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Figure 1: Sidewalk shufle between (a) Pedestrian-Pedestrian (b) Pedestrian-Delivery robot 

ABSTRACT 
As robots become more integrated into humans’ daily activities, it 
is essential to understand how human decision varies during co-
learning with robots in real-world scenarios. Despite great advances 
in developing humanoid robots, which aims to foster a seamless 
collaborative world where humans and robots coexist, a gap re-
mains in the social bond between humans and robots, particularly 
in tasks demanding optimal teamwork. In alignment with current 
pioneering eforts in the human-robot collaboration feld, this pa-
per presents an experimental study leading to a rationale analysis 
and classifcation of human behavioral dynamics during a joint 
collaborative pick-and-place task with a robotic arm. Our post-
experimental analysis categorized human behavioral dynamics into 
three distinct broad categories, which are “strategic explorers and 
decoders", “reactive navigators and dynamic responders", and “score 
maximizers and ideal collaborators". We provide in-depth analy-
sis for each group, exploring potential reasons for their observed 
behavioral patterns and irrational decisions substantiated by intu-
itions from psychological and behavioral game theory, including 
concepts of false belief and strategy development. 
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1 INTRODUCTION 
At least once in our lifetime, we all experience a moment walking 
through a narrow corridor or hallway, when another person ap-
proaches from the opposite direction, as illustrated in Figure 1 (a). 
Although we intend to avoid each other and proceed on our respec-
tive paths, we accidentally both move to the right, then to the left, 
and again to the right, in unintended synchronization. This undesir-
able and awkward situation is commonly known as sidewalk shufe, 
hallway dancing, or footpath foxtrot. A similar situation can occur 
in robot-robot or human-robot navigation, as shown in Figure 1 
(b). This can cause signifcant hindrance in smooth human-robot 
collaboration, especially now, when ground and aerial robots serve 
humans in various applications, including warehouse manipulation, 
delivery, rescue operations, and entertainment [5, 11, 17, 19, 22]. 

To avoid such an oscillation in human-robot collaboration, Young 
et al. developed a dual expert chatter algorithm (or DEA) and a 
human-aware dual expert algorithm (or HADEA), which they tested 
in simulations for a double feedback closed-loop human-robot co-
learning system [27]. The authors refer to the term “chatter" to the 
instances where humans and robots make the same choices. They 
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used the famous Rescorla-Wagner model [18] in psychology to 
simulate human choices based on robot past choices [2, 15, 16, 20]. 
However, in joint human-robot real-world tasks, human decision-
making behavior does not strictly obey the Rescorla-Wagner model 
[4, 6, 8, 10, 25]. It may be more rational, strategic, irrational, random, 
or a combination of all these [3, 7, 13, 21]. 

A brain monitoring study revealed that a specifc region of the 
brain linked to social cognition is more active in human-human 
interactions than in human-robot interactions [23], suggesting that 
the lack of social bonding in the latter could hinder efective collab-
oration in tasks requiring high cooperation from both sides, such 
as joint pick-and-place tasks. In line with these fndings, it is essen-
tial to address the core challenge of accurately identifying human 
decision-making models during co-learning tasks with robots, to 
bridge the existing cognitive and social gaps between humans and 
robots [1, 9, 14, 24, 26]. Therefore, this paper presents an experi-
mental study on a joint, concurrent pick-and-place task performed 
by a human and a robot, involving 11 human participants (� = 11). 
Additionally, we have classifed the observed behaviors of the par-
ticipants into three groups and provided a comprehensive reasoning 
for their behavioral choices and actions during the game. 

2 EXPERIMENTAL FRAMEWORK AND 
PROCEDURE 

Contrary to the hallway dancing problem, the term “chatter" in 
this paper for the pick-and-place task denotes the misalignment of 
choices between human and robot while simultaneously selecting 
between a red and blue marker, as shown in Figure 2. The co-
learning experiment detailed in Section 2.2 was inclusive to all and 
did not target any specifc demographic population, except age: 
all human subjects were university students possessing developed 
theory of mind [12]. 

2.1 Experimental Scenario and Setup 
We leveraged a 6-DOF collaborative Ned2 robotic arm as a counter-
part to human subjects. For six subjects, the robot operated using 
the DEA algorithm, while for the other fve, the HADEA algorithm 
was used [27]. To further challenge the human decision-making 
process, we subjected some participants to eight initial random 
choices by robot, discussed in Section 4. 

The participants were unaware that the robot followed these 
algorithms to avoid chatter and would try to be collaborative. Our 
intent was to observe whether or not they would make signifcant 
eforts to fgure out if the robot was following a pre-set algorithm 
or predictable pattern. The observations of this experiment were 
discussed in Section 3. The implementation of chatter-avoiding 
DEA and HADEA algorithms in the context of this pick-and-place 
task is shown in Algorithm 1, where ‘����� ’ and ‘���� ’ represent 
the weights for choosing red and blue markers, and ‘�� ’ and ‘�� ’ 
denote the robot’s and the human’s choice at each iteration. 

