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A moving body is a geometry that may translate and rotate over time. Computing the time-varying distance
between moving bodies and surrounding static and moving objects is crucial to many application domains
including safety at sea, logistics robots, and autonomous vehicles. Not only is it a relevant analytical operation
in itself, but it also forms the basis of other operations, such as finding the nearest approach distance between
two moving objects. Most moving objects databases represent moving objects using a point representation,
and the computed temporal distance is thus inaccurate when working with large moving objects. This paper
presents an efficient algorithm to compute the temporal distance between a moving body and other static
or moving geometries. We extend the idea of the V-Clip and Lin-Canney closest features algorithms of
computational geometry to track the temporal evolution of the closest pair of features between two objects
during their movement. We also present a working implementation of this algorithm in an open-source moving
objects database and show, using a real-world example on AIS data, that this distance operator for moving
bodies is only about 1.5 times as slow as the one for moving points while providing significant improvements
in correctness and accuracy of the results.
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1 INTRODUCTION
When working with moving bodies, geometries that may translate and rotate over time, the
time-varying (temporal) distance is of importance in many domains. For instance, it will help
analyze near-collision cases among sea vessels or autonomous vehicles. It will also help to analyze
the interaction of logistics robots and their surroundings. Existing solutions in the domain of
moving objects databases approximate the moving body by a moving point, e.g., its centroid.
This representation, although memory-efficient and easier to manipulate, completely disregards
the spatial extent of the moving bodies and can result in inaccurate or wrong results. In the
example shown in Figure 1, the difference between computing the distance using the moving point
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presentation v.s. using the moving body representation is illustrated. The nearest approach distance
between the objects is in reality less than half as much as what is computed using the moving point
representation.

Fig. 1. Nearest approach distance in moving point and moving body representation. The moving point
distance is 9.8m, compared to the 3.7m computed using moving bodies.

In the domain of computer graphics, computing the distance between two rigid bodies is a
well-known and heavily researched problem. Some of the presented algorithms are optimized
for distance computations on moving bodies [10, 16, 19]. These solutions, however, compute the
evolution of the distance by iteratively calling a static distance function at subsequent snapshots.
None of these solutions makes use of the parameters of the movement, mostly because they do
not assume that the motion is known in advance. These solutions are thus not viable for tracking
the continuous distance when the complete movement of the bodies is known, as is the case
when analyzing historical moving objects data in a moving objects database. For example, when
computing the nearest approach distance between two moving bodies, the minimum distance can
be missed if it is reached between two calls of the static distance algorithm. To clarify, the term
distance denotes the smallest Euclidean distance between two static geometries, and the minimum
distance thus relates to the smallest distance value reached during the movement of the geometries.
In this paper, we present an efficient algorithm to compute the temporal distance between two

moving bodies in 2D, when both the geometry and the movement of the bodies are known. The
algorithm computes a list storing the evolution of the closest features (vertices of edges) between
the moving bodies. This list, together with the moving bodies themselves, completely defines the
distance function between these objects. It can then be used to compute the distance at any time
during the movement. This algorithm can be used to compute the distance between a pair of moving
objects or between a static and a moving object. Note that the latter case is obtained by simply
setting all the movement parameters of the static object to zero. We also implement and evaluate
the proposed algorithm in a moving objects database.

Concretely, the main contributions of this paper are as follows:
• Presenting an efficient algorithm to compute the time-varying distance between convex
moving bodies.
• Proposing an algorithm for non-convex polygons making use of the solution for convex
polygons.
• Developing optimizations for the algorithms in case the polygons are non-rotating.
• Providing an implementation of multiple distance-related operators using the proposed
algorithm in an open-source RDBMS.
• Assessing the algorithms and their implementations on both synthetic and real-world data.

The rest of the paper is organised as follows: Section 2 discusses the related work. We define a
representation of moving objects in Section 3, which is compatible with the existing representations
of moving points and moving bodies in moving objects databases [12, 27]. Section 4 describes
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the proposed algorithm for computing the evolution of closest features between moving bodies.
Section 5 describes an optimization for this algorithm. Section 6 then presents the implementation of
the proposed algorithm in the open-source moving object database MobilityDB. Section 7 validates
the theoretical complexity of the proposed algorithms and assesses their running time in an actual
database use-case. To conclude, Section 8 summarizes the paper and gives some final remarks.

2 RELATEDWORK
The moving objects database research defines three main types of moving objects: moving points,
deforming moving regions and non-deforming moving regions (also called moving bodies). Moving
points are commonly represented using piecewise linear functions, and computing the temporal
distance between them is thus a trivial task. As the distance between two linearly moving points is
a square root of a quadratic function, the difficult part consists of representing and storing this
function in the database. In SECONDO [4], the data model allows to represent this function as a
temporal float object. In MobilityDB [31], an approximation is computed and stored, as a piecewise
linear function that maintains the extreme points of the initial distance function. One important
application of such a function is solving continuous nearest neighbor queries [9, 11, 28].

A distance function for deforming moving regions is presented in [4]. It accepts a moving point
and a moving region, as well as a pair of moving regions. The algorithm combines a brute-force
technique, computing the distance with every segment of the regions, with a filtering technique
which limits the actual number of segments to improve the performance. The data model represents
the deforming moving region as a set of linearly moving segments, i.e., the region edges. This
model cannot represent non-deforming moving regions that move by translating and rotating
around a given rotation center. Data models have thus been proposed to represent this latter type
[12, 27]. However, up to our knowledge, the problem of computing the temporal distance between
non-deforming moving regions, i.e., moving bodies, has not been addressed before. This paper aims
at developing such an algorithm.

