, but the crate’s standard deviation was fve 
times that of the cage. 

5 DISCUSSION 
The increased variability of saccadic distance 15s Before grasp se-
lection suggests that participants were seeking information (Level 
1 SA), processing (Level 2 SA), and projecting potential outcomes 
(Level 3 SA) to improve their SA. The mean saccadic distance 
roughly corresponds to scenarios where participants are either 
looking for information or assessing the system’s state. Higher 
standard deviations are indicative of participants searching for in-
formation frequently. These behaviors are characteristic of lower 
SA [16], and were both present 15s Before selecting a grasp. 

These results are in confict with the fact that mean saccadic 
distance decreased as object grasp complexity increased, which 
may suggest that participants required less information 15s Before 
selecting a grasp for a more complex object. It is intuitive to suggest 
that increases in object complexity correspond with decreases in 
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SA due to the object’s larger size and more difcult grasp execu-
tion. Complex objects were always presented after simpler objects, 
which may have been confounding, but more complex objects also 
provide more unique grasping options, which may have been easier 
for participants to interpret. Further investigation into the system 
interactions is required to understand these aspects of the results. 

The results during the At Selection and 15s After periods tell an 
equally complex story. Consistent mean saccadic distance between 
these two time periods is likely due to the fact that the partici-
pant’s decision had been made and the system is communicating 
the selected grasp, planning the path from the manipulator’s resting 
position to a grasping position, or executing the autonomous navi-
gation and grasping behaviors. The higher values exhibited during 
the At Selection period for the crate object are possibly the result of 
a more difcult decision requiring further verifcation during the 
selection. Unlike other domains, where the human will have other 
tasks to attend to while the grasping actions are autonomously 
executed, this system does not require any other tasks. Thus, the 
generally higher standard deviations during the 15s After period 
are the likely result of disengagement (i.e., lower SA). The decision 
support system takes from 10 to 20 seconds to begin executing a 
grasp; participants may reduce their vigilance during this period. 

Overall, these results suggest the potential of saccadic distance to 
be used for objective SA assessment, but further analysis is required 
to draw a defnitive conclusion. Future work must investigate the ex-
ceptions in the data patterns to better understand their cause. Gaze 
behavior may only partially capture SA, but incorporating more 
diverse ocular metrics (e.g., saccadic amplitude, fxation duration, 
areas of interest) may result in a more reliable SA assessment. 

Additional metrics also allow for a more in-depth analysis of the 
implications on transparency. Distinguishing between SA Levels is 
difcult when relying on a singular ocular metric. Understanding 
the distribution of SA across the three levels allows for a more 
in-depth transparency analysis that can lead to more targeted de-
sign recommendations. Simple gaze-based metrics appear to easily 
capture SA Levels 1 and 2. Fixating on key interface elements is 
indicative of the participants’ perception, and the frequency with 
which participants look around the screen may correspond to their 
overall comprehension [16]. However, the direct connection be-
tween Level 3 SA and gaze metrics remains unclear. 

Future work must leverage either system logs or SA Probe ques-
tions to validate potential gaze metrics that correspond to specifc 
interface elements at specifc times. The presented underwater 
robotic system collects information about selected grasp position-
ing, grasp quality, and grasp execution time that will be analyzed to 
calculate more complex gaze-based metrics to develop an objective 
SA assessment method. Delineating the relationship between spe-
cifc ocular metrics and their corresponding SA Levels will allow for 
a more detailed assessment. This level-based decomposition helps 
provide a more indepth and objective SA assessment for evaluating 
human-robot teaming transparency. 

6 CONCLUSION 
Transparency is fundamental for efective human-robot collabo-
ration. Leveraging eye-tracking metrics such as saccadic distance 
and gaze locations can ofer an objective assessment of SA. The 

preliminary analysis of these metrics from a marine robotic object 
manipulation system is presented. These metrics serve as crucial 
indicators of transparency, impacting the performance and trust 
within human-robot teams. Assessing SA objectively through oc-
ular metrics advances the understanding of transparency, paving 
the way for improved collaboration between human-robot teams. 
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