2.2 Co-learning Experimental Workfow 
At the beginning of the experiment, each participant was motivated 
to score as high as possible over 20 iterations of selecting a marker, 
either red or blue, to match the robot’s choice every time. The 
step-by-step experimental procedure is described in the following. 
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Figure 2: Experimental Setup showing No Chatter Instance 

• Step 1: The participant was instructed to sit at a safe and 
specifed distance from the robotic arm. 

• Step 2: The participant was informed that they must choose 
a marker, red or blue, on the count of “1, 2, 3, go...". And the 
robot would also make its selection simultaneously. 

• Step 3: If the participant chooses the same marker as the 
robot, they would earn a 1 point and be required to place 
the marker in a nearby box, perceived as a robot completing 
the task collaboratively with sufcient human assistance, 
as shown in Figure 2. If the participant chooses a diferent 
marker, they would score 0 and would not perform any ac-
tion, waiting instead for the next countdown to begin, while 
the robot attempted the task without assistance. And with-
out human assistance, the robot struggled to put the marker 
in the box. 

• Step 4: This selection game was repeated for 20 iterations. 
During the experiment, the participant’s score for each game 
iteration was displayed on a nearby screen. 

Algorithm 1 Dual Expert Algorithm 

1: procedure Robot Choice(�� ) 
2: ����� = ���� = 0.5 
3: for � = 1 to 20 do 
4: �� ← Blue 
5: ��� ← ����� 
6: if ����� < ���� then 
7: �� ← Red 
8: ��� ← ���� 
9: end if 
10: if �� = �� (No Chater) then 
11: ��� ← ��� < 0.5 ? ��� × 2 : ��� 

12: else (Chater) 
13: ��� ← ��� /2 
14: end if 
15: end for 
16: end procedure 
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Figure 3: Experiment data: (a) (b) and (c) as Strategic Explorers; (d) and (e) as Dynamic Responders; (f) as Score Maximizers; and 
(g) and (h) with 8 random robot choices at the beginning. 

3 BEHAVIOURAL CLASSIFICATION AND 
RATIONALE ANALYSIS 

It is clear from our observations that human behavior exhibits 
considerable diversity, with decisions varying signifcantly from 
individual to individual. This variability presents a challenge to 
come up with a robust, accurate, and one-time model that encap-
sulates all aspects of human behavior. However, it seems practical 
and of real-world applicability to categorize behaviors into distinct 
groups, allowing the development of targeted behavioral models 
for each classifed group. Subjects 1, 2, 5, and 6 were grouped as 
outlined in Section 3.1; Subjects 3 and 4 in Section 3.2; and Subject 
7 in Section 3.3. 

3.1 Strategic Explorers and Decoders 
In this group, participants showed a common trend of sequences, 
including initial exploration and pattern decoding, followed by 
strategy adjustment and one or two instances of false belief towards 
the end. The behavior of subjects 1, 2, 5 and 6 closely mirrors with 
slight variations in the occurrence of these events shown in Figure 3 
(a) (b) and (c). 

Figure 4 explains the behavior logic and the response rationales 
of Subject 1. From the human choices depicted in Figure 3 (a) of 
subject 1, we can see that subject started by selecting blue and 
succeeded in the frst 3 trials. However, after 3 trials, the subject 
switched to red possibly for two primary reasons: frst, there was a 
greater probability that the subject wanted to test the robot, espe-
cially since the game had just started. The participant might have 
been curious about how the robot would react to a change in their 
choice and if the robot’s actions were genuinely infuenced by their 
decisions. Second, there was a lesser chance that the subject had a 
false belief about the robot’s choice. Given it was early in the game 
and the robot hadn’t switched colors before, the probability of the 
participant assuming the robot would choose red was relatively low. 
However, it is aberrant that choosing red has a higher probability. 

At this point, the subject also began making eforts to decode the 
robot’s pattern, and it seems the subject perceived the robot has a 
pre-defned pattern, of changing its choice from red to blue (or vice 
versa) after every 3 or 4 iterations. With this perceived logic, the 
subject adjusted their choice from blue to red in the 11�ℎ 

iteration. 
At this point, it became evident to the subject that the robot was 
adapting to their choices, suggesting that the human was leading 
the robot in decision making. 

As time passed, the subject became more motivated to achieve 
a higher score, prompting a signifcant change in their previously 
developed strategy. After three consecutive red choices, the subject 
decided to test their previous strategy in the 14�ℎ 

iteration sticking 
to red. Towards the end, it appears that the subject switched to blue, 
primarily driven by a false belief about robot action. The subject 
might have assumed that since they had previously chosen blue, 
and given that several iterations had passed without selecting blue, 
the robot might anticipate a blue choice. This led to the subject 
choosing blue in the 19�ℎ 

iteration. However, the robot, operating 
on a chatter-avoiding DEA algorithm, took a few iterations to avoid 
chatter and reduce weight for red choice, resulting in the robot 
choosing red for the last two iterations. 

3.2 Reactive Navigators and Dynamic 
Responders 

From the chatter frequency plots in Figure 3 (d) and (e) of subjects 3 
and 4, it is evident that they exhibit the highest chatter frequencies 
among all participants, with 11 and 9 number of chatter spikes, 
respectively. Consequently, they achieved the lowest scores in the 
game, of 9 and 11 points, respectively, out of 20. These plots sug-
gest that the behavior of these subjects is a mixture of reactive 
and predictive decision-making. They often provide an immediate 
counter-response to the robot’s selections, through out the experi-
ment, indicating an inclination to be more on outsmarting the robot 
on a move-by-move basis instead of sticking to their previously 
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developed strategy or attempting to decode a pattern in the robot’s 
decisions. 

Unlike the other participants, these participants did not main-

tain a consistent color choice for extended periods to discover the 
robot’s reactions; instead, their decisions were noticeably more dy-
namic. Modeling this small subset of individuals poses a signifcant 
challenge due to the aforementioned uncertainties and frequent 
irrationalities in the behaviors. 

Figure 4: Rationale analysis of subject 1’s decision behaviour 

3.3 Score Maximizers and Ideal Collaborators 
In this group, we classify participants who are intensely focused on 
achieving a high score and who aim to collaborate efectively with 
the robot to complete the task as soon as possible without testing 
or tricking the robot much. Figure 5 explains Subject 7’s behavioral 
logic and response rationales. 

From the decision plot shown in Figure 3 (f), we observe that 
Subject 7 started with a blue choice and, perhaps out of curiosity to 
test the robot, quickly switched to red to see the robot’s reaction. 
Subsequently, the subject reverted to the initial blue choice. This 
rapid alternation between blue and red at intervals of one trial 
suggests a score-centric behavior, indicating that the subject was 
not keen on spending time testing or outsmarting the robot. Instead, 
their main focus was on achieving a high score. 

Subject maintains this blue choice until the 6�ℎ 
iteration with an 

impressive score of 4 out of 6. However, at this point, the subject 
developed the false belief that the robot would now select red. This 
assumption was possibly based on the human’s switch to red from 
blue during the 2�� 

iteration, after which the robot, operating on 
the DEA algorithm, also changed to red in the 3rd iteration to 
avoid chatter with human’s choice. This sudden false realization 
excites the subject to shift from blue to red in the 6�ℎ 

iteration. 
After recognizing that subject is leading and guiding the robot’s 
decisions, the human confdently pursued their ultimate goal of 
maximizing their score and consistently chose red until the end. 

4 NON-DETERMINISTIC ROBOT CHOICES 
To increase the cognitive load on human decision making, we make 
the initial 8 choices of robot random. From 9�ℎ 

iteration, the robot 
started following the DEA algorithm. Figures 3 (g) and (h) show 
two notable observations; subject 10 achieved the highest score; 
luckily, during their initial 8 trials, there was only 1 instance of 

chatter. On the contrary, Subject 8 encountered chatter in frst 4 of 
the initial eight trials. This analysis suggests that, despite having 
a logical and sequential model for human behavior, unpredictable 
and contrasting outcomes can occur at any time. 

Figure 5: Rationale analysis of subject 7’s decision behaviour 

5 CONCLUSION AND FUTURE WORK 
In this paper, we have explored the chaos of human decision-making 
process during a joint co-learning pick-and-place task between a 
human and a collaborative robotic arm. While the arm operates on 
a Dual-Expert Algorithm and a Human-Aware Dual-Expert Algo-
rithm to avoid chatter and maintain adaptiveness, it quickly adjusts 
to match human decisions post-chatter occurrence. Through the 
execution of human-robot co-learning experimental tasks, we have 
collected decision choices (red/blue) for both human participants 
and robot. And we tried to infer common trends and outliers in 
human decisions. We have classifed the human behavior into three 
broad, distinct categories: frstly, those subjects who believed the 
robot followed a pre-defned pattern so they attempted to decode it 
initially; secondly, subjects who exhibited more antagonistic and 
reactive behaviors in response to the robot’s choices; and thirdly, 
those who focused on maximizing their performance by aiming to 
score highly during the game. Across all groups, we have observed 
a sudden episode of false belief in participants about the robot’s 
next action, leading to a deviation from their current choice or 
strategy. 

Acknowledging the imperative need to bridge the cognitive and 
social gaps that currently exist, thus making collaborative tasks 
more efcient and efective, our work is expected to serve as a foun-
dational framework for developing robust human decision-making 
mathematical models. Ultimately, these models could assist in devel-
oping more robust chatter-free collaborative expert algorithms for 
robots in various real world applications, such as warehouse robots, 
ground and aerial delivery robots that experience human-robot or 
robot-robot adversarial problems. 
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