In the field of computational geometry, there are efficient solutions for computing the distance
between static 2D polygons. Using binary-search and no prior information, it is possible to determine
the distance between two convex static polygons in O(𝑙𝑜𝑔(𝑛)) time, where 𝑛 is the total number of
vertices of the two polygons [3, 7, 30]. This complexity is a lower bound when no extra information
is given about these two polygons. When working with non-convex polygons, the main idea is to
decompose the polygon into convex parts and build a bounding hierarchy to reduce the number of
operations applied to each convex part. These bounding hierarchies can be made of spheres/circles
[6, 14, 24, 26] or bounding boxes [17, 22], either axis-aligned or not. [24] mentions an average
complexity of O(𝑛𝑙𝑜𝑔(𝑛)) for 2D distance computations between non-convex polygons.

Here, in the case of moving polygons, we observe that the distance is computed multiple times
at close time intervals. When working with convex polygons, it is thus often correct to assume
that the closest points between these two polygons will not move much between two distance
computations. Lin-Canney et al. [16] describe an algorithm to compute the distance between two
convex static polygons, as well as the two closest features (vertices or edges) of the two polygons
that are at this minimum distance. This algorithm takes not only the two polygons as input, but
also an estimate of the closest features. In the worst case, the algorithm has a linear time complexity
O(𝑛), but can finish in constant time if the estimate of the closest features was not far from the
real closest features. When iteratively computing the distance between two moving polygons, the
closest feature of the previous computation are used as estimate of the next one. This allows for
significant time improvements.
Improvements on the Lin-Canney algorithm have also been made, such as the V-Clip[19] and

H-Walk[10] algorithms. V-Clip is similar to Lin-Canney, but more robust and easier to implement,
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while H-Walk tries to improve the linear worst-time complexity of both Lin-Canney and V-Clip
by representing the object as a hierarchy of convex polygons. A similar hierarchical technique
is used in [23] for the purpose of collision detection. An overview of existing static and iterative
algorithms for collision detection and distance computation can be found in [18].
The algorithms presented in this paper are based on ideas from V-Clip and Lin-Canney, but

differ from the existing algorithms by taking into account the movement parameters of the moving
objects, as well as returning a temporal distance function instead of returning distance values at
distinct timestamps. This setting is useful when the movement is known in advance, such as in a
database setting storing historical movement data.

As detailed in Sections 4, the presented algorithm starts by computing the initial closest features
at the start of the movement. This is done using any one of the existing algorithms discussed above.
Similarly, as discussed at the end of Section 3, the V-Clip algorithm can be used to check the validity
of the result at the end of the algorithm in constant time.

3 PRELIMINARIES
In this section, we present a simple model for moving points and moving bodies that will be used
throughout the paper. This model is in agreement with more general models described in previous
research [4, 8, 12, 27, 31], but restricts the movement of an object to a single segment. Indeed, if
the movement is composed of a sequence of these segments (as is usually the case), the algorithm
presented in this paper can be applied independently to each segment. We discuss how this can be
done for the data models presented in [27, 31] at the end of this section.

A 2D moving object is described using a static geometry and associated movement parameters.
In this paper, the static geometry will be either a point 𝑝 = (𝑥𝑝 , 𝑦𝑝 ) or a simple polygon R, and the
corresponding moving objects will thus be called moving point and moving body respectively. The
term moving body refers to the fact that the polygon is non-deforming during its movement. We
will use the terms body and polygon interchangeably in the rest of the paper.

A simple polygon R is represented using a list of 𝑛 vertices stored in counter-clockwise order,
together with a rotation center (𝑥𝑐 , 𝑦𝑐 ) assumed to be inside the polygon. This paper does not take
into account holes in the polygon.

R = [(𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛) | (𝑥𝑐 , 𝑦𝑐 )] (1)

To simplify the notation, we will assume that (𝑥𝑛+𝑖 , 𝑦𝑛+𝑖 ) = (𝑥𝑖 , 𝑦𝑖 ). The modulo operations will
thus be omitted in the rest of the equations. To further simplify the notation, when talking about a
single vertex we will use 𝑣𝑖 and (𝑥𝑖 , 𝑦𝑖 ) interchangeably. Edges of the polygon are denoted 𝑒𝑖 and
represent the linear segment between 𝑣𝑖 and 𝑣𝑖+1.
We define a point on the edge 𝑒𝑖 as 𝑒𝑖 (𝑠) = (𝑥𝑖 (𝑠), 𝑦𝑖 (𝑠)) = 𝑣𝑖 ∗ (1 − 𝑠) + 𝑣𝑖+1 ∗ 𝑠 , with 𝑠 ∈ [0, 1].

The notation 𝑣𝑖 ∗𝑠 corresponds to a scalar multiplication and 𝑣𝑖 +𝑣𝑖+1 is the standard vector addition.
This parametric definition of a point along an edge is the same as in [19]. The distance between a
point 𝑝 = (𝑥𝑝 , 𝑦𝑝 ) and an edge 𝑒𝑖 of the polygon can thus be computed using Eq. 2. The notation
𝑑 (𝑒𝑖 , 𝑝) is an abuse of notation as 𝑒𝑖 is not a vector, but it is to be understood as the minimum
Euclidean distance between the edge 𝑒𝑖 and 𝑝 .

𝑑 (𝑒𝑖 , 𝑝) =𝑚𝑖𝑛𝑠∈[0,1]{
√︃
(𝑥𝑖 (𝑠) − 𝑥𝑝 )2 + (𝑦𝑖 (𝑠) − 𝑦𝑝 )2} (2)

As mentioned before, a moving object combines a static geometry with movement parameters
related to that geometry. In the case of a moving point, its movement is defined by a single
translation (𝑑𝑥, 𝑑𝑦). The coordinates of a moving point 𝑝 (𝑡) = (𝑥𝑝 (𝑡), 𝑦𝑝 (𝑡)) can thus be computed
at a given 𝑡 ∈ [0, 1] using Eq. 3. The parameter 𝑡 represents time, normalised to [0, 1]. Thus, 𝑡 = 0
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corresponds to the start of the movement and 𝑡 = 1 corresponds to the end of the movement. This
will hold for all future equation in this paper.

𝑥𝑝 (𝑡) = 𝑥𝑝 + 𝑡 ∗ 𝑑𝑥
𝑦𝑝 (𝑡) = 𝑦𝑝 + 𝑡 ∗ 𝑑𝑦

(3)

Similarly, the movement of a polygon is defined by a translation (𝑑𝑥, 𝑑𝑦) and a rotation \ around
its rotation center (𝑥𝑐 , 𝑦𝑐 ). In theory, the algorithm described in this paper works for any value of
\ . In practice, however, we will assume that \ is a (sufficiently small) constant and we can thus
omit it from the complexity estimations of Section 4. In [27], for example, the value of \ for a single
segment is restricted between −𝜋 and 𝜋 .

A moving polygon R(𝑡) is thus represented by a list of moving vertices. At any given 𝑡 ∈ [0, 1],
the coordinates of the vertices are computed using Eq. 5.

R(𝑡) = [𝑣1 (𝑡), ..., 𝑣𝑛 (𝑡) |𝑣𝑐 (𝑡)] (4)

𝑥𝑖 (𝑡) =(𝑥𝑖 − 𝑥𝑐 ) ∗ 𝑐𝑜𝑠 (𝑡 ∗ \ ) − (𝑦𝑖 − 𝑦𝑐 ) ∗ 𝑠𝑖𝑛(𝑡 ∗ \ )
+ 𝑥𝑐 + 𝑡 ∗ 𝑑𝑥

𝑦𝑖 (𝑡) =(𝑥𝑖 − 𝑥𝑐 ) ∗ 𝑠𝑖𝑛(𝑡 ∗ \ ) + (𝑦𝑖 − 𝑦𝑐 ) ∗ 𝑐𝑜𝑠 (𝑡 ∗ \ )
+ 𝑦𝑐 + 𝑡 ∗ 𝑑𝑦

(5)

We define the moving edge 𝑒𝑖 (𝑡) as being the moving linear segment between the moving
vertices 𝑣𝑖 (𝑡) and 𝑣𝑖+1 (𝑡). Note that Eq. 5 guarantees non-deformation. The length of the segments
is thus constant during the movement. Like in the static case, we define a point on this edge as:
𝑒𝑖 (𝑠, 𝑡) = (𝑥𝑖 (𝑠, 𝑡), 𝑦𝑖 (𝑠, 𝑡)) = 𝑣𝑖 (𝑡) ∗ (1 − 𝑠) + 𝑣𝑖+1 (𝑡) ∗ 𝑠 , with 𝑠 ∈ [0, 1].

These definitions of a moving point and moving polygon only represent a single ‘linear’ segment
of movement. In practice, however, the movement of an objects is composed of a sequence of
segments. Some data models group these segments together into a single data object [27, 31], while
others define the movement as a set of individual segments [4, 8, 12]. In both cases, the algorithm
can be applied on the individual segments independently. The presented algorithm is thus only
described for a single segment.

Note that the algorithm requires an initialization step, as described in Section 4. This initialization
step computes the initial set of closest features at time 𝑡 = 0 (of the current segment), using existing
algorithms. In case the movement is composed of a sequence of segments, the initial set of closest
features of the next segment will be the same as the set of closest features at the end of the last
segment. The initialization step is thus only required for the very first segment. Between two
segments, the validity of the closest features can be tested in constant time using the V-Clip
algorithm. In case of invalid features, the result of the V-Clip algorithm will be used as input to the
next segment. This avoid propagating errors when working will long trajectories.
Lastly, when computing the distance between two segments having different start and end

timestamps, the algorithm can only be applied on the period during which these segments overlap.
Let’s imagine that the movement of a first object is defined between 𝑡1 and 𝑡2, and the movement
of a second object is defined between 𝑡3 and 𝑡4, with 𝑡1 < 𝑡3 < 𝑡2 < 𝑡4. The algorithm can thus
only be applied on the period [𝑡3, 𝑡2]. In the rest of this paper, we always assume that this period is
normalized to [0, 1] for simplicity. All equations thus implicitly assume 𝑡 ∈ [0, 1].

4 EVOLUTION OF CLOSEST FEATURES
The problem of computing the distance between two static geometries can be reduced to finding
the two closest features of these geometries. Features of a geometry are its vertices and edges.
For a point geometry, the only existing feature is the point itself. Given the closest features of

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2023.



0:6 Maxime Schoemans, Mahmoud Sakr, and Esteban Zimányi

two geometries, their distance can then be computed in constant time. Indeed, both the distance
between two points and the distance between a point and an edge can be computed in constant
time.

The same conclusion can be made when computing the temporal distance between two moving
objects. If the closest features are known at any time 𝑡 ∈ [0, 1], returning the distance between
these objects given their closest features can be done in constant time. Knowing this, the remaining
problem consists of computing the evolution of the closest features of the two moving objects from
𝑡 = 0 to 𝑡 = 1. In this section we present an algorithm that, given a pair of moving objects (points
or polygons) returns a list representing the evolution of closest features during the movement of
the objects.
The rest of this section is structured as follows. Section 4.1 first details how we can compute

the distance between a moving point and a moving edge in constant time. This section also
presents a fundamental equation (Eq. 8) used to detect changes in closest features. Then, Section 4.2
presents the algorithm to find the evolution of closest features between a moving point and a
convex moving polygon. Section 4.3 then describes an equivalent algorithm applied on two convex
moving polygons. Finally, Section 4.4 describes how the presented algorithms can also be used for
non-convex polygons.

4.1 Point to Edge Distance
This section describes the equations needed to compute the distance between a moving point
𝑝 (𝑡) = (𝑥𝑝 (𝑡), 𝑦𝑝 (𝑡)) and a moving edge 𝑒 (𝑡). These equations are crucial for the algorithms
described in Sections 4.2 and 4.3. For simplicity, we omit the subscript of the edge and denote its
start and end vertices as 𝑣𝑠 (𝑡) and 𝑣𝑒 (𝑡) respectively. A point on the moving edge is thus defined
using Eq. 6. As mentioned, this follows from the static parametric definition of a point along an
edge, as used in [19].

𝑒 (𝑠, 𝑡) = 𝑣𝑠 (𝑡) ∗ (1 − 𝑠) + 𝑣𝑒 (𝑡) ∗ 𝑠, 𝑠 ∈ [0, 1] (6)
The equations of the moving point 𝑝 (𝑡) are not specified here, as they can in practice be any

parametric function of time. In the context of this paper, however, we can assume that they
correspond to either Eq. 3 or Eq. 5.
As described in Section 3, the distance between a point and an edge can be computed by

minimizing the distance between this moving point and any point on the moving edge (Eq. 7).
Again, 𝑑 (𝑒 (𝑡), 𝑝 (𝑡)) is an abuse of notation and denotes the minimum Euclidean distance between
the edge 𝑒 (𝑡) and 𝑝 (𝑡).

𝑑 (𝑒 (𝑡), 𝑝 (𝑡)) =𝑚𝑖𝑛𝑠∈[0,1]{𝑑 (𝑒 (𝑠, 𝑡), 𝑝 (𝑡))} (7)
By differentiating 𝑑 (𝑒 (𝑠, 𝑡), 𝑝 (𝑡)) with respect to 𝑠 and equating to 0, we can find the values of 𝑠

where this minimum is obtained. This results in a function 𝑠 (𝑡), given in Eq. 8.

𝑠 (𝑡) = (𝑝 (𝑡) − 𝑣𝑠 (𝑡)) • (𝑣𝑒 (𝑡) − 𝑣𝑠 (𝑡))
𝐿2

, (8)

where 𝑥 • 𝑦 represent the standard dot operator, and 𝐿2 = (𝑥𝑒 − 𝑥𝑠 )2 + (𝑦𝑒 − 𝑦𝑠 )2 is the squared
length of the edge.

Since we require 𝑠 ∈ [0, 1] for the point 𝑒 (𝑠, 𝑡) to be on the edge, we can distinguish three cases:
• 𝑠 (𝑡) <= 0: Point 𝑝 is closest to the start vertex 𝑣𝑠 .
• 𝑠 (𝑡) >= 1: Point 𝑝 is closest to the end vertex 𝑣𝑒 .
• 0 < 𝑠 (𝑡) < 1: Point 𝑝 is closest to 𝑒 (𝑠 (𝑡), 𝑡).

Using this equation we can thus determine the point on the moving edge closest to the moving
point. Eq. 8 has two main uses. Firstly, it can tell us when the closest point on the edge is one of the
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end vertices or a point inside the edge. This will be used to determine changes in closest features in
the following sections. Secondly, knowing 𝑠 (𝑡) we can compute the distance between a moving
point 𝑝 (𝑡) and a moving edge 𝑒 (𝑡) at any given time 𝑡 ∈ [0, 1] in O(1) time using Eq. 9.

𝑑 (𝑒 (𝑡), 𝑝 (𝑡)) = 𝑑 (𝑒 (𝑚𝑎𝑥 (𝑚𝑖𝑛(𝑠 (𝑡), 1), 0), 𝑡), 𝑝 (𝑡)) (9)

Figure 2 displays the lines where 𝑠 (𝑡) = 0 (in red) and 𝑠 (𝑡) = 1 (in blue) for a moving edge. The
position of the moving point with respect to these lines will thus determine where the closest point
on the edge lies. It is important to understand that these lines are not actually parametrized by 𝑡 .
Indeed, if the equation 𝑠 (𝑡) = 0 (𝑠 (𝑡) = 1) is true for a given 𝑡∗, this simply means that the moving
point is on the red (blue) line at 𝑡 = 𝑡∗. The actual equations of the two lines are not given here as
they are of no practical importance.

s(
t)

 =
 1

s(
t)

 =
 0

vs(t)ve(t) e(t)

s(t) > 1 0 < s(t) < 1 s(t) < 0

Fig. 2. Visualization of the value of 𝑠 (𝑡) depending on the position of the point with respect to the edge.

4.2 Point to Polygon Distance
In this section, we present an algorithm to compute the evolution of closet features between a
moving point and a convex moving polygon in O(𝑙𝑜𝑔(𝑛) + 𝑘) time, where 𝑛 is the number of
vertices of the polygon and 𝑘 is the size of the result. This algorithm returns a new data object
of size 𝑘 that allows successive computations of the distance to be done in O(𝑙𝑜𝑔(𝑘)) time. The
relation between 𝑘 and 𝑛 is discussed at the end of the section.
The general idea of the algorithm is to track the closest feature of the moving polygon to the

moving point. The features of a polygon are its vertices and edges, and the closest feature of a
polygon to a point is thus the vertex or the edge closest to this point. The outer Voronoi diagram of
a convex polygon can be used to determine the closest feature given the position of the point. An
example of an outer Voronoi diagram is shown in Figure 3. In this figure, the Voronoi regions outside
of the polygon are bounded by a red and a blue line, as well as an edge in half of the cases. The red
and blue line are identical to the ones in Figure 2 but applied to the different edges of the polygon.
This representation assumes that the vertices of the polygon are listed in counter-clockwise order,
as mentioned in Section 3. This assumption will hold in all future figures as well.

The return value of the algorithm is a mapping from time to feature as a list of tuples. Each tuple
contains a timestamp 𝑡 ∈ [0, 1] and a feature F , which can be either a vertex (F = 𝑣 𝑗 ) or an edge
(F = 𝑒 𝑗 ) of the polygon. This list is sorted by increasing timestamp 𝑡 . Note that this sorting does
not have to be done in practice, as the list is already being computed in sorted order.

L = [(𝑡0 = 0, F0), ..., (𝑡𝑘−1, F𝑘−1), (𝑡𝑘 = 1, F𝑘−1)] (10)

At every timestamp 𝑡 , with 𝑡0 ≤ 𝑡 < 𝑡1, the closest feature to the moving point is F0. At 𝑡 = 𝑡1,
the closest feature becomes F1, and so on. In practice, the last tuple in L of Eq. 10 will be omitted
since it is only there to describe the fact that the last feature F𝑘−1 is valid from 𝑡 = 𝑡𝑘−1 to 𝑡 = 1.

With this data, the distance between the moving point and the moving polygon can be computed
in O(𝑙𝑜𝑔(𝑘)) time. Indeed, given any timestamp 𝑡 ∈ [0, 1], we can use binary search on the list to
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v5(t)

v4(t)

v3(t)

v2(t)
v1(t)

e1(t)

e2(t)

e3(t)

e4(t)

e5(t)

Fig. 3. Outer Voronoi diagram of a convex polygon.

find the closest feature at that instant in O(𝑙𝑜𝑔(𝑘)) time. With the closest feature and the moving
point, we can then compute the distance in constant time. If the closest feature is a point, the
Euclidean distance is used. If it is an edge, the distance is computed using Eq. 9. Note that in this
case, we are certain that 0 < 𝑠 (𝑡) < 1, and the𝑚𝑖𝑛 and𝑚𝑎𝑥 functions of Eq. 9 can thus be omitted.
Next, we describe the algorithm to compute the list L starting from a convex moving polygon

and a moving point.

4.2.1 Algorithm. The algorithm consists of two parts. Firstly, the initial closest feature F0 is
computed. This is a static problem and can be solved using known algorithms in O(𝑙𝑜𝑔(𝑛)) time
[30]. Secondly, given (𝑡𝑖 , F𝑖 ), the algorithm finds the next pair (𝑡𝑖+1, F𝑖+1) as described below. Starting
from (𝑡0 = 0, F0), the second part is then called repeatedly using the output of the previous call as
input to the next, and this continues until no new closest feature is found at a time 𝑡𝑖 < 𝑡 < 1. The
remaining problem consist thus of computing (𝑡𝑖+1, F𝑖+1), given (𝑡𝑖 , F𝑖 ) and both moving objects
(𝑝 (𝑡) and R(𝑡)).

The input feature is either a vertex (F𝑖 = 𝑣 𝑗 ) or an edge of the polygon (F𝑖 = 𝑒 𝑗 ). Figure 4 displays
both cases.

vj+1(t)

vj(t)

ej(t)
p(t)

vj(t)
p(t)

ej(t)

ej-1(t)

Fig. 4. Examples where the moving point is closest to a vertex (left) or an edge (right) of the moving polygon.

The four possible transitions ((a) to (d)) of closest features are shown in Figure 5. If the input
closest feature is a vertex of the polygon F𝑖 = 𝑣 𝑗 (Figure 5, left), then the next closest feature
will be either one of the two edges adjacent to the vertex: F𝑖+1 = 𝑒 𝑗 or 𝑒 𝑗−1. This corresponds to
cases (a) and (b) of Figure 5 respectively. The boundary lines are defined as in Section 4.1, and
determining when either case (a) or (b) happens can be done by solving Eq. 11 with respect to 𝑡 . In
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vj+1(t)

vj(t)

ej(t)vj(t)

ej(t)

ej-1(t)

(a)

(b)

(c)

(d)

Fig. 5. Two possible transitions per type of initial closest feature.

these equations, 𝑠 𝑗 (𝑡) corresponds to Eq. 8 applied to the edge 𝑒 𝑗 (𝑡) and the point 𝑝 (𝑡).

(𝑎) : 𝑠 𝑗 (𝑡) = 0 (𝑏) : 𝑠 𝑗−1 (𝑡) = 1 (11)

If at least one of these equations has a solution in [𝑡𝑖 , 1], then there will be a change in closest
feature. Let’s denote the respective solutions 𝑡𝑎 (Eq. 11, (a)) and 𝑡𝑏 (Eq. 11, (b)). The algorithm will
add (𝑡𝑎, 𝑒 𝑗 ) to the list L if 𝑡𝑎 < 𝑡𝑏 , and (𝑡𝑏, 𝑒 𝑗−1) otherwise. If neither equations have a solution in
[𝑡𝑖 , 1], this means that the closest feature will not change again before the end of the movement,
and the algorithm will thus terminate and return the current list L.
Similarly, if the initial closest feature is an edge of the polygon F𝑖 = 𝑒 𝑗 (Figure 5, right), then

the next closest feature will be either the end or the start vertex of this edge F𝑖+1 = 𝑣 𝑗+1 or 𝑣 𝑗 . This
corresponds to cases (c) and (d) of Figure 5 respectively. In these cases, the equations to solve are
listed in Eq. 12.

(𝑐) : 𝑠 𝑗 (𝑡) = 1 (𝑑) : 𝑠 𝑗 (𝑡) = 0 (12)

As in the previous case, we denote the solutions 𝑡𝑐 and 𝑡𝑑 respectively. The algorithm appends
(𝑡𝑐 , 𝑣 𝑗+1) to the list L if 𝑡𝑐 < 𝑡𝑑 , and (𝑡𝑑 , 𝑣 𝑗 ) otherwise. If neither equations have a solution in [𝑡𝑖 , 1],
the algorithm terminates and returns L.

From the definition of 𝑠 (𝑡), these equations are nonlinear if the rotation of the polygon is nonzero.
To solve these equations, numerical methods have to be utilized to find numerical approximations
of the solutions. Possible methods include the Newton-Raphson method [1] or bracketing methods
such as the false position method or the ITP method [21]. The implementation used in Section 7
uses the false position method to solve these nonlinear equations. In case the movement of the
polygon contains no rotation, these equations become linear. Section 5 describes direct solutions to
the equations under the assumption that the polygons move without rotation.

The examples and equations described in this section do not take into account special cases. For
the point to polygon distance, there are three special cases that have to be taken into account.
(1) The moving point is on a boundary line of the Voronoi diagram at 𝑡0.
(2) The moving point enters the polygon through the edge 𝑒 𝑗 in the right image of Figure 5.
(3) The moving point enters the polygon through the vertex 𝑣 𝑗 in the left image of Figure 5.
All three of these cases can be detected and handled accordingly. In case 1, the algorithm will

have to decide if F0 corresponds to the left or right case of Figure 4. This can be done by looking
at a timestamp 𝑡∗0 = 𝑡0 + 𝜖 , right after 𝑡0 = 0. Both Cases 2 and 3 correspond to an intersection
between the moving polygon and the moving point. This is not allowed in the algorithm and, if
one of these two cases is detected, the algorithm will fail. This behaviour also exists in the polygon
to polygon algorithm and can thus be used to detect if two moving objects intersect or not. Case 2
can be detected using Eq. 13, and Case 3 will happen if the solutions of both (a) and (b) in Eq. 11
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are true for the same value of 𝑡 (the moving point crosses the two boundary lines of the Voronoi
region at the same time).

(𝑝 (𝑡) − 𝑣 𝑗 (𝑡)) × (𝑣 𝑗+1 (𝑡) − 𝑣 𝑗 (𝑡)) = 0, (13)
where 𝑣1 × 𝑣2 represents the cross product between two vectors.

Algorithm 1 summarizes the process of computing the list of closest features between a moving
point and a convex moving polygon (without the special cases). The complexity of computing
the first closest feature is O(𝑙𝑜𝑔(𝑛)) [30]. Assuming that solving the equations using numerical
methods takes constant time, the complete algorithm will finish in O(𝑙𝑜𝑔(𝑛) + 𝑘) time, where 𝑘 is
the length of the list returned by the algorithm. This follows from the fact that the loop only solves
two equations per iteration. The cost of running this loop will thus be the number of iterations times
the cost of an iteration. As mentioned, we assume that one iteration (solving one or two equations)
takes constant time. Each iteration adds a single change of closest feature to the list, and we exit
the loop when no new change is found. The number of iterations is O(𝑘), the result size. This
gives us a total complexity of O(𝑙𝑜𝑔(𝑛) + 𝑘). The assumption that solving the nonlinear equations
takes constant time is a simplification made to keep the notation of the complexity the same for
both the rotating and the non-rotating case. As can be seen in Section 7.1, this simplification is
coherent with the actual run time of the algorithm. We observe that the nonlinear solution is about
5 to 8 times slower than the direct solution, which does not influence the global complexity of
the algorithm. The value of 𝑘 corresponds to the number of times the closest features switched
during the movement and is thus very dependent on the translation and rotation parameter of
the moving objects. With the assumptions that \ ∈ [−𝜋, 𝜋] for the moving polygon and that the
moving point either translates linearly or has the equations of a vertex of another moving polygon,
the complexity of 𝑘 will in the worst case be linear in 𝑛. In practice, it is clear that if the polygon
rotates at most 180 degrees, there cannot be more than 𝑛 changes in closest features. The worst-case
complexity of this algorithm is thus O(𝑛), and the best-case complexity is O(𝑙𝑜𝑔(𝑛)) (if 𝑘 = 1).

4.3 Polygon to Polygon Distance
This section describes an algorithm to compute the distance between two moving polygons R𝐴 (𝑡)
and R𝐵 (𝑡), each having their own translation and rotation parameters (𝑑𝑥𝐴, 𝑑𝑦𝐴, \𝐴, 𝑥𝐴𝑐 , 𝑦𝐴𝑐 ) and
(𝑑𝑥𝐵, 𝑑𝑦𝐵, \𝐵, 𝑥𝐵𝑐 , 𝑦𝐵𝑐 ). The algorithm is similar to the one described in Section 4.2 in the sense that
it also tracks the closest feature between the moving objects. In the case of the distance between
two polygons, however, we track two closest features instead of one.

The algorithm processes twomoving polygons having𝑛 and𝑚 vertices respectively in O(𝑙𝑜𝑔(𝑛)+
𝑙𝑜𝑔(𝑚) + 𝑘) time, and returns a data objects that allows successive computations to be done in
O(𝑙𝑜𝑔(𝑘)) time. As for the point to polygon distance algorithm, the value of 𝑘 corresponds to the
size of the result set and depends heavily on 𝑛,𝑚 and the movement of both polygons. In particular,
𝑘 = O(𝑛+𝑚) in the worst case, assuming that the rotation parameter of both polygons is a constant
(e.g. \𝐴 ∈ [−𝜋, 𝜋] and \𝐵 ∈ [−𝜋, 𝜋]).

The object returned by the algorithm is a list L of tuples, where each tuple contains a timestamp
𝑡 and the closest features F𝐴 and F 𝐵 of the two polygons at that instant.

L = [(𝑡0 = 0, F𝐴
0 , F 𝐵

0 ), ..., (𝑡𝑘−1, F𝐴
𝑘−1, F

𝐵
𝑘−1)] (14)

The first step of the algorithm consists of computing the closest features F𝐴
0 and F 𝐵

0 at 𝑡0 = 0.
This is a well-known static problem and can be solves in 𝑂 (𝑙𝑜𝑔(𝑛) + 𝑙𝑜𝑔(𝑚)) time [30]. The rest of
the tuples in the list are then computed by iteratively determining when the next change in closest
features happens, and what the new closest features are. This process is similar to the one described
in Algorithm 1. In this case, however, the closest feature transitions are more complex than in the
point to polygon case. Each change in closest feature will still be detected in constant time, and the
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Algorithm 1: Point to Polygon Distance Algorithm
Input: R(𝑡), 𝑝 (𝑡)
Output: L, the list of closest features with timestamps.
begin
F0 ← Compute closest feature at 𝑡0 = 0 [30];
L ← [(0, F 0)];
while True do
(𝑡𝑖 , F𝑖 ) ← Last element of L;
if F𝑖 = 𝑣 𝑗 then

𝑡𝑎, 𝑡𝑏 ← Solve Eq. 11;
if 𝑡𝑖 < 𝑡𝑎 <= 1 and 𝑡𝑎 < 𝑡𝑏 then

Append (𝑡𝑎, 𝑒 𝑗 ) to L;
else if 𝑡𝑖 < 𝑡𝑏 <= 1 then

Append (𝑡𝑏, 𝑒 𝑗−1) to L;
else break ;

else
𝑡𝑐 , 𝑡𝑑 ← Solve Eq. 12;
if 𝑡𝑖 < 𝑡𝑐 <= 1 and 𝑡𝑐 < 𝑡𝑑 then

Append (𝑡𝑐 , 𝑣 𝑗+1) to L;
else if 𝑡𝑖 < 𝑡𝑑 <= 1 then

Append (𝑡𝑑 , 𝑣 𝑗 ) to L;
else break ;

return L;

algorithm will exit when no new change in closest features is detected. The loop in the algorithm
has thus a complexity of O(𝑘), which results in an algorithm of complexity O(𝑙𝑜𝑔(𝑛) + 𝑙𝑜𝑔(𝑚) +𝑘).

The initial state of the closest features pair can be either vertex-vertex, vertex-edge, edge-vertex
or edge-edge, where the first and second terms denote the types of the closest feature on polygons
R𝐴 and R𝐵 respectively. The vertex-edge and edge-vertex cases can be handled similarly by simply
swapping the two polygons in the equations, and the edge-edge case is a special case that will be
discussed later. Figure 6 thus displays the two main cases for the types of initial closest features:
vertex-vertex (left) and edge-vertex (right). Figure 7 shows two examples of the special case where
the two closest features are parallel edges of the polygons.

ej
A(t)vj'

B(t)vj
A(t) vj'

B(t)

Fig. 6. Initial closest features between two moving polygons: vertex-vertex (left) or edge-vertex (right).
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ej
A(t)

ej
A(t)

ej'
B(t) ej'

B(t)

Fig. 7. Two examples of parallel edges as closest features between two polygons. (Right) is a special case of
(left).

In this section, the indices 𝑗 ∈ {1, ..., 𝑛} and 𝑗 ′ ∈ {1, ...,𝑚} will be used for the vertices and edges
of polygons RA and R𝐵 respectively. The index 𝑖 ∈ {0, ..., 𝑘 − 1} will still be used to denote the
different tuples of L.

Starting from one of the two states in Figure 6, three transitions in closest features are possible.
• Vertex-vertex to edge-vertex
• Edge-vertex to vertex-vertex
• Edge-vertex to another edge-vertex

These transitions and their corresponding equations are explained in the following subsections.
Since all of the transitions keep the closest feature pairs in either the vertex-vertex or edge-vertex
state, the final list L will only contain vertex-vertex or edge-vertex pairs. This is important for
future sections and this constraint can be met even when handling special cases, e.g. when two
edges are parallel and closest.

ej
A(t)vj'

B(t)vj
A(t) vj'

B(t)

(d)

(c)

(a)

(b)

(e)

(f)

Fig. 8. Evolution of the closest features: vertex-vertex to edge-vertex (left) or edge-vertex to vertex-vertex
(right).

4.3.1 Vertex-Vertex↔ Edge-Vertex. Figure 8 shows the possible transitions that will cause the
closest features to go from the vertex-vertex case to the edge-vertex case or back. For clarity, we
change the notation of Eq. 8 once again and write function 𝑠 (𝑡) as 𝑠 (𝑣, 𝑒) (𝑡), to specify which
moving vertex/point and moving edge are being used. The cases (a) to (f) in Figure 8 can thus be
detected by solving Eqs. 15 to 17.

(𝑎) : 𝑠 (𝑣𝐵𝑗 ′ , 𝑒𝐴𝑗 ) (𝑡) = 0 (𝑏) : 𝑠 (𝑣𝐵𝑗 ′ , 𝑒𝐴𝑗−1) (𝑡) = 1 (15)

(𝑐) : 𝑠 (𝑣𝐴𝑗 , 𝑒𝐵𝑗 ′ ) (𝑡) = 0 (𝑑) : 𝑠 (𝑣𝐴𝑗 , 𝑒𝐵𝑗 ′−1) (𝑡) = 1 (16)

(𝑒) : 𝑠 (𝑣𝐵𝑗 ′ , 𝑒𝐴𝑗 ) (𝑡) = 1 (𝑓 ) : 𝑠 (𝑣𝐵𝑗 ′ , 𝑒𝐴𝑗 ) (𝑡) = 0 (17)
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If (F𝐴
𝑖 , F 𝐵

𝑖 ) = (𝑣𝐴𝑗 , 𝑣𝐵𝑗 ′ ), Eqs. 15 and 16 have to be solved to determine what the next pair of
closest features will be. The edge-vertex pair used in the function 𝑠 (𝑣, 𝑒) (𝑡) corresponds to the next
pair of closest features in that particular case. The equation in Eqs. 15 and 16 that has the earliest
solution 𝑡 ∈ [𝑡𝑖 , 1] will thus determine uniquely the next pair of closest features. For example, if
the equation corresponding to case (a) has the earliest solution 𝑡𝑎 ∈ [𝑡𝑖 , 1], then the next pair of
closest features is (F𝐴

𝑖+1, F 𝐵
𝑖+1) = (𝑒𝐴𝑗 , 𝑣𝐵𝑗 ′ ).

In the edge-vertex case, the process is similar. Eq. 17 has to be solved for cases (e) and (f) to
determine what the next pair of features will be. If the equation for case (e) has the earliest solution
between 𝑡𝑖 and 1, the next pair of features is (F𝐴

𝑖+1, F 𝐵
𝑖+1) = (𝑣𝐴𝑗+1, 𝑣𝐵𝑗 ′ ). Otherwise, the next pair of

features is (F𝐴
𝑖+1, F 𝐵

𝑖+1) = (𝑣𝐴𝑗 , 𝑣𝐵𝑗 ′ ).
Special cases similar to the ones discussed in Section 4.2 can also happen here. Since they are

solved in the same way as explained in Section 4.2, they are not discussed further.

vj
B(t)ei

A(t)

ei
A(t)
vi
A(t)

vj
B(t)

ej
B(t)

ej
B(t)vi

A(t)

(g.1)

(g.2)

(g.3)

Fig. 9. Evolution from a edge-vertex pair (g.1) to another edge-vertex pair (g.3), by transitioning through an
edge-edge pair (g.2).

4.3.2 Edge-Vertex↔ Edge-Vertex. Another possibility when starting from the edge-vertex case is
that the edge 𝑒𝐴𝑗 becomes parallel to one of the edges adjacent to the vertex 𝑣𝐵

𝑗 ′ . If this happens,
the edges will be parallel during a single timestamp 𝑡 , and the next closest features will be a new
edge-vertex pair. Figure 9 shows an example of this, where the edge 𝑒𝐴𝑖 becomes parallel to the edge
𝑒𝐵
𝑗 ′ during a single timestamp, and the the closest features thus evolve from (𝑒𝐴𝑗 , 𝑣𝐵𝑗 ′ ) to (𝑣𝐴𝑗 , 𝑒𝐵𝑗 ′ ) at
that timestamp. This is only 1 of the 4 possible transitions starting from (𝑒𝐴𝑗 , 𝑣𝐵𝑗 ′ ). The four possible
transitions are listed below.

i (𝑒𝐴𝑗 , 𝑣𝐵𝑗 ′ ) → (𝑣𝐴𝑗 , 𝑒𝐵𝑗 ′ )
ii (𝑒𝐴𝑗 , 𝑣𝐵𝑗 ′ ) → (𝑣𝐴𝑗+1, 𝑒𝐵𝑗 ′−1)
iii (𝑒𝐴𝑗 , 𝑣𝐵𝑗 ′ ) → (𝑒𝐴𝑗 , 𝑣𝐵𝑗 ′+1)
iv (𝑒𝐴𝑗 , 𝑣𝐵𝑗 ′ ) → (𝑒𝐴𝑗 , 𝑣𝐵𝑗 ′−1)
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To determine when edge 𝑒𝐴𝑗 becomes parallel to either 𝑒𝐵
𝑗 ′ or 𝑒

𝐵
𝑗 ′−1, Eqs. 18 and 19 have to be

solved.

(𝑣𝐴𝑗+1 (𝑡) − 𝑣𝐴𝑗 (𝑡)) × (𝑣𝐵𝑗 ′+1 (𝑡) − 𝑣𝐵𝑗 ′ (𝑡)) = 0 (18)

(𝑣𝐴𝑗+1 (𝑡) − 𝑣𝐴𝑗 (𝑡)) × (𝑣𝐵𝑗 ′ (𝑡) − 𝑣𝐵𝑗 ′−1 (𝑡)) = 0 (19)

If Eq. 18 is true for some 𝑡 , then 𝑒𝐴𝑗 is parallel to 𝑒𝐵
𝑗 ′ at that timestamp, and either case (i) or (iii)

of the transitions listed above will happen. These two cases can be distinguished by determining
which of the two vertices 𝑣𝐴𝑖 or 𝑣𝐵

𝑗 ′+1 is closest to the other edge at 𝑡 . In the example given in
Figure 9, 𝑣𝐴𝑖 is closer to 𝑒𝐵

𝑗 ′ than 𝑣
𝐵
𝑗 ′+1 is to 𝑒

𝐴
𝑖 , and this corresponds to transition (i) in the list. With

two possible transitions per adjacent edge of R𝐵 , we thus get to the four possible transitions listed
above.

Just like in Section 4.2, the equations listed in this section are nonlinear in the general case and
have to be solved using numerical methods. For all equations, only the first solution between 𝑡𝑖
and 1 is required, with 0 ≤ 𝑡𝑖 < 1. If the movement of the polygons does not involve a rotation,
these equations become linear and Section 5 describes how they can be solved directly without
using numerical methods.

4.3.3 Special Cases. Next to the two start states shown in Figure 6 and the transitions detailed in
Sections 4.3.1 and 4.3.2, a multitude of special cases exist. Similarly to the ones in Section 4.2, they
can be detected and handled in constant time. Below is a non-exhaustive list of these special cases.

• Two edges of the polygons are parallel and closest at 𝑡0 = 0, as shown in Figure 7.
• The two polygons have the same rotation speed, and two edges are parallel during the
complete movement instead of at a single timestamp.
• The polygons do not rotate. See Section 5.
• An edge-vertex pair evolves to a vertex-vertex pair by transitioning though an edge-edge
pair. This is a special case of Section 4.3.2.

The first special case essentially corresponds to starting from state (g.2) in Figure 9. In this case,
the problem consists of determining the next pair of closest features without knowing what the
previous pair was. Notice that we are looking for state (g.3) without knowing state (g.1). This can
be solved by looking at the closest features at a timestamp 𝑡∗0 = 𝑡0 + 𝜖 , