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ABSTRACT 
Ultraviolet-C (UV-C) robot irradiation is a promising approach 
for disinfecting surfaces contaminated by pathogens in healthcare 
settings. However, limitations exist with current UV disinfection 
robots, including coverage for complex surface geometries. This 
research presents a system for human-guided robotic UV disinfec-
tion that uses empirical sensor measurements rather than relying 
on high-accurate models for UV map coverage. Human guidance 
is integrated into the methodology to enhance disinfection, aid-
ing in addressing complex shaped objects and topologies. Further, 
a validation test confrmed that our estimation approach reliably 
underestimates the UV exposure, which is benefcial for ensur-
ing thorough disinfection. Initial pilot studies demonstrated that 
while autonomous disinfection was efective for simple objects 
like tabletops, human-guided disinfection, especially with feed-
back, improved coverage and speed for complex shapes like mugs. 
Combining human intuition with autonomy shows promise for 
enhancing robotic disinfection efectiveness. 

CCS CONCEPTS 
• Computing methodologies → Model verifcation and vali-
dation. 
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1 INTRODUCTION 
In the past decade, healthcare settings have faced challenges posed 
by highly contagious pathogens, particularly impacting healthcare 
personnel working in contaminated spaces [16]. Surface contamina-
tion is a known factor in nosocomial transmissions [8–10], making 
efective disinfection crucial. Recent eforts have led to the develop-
ment of UV-C robots for combating infectious diseases, particularly 
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those transmitted through surface contact [1, 6, 11, 12, 14]. How-
ever, existing designs encounter limitations in disinfecting surfaces 
with small-scale occlusions [7], such as tools on a table. 

Our prior work leveraged a robotic arm holding a UV light source 
to cover small-scale surfaces [13]. We developed a framework that 
accurately modeled a non-uniform light distribution while regulat-
ing the velocity control of the manipulator to ensure sufcient virus 
inactivation. In our current research, we extend the previous study 
by addressing challenges in environmental modeling by adopting a 
direct empirical measurement of UV light to create coverage maps. 
To ensure the validity of our measurement technique, we compared 
our data against readings from accurate sensor modules in a test 
article. 

We have also incorporated human input as a component of our 
disinfection methodology. With the variability of shape, size, and 
accessibility of objects, human input is employed to determine 
optimal disinfection paths. Human input can allow us to include 
semantic knowledge of object features, such as handles and oc-
clusions, potentially enhancing our system to create paths to help 
cover commonly missed sections. 

2 RELATED WORK 
There has been growing research interest in robots involved with 
virus inactivation to keep up with sanitation standards. Mehta 
et al. [5] provides an overview of the efectiveness and current 
state of UVGI robots. They discuss the needed improvements in 
dosage modeling, human safety during deployment, and semantic 
segmentation to identify high-risk surfaces for quicker disinfection. 

Marquess et al. [4] introduces dosing constraints that result 
in lower disinfection time while ensuring adequate UV dose ex-
posure to a surface. Their approximate algorithm selects feasible 
vantage confgurations, which then create path networks and cal-
culate irradiance matrices across the surfaces. Their algorithm then 
determines optimal dwell times and executes the tool path. The 
authors defned the optimization problem as computationally com-
plex. Thus, they propose a two-stage approach that combines linear 
programming and the traveling salesman problem techniques for 
efcient coverage planning. Further, the method was tested in simu-
lation for various UVGI robot designs, demonstrating its versatility. 
However, the algorithm has yet to be tested on an actively exploring 
system that might not account for unpredictable environmental 
factors or robot hardware limitations. 

A challenge in modeling dose accumulation is efectively mea-
suring a robot’s disinfection performance. Kurniawan et al. [3] 
addresses this hurdle by simulating the coverage using an octree 
as a voxel-based representation of the environment. Their UVGI 
robot has a noiseless 3D LIDAR that projects discrete light rays into 
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the simulated world. Then, each cube-shaped node in the octree 
stores the radiation dose value it receives from the light ray. Com-
paring their data with ground truth reference octree, their fndings 
highlight the potential applications of their system for UVGI per-
formance evaluation. Similar to the work conducted by Marquess, 
the study is confned to a simulated environment, and it consid-
ers a noiseless 3D LIDAR that can neglect inconsistencies found 
in actual sensor data. Although physics simulators can quickly 
provide insights into a design, it is important to note that they en-
counter real-world modeling mismatches that can negatively afect 
the performance of a system. 

Our work draws parallels with Kurniawan’s but extends this 
approach by measuring disinfection performance on hardware. 
We also represent the world as an octree, but rather than using 
a 3D LIDAR, we employ a color and depth perception camera to 
empirically measure the UV light distance and compute the dose 
captured in each node. 

3 IMPLEMENTATION 
Our system allows a human operator to demonstrate a trajectory for 
a UV fashlight, designed to disinfect an object or area on a tabletop. 
The robot can then replicate this trajectory to disinfect the object. 
We show that, when the human has access to a 3D visualization 
of the current status of the disinfection, they can disinfect more 
efectively than an autonomous system, often completing the task 
faster. We explicitly want to avoid building high-fdelity models 
of the objects we are disinfecting, to reduce our reliance on high-
fdelity sensors and actuators. 

3.1 System Hardware 
For our robot, we utilized the Fetch mobile manipulator platform 
[15]. The robot is equipped with a holonomic base, a 7 degrees-
of-freedom arm, a parallel-jaw gripper, and a movable head with 
an integrated PrimeSense camera. The PrimeSense camera com-
prises an RGB sensor and an infrared projector and sensor. These 
elements will enable the head camera to record the depth and color 
information needed in our design layout when representing the 
world as an oct-tree. The parallel-jaw gripper also holds the light 
source, a 10-watt 365 nm UV fashlight. 

A RealSense D435 camera [2] was installed on the robot’s end ef-
fector. Like the head camera, the RealSense can record the depth and 
color information from its images. The objective of the RealSense 
camera is to determine which nodes in the octree are experiencing 
UV exposure. 

3.2 Octree Representation 
Using the head camera, the robot captures a time-stamped point-
cloud message type and builds a collection of 3D coordinate points 
with color information, of the contaminated space. When the robot 
is directed to execute a tool path for disinfection, the OctoMap 
package processes the most up-to-date point cloud message and 
builds an octree representation of the environment, as shown in 
Figure 1. For the purposes of evaluation in this paper, we further 
segment the area of tabletop and objects, so that we can measure 
disinfection rate more accurately. This segmentation step is not 
necessary to deploy the system. 

(a) Point cloud of cone. (b) Built octree of the cone. 

Figure 1: Octree representation from head camera data. 

Figure 2: Model of the UV Flashlight. 

To visualize the accumulated dosage, using the ROS RViz tool, 
cube markers are generated using the stored data. Their colors 
shift from red to orange, then yellow, and fnally green, refecting 
an order of increasing UV dose. Once a cube is highlighted green, 
it indicates that the node has acquired or exceeded the desired 
threshold. The cubes are published in real-time to provide feedback 
on the disinfection progress. 

3.3 Image Processing 
We use computer vision techniques to identify the illuminated spots 
from the RealSense’s captured images. Our current implementation; 
however, performs in a slightly dimmed room and focuses on known 
colored objects. These environmental conditions allowed us to 
test and observe our disinfection method approach, and further 
development of our system, such as a UV-sensitive camera, can 
enable it to function in various lighting conditions. 

Our process identifes which node is occupied by a point in the 
depth image. Using the node’s coordinates, the system computes 
the relative angle from the UV light source’s central line and the 
Euclidean distance between the node and UV light. The robot can 
then infer the dosage using the inverse square law, exposure time, 
and referencing our UV model, see Figure 2, where irradiance in-
tensity attenuates the further a point is away from the fashlight’s 
central line. The node’s spatial and dose information is then stored. 
This process is continuous throughout the path, and if points in 
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(a) Set up for Sensor Array. (b) Set up for table disinfection. 

Figure 3: Apparatus set up for validation tests. 

a node are repeated, the dose value is incremented, and the new 
cumulative dose is saved. 

3.4 Programming by Demonstration Interface 
Our interface was developed within the ROS framework[17] and 
is designed to record human-guided arm trajectories. The system 
primarily functions by subscribing to the joint states of the robot’s 
arm, capturing any change in its position. Before a user guides 
the arm, the arm’s control mechanisms are set to a relaxed state, 
allowing for external manipulation. A user can move and position 
with the arm with little resistance. After the user has fnished 
guiding the arm, the joint states and other movement details are 
saved to a JointTrajectory message type. Our playback node ofers 
the ability to reproduce the guided trajectory and execute the stored 
movements in their original duration or adjust to diferent speeds. 
The interface provides a method for capturing and reproducing 
robotic arm movements based on user input without the need for 
manual programming. 

4 VALIDATION EXPERIMENT 
To ensure that we are able to get accurate estimates of irradiation, 
we performed a validation experiment. We generated a 1D trajectory 
for the table and as well for a sensor array. The Sensor array is 
equipped with UV sensor modules and is approximately one meter 
long. Each sensor was calibrated to work with our fashlight’s UV 
band range. The sensor array was positioned on a fat tabletop in 
front of the robot, as shown in Figure 3a. 

To validate the system, we performed ten repetitions of the 
trajectory for each setup, see fgure 5, recording both the directly 
measured irradiance from the sensor array and our computational 
estimate measured by the end efector camera. The data is shown in 
Figure 4. The frst thing to note is that the computational estimate 
follows the actual measured value, but consistently under-estimates 
it. While a more accurate estimate is often desirable, in the case 
of UV disinfection, we strongly prefer to have consistent under-
estimation. This means that, if we use the computational estimate, 
we will tend to over-irradiate the objects being disinfected (which 
is fne), rather than under-irradiating them (which will lead to 
incomplete inactivation of the virus, which is bad). 

The under-estimation is, in part, caused by measurement noise 
in the distance sensor. This leads to some irradiation being allocated 

Figure 4: Average measured UV dose (red) and average com-
putational estimate of dose (blue). 

to a cell that is actually inside the surface of the sensor. This, in turn, 
leads to less accumulated irradiation in the surface cell. Given our 
commitment to using approximate octree models and commercially-
available sensors, this is unavoidable. It is, however, tolerable, since 
it will only lead to under-estimation and never over-estimation. 

5 PILOT STUDY 

5.1 Study Layout 
To provide some initial evaluation for our approach, we performed 
a pilot study to show how human guidance afects disinfection rates 
and coverage. For this experiment, we focused on three test objects: 
a cone, a mug, and a delineated part of the fat surface of a table. The 
table has simple geometry and topology and provides a baseline. 
The cone ofers a simple convex surface with no afordances; a 
slightly more complex geometry, but still simple topology. Finally, 
the mug has both a more complex geometry and topology. It also 
has afordances, not apparent from either the geometry or topol-
ogy, related to its use. The handle and the rim are more important 
disinfection targets, since these areas are the ones where humans 
will most interact with the object. Performing a more complete 
disinfection here may be important, and is something best done 
with human guidance. We note, however, that we do not evaluate 
these afordance-based disinfection targets, leaving this for future 
work. 

The experiment has three conditions: autonomous, no-feedback, 
and with-feedback. In the autonomous condition, the robot follows 
a pre-specifed trajectory specifc to the object being disinfected. In 
the no-feedback condition, a human guides the fashlight manually, 
directly moving the robot arm. In the with-feedback condition, a 
human also guides the fashlight manually, but also is shown a real-
time visualization of the current disinfection status, as described 
above. Figure 5 shows the visual representation of the tabletop after 
a successful disinfection. 

5.2 Systematic Errors 
Note that, because of measurement errors in the distance sensor, 
disinfection is sometimes attributed to cells that are actually below 
the surface of the table. These are the red-colored cells in the view 
from below the tabletop oct-tree model, see 5b. This leads to a slight 
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(a) Top View (b) Bottom View 

Figure 5: Top and bottom views of the octree representation 
of the table. 

Object 
Tabletop 

Cone 

Mug 

Auton. 
98.57% 

94.44% 

79.61% 

Feedback? 
No 
Yes 
No 
Yes 
No 
Yes 

S1 

50.25% 
97.34% 
75.98% 
87.38% 
49.69% 
89.84% 

S2 

17.87% 
98.57% 
49.20% 
95.51% 
65.00% 
85.00% 

S3 

34.22% 
98.27% 
86.41% 
83.03% 
50.50% 
88.45% 

Table 1: Disinfection rates for the three objects for the au-
tonomous system and the three subjects, in both the no-
feedback and with-feedback conditions. 

under-estimate of the irradiation (as explained above), but also re-
sults in these cells being shown as being under-disinfected when, in 
reality, they are not (since they are inside the table). To address this, 
our analysis removes these cells from consideration in the analysis 
that follows. More specifcally, we heuristically remove cells that 
have a computed irradiation value less than 50% of the smallest of 
their neighbors. In our tests, this proved to reliably get rid of these 
spurious cells. Ideally, we would form a model of the object, and an-
alytically determine which cells were inside; however, in this paper 
we make the explicit commitment not to model the object in this 
way, leaving a heuristic pruning of cells the only viable option. A 
separate analysis was performed on the un-pruned estimates and, in 
all cases, the trend followed that reported here, with improvements 
in disinfection showing in the same conditions, with approximately 
the same magnitude. However, we feel that the pruned results better 
represent the actual level of surface disinfection occurring. 

5.3 Preliminary Results 
Table 1 summarizes the disinfection rates from the experiments. 
The autonomous disinfection is highly efective for the tabletop, re-
sulting in 98.57% of the area receiving a sufcient dose to inactivate 
our notional virus. The autonomous system is also highly efective 
in disinfecting the cone, with 94.44% disinfected cells. It can also be 
observed that humans perform better with visual feedback, and in 
the instance of the mug, feedback did better than the autonomous 
path. 

Table 2 displays the disinfection times of the three diferent con-
ditions. Interestingly, providing feedback consistently increases the 
time taken by the subjects. This can be explained, in part, by having 
to look at the visualization and correlate it with the object, but also 
by the time taken to perform the higher level of disinfection noted 
in the fgures above. For the tabletop, the autonomous system was 
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Object Auton. Feedback? S1 S2 S3 

Tabletop 17.82 No 111.77 46.27 49.24 
Yes 70.82 68.02 86.14 

Cone 80.30 No 25.63 23.02 32.45 
Yes 43.58 65.72 42.65 

Mug 42.43 No 18.45 20.71 15.98 
Yes 35.73 27.82 37.78 

Table 2: Disinfection times, in seconds, for the three objects 
for the autonomous system and the three subjects, in both 
the no-feedback and with-feedback conditions. 

Object Auton. Feedback? S1 S2 S3 

Tabletop 2.00 No 1.11 0.56 0.89 
Yes 3.24 2.33 2.91 

Cone 6.35 No 1.94 1.31 1.41 
Yes 3.63 5.02 2.94 

Mug 4.78 No 1.14 2.85 1.05 
Yes 3.23 3.65 6.46 

Table 3: Average per-cell dose, as a proportion of the nominal 
disinfecting dose, for the autonomous system, without visual 
feedback, and with visual feedback. 

markedly faster than all of the subjects, because of the simplicity of 
the trajectory it followed. However, for all other objects, humans 
were faster than that autonomous system, presumably because of 
their intuitions about how to illuminate the more complex objects. 

Finally, Table 3 shows the average per-cell dose delivered in 
the various conditions. Unsurprisingly, humans deliver more aver-
age doses in the with-feedback condition. However, they generally 
deliver less average dose than the autonomous system for both 
the cone and the mug, presumably because the guided trajecto-
ries are more efcient and less redundant than those used by the 
autonomous system. 

6 DISCUSSION 
This work demonstrates the potential benefts of incorporating 
human guidance and feedback for robotic UV disinfection without 
relying on high-accurate models. The disinfection experiments com-
pared three conditions: autonomous disinfection, human-guided 
with no feedback, and human-guided with visual feedback. On 
objects with simple geometry, like the tabletop, the autonomous 
system performed disinfection quickly and efectively. However, 
the cone and mug results show that human intuition can improve 
coverage and sometimes speed for complex topologies, especially 
when visual feedback is provided. 

Although these fndings are insightful, it is important to highlight 
this research’s limitations. We consider this work a preliminary 
study, but also acknowledge that this creates the beginning works 
for broader, more detailed investigations. 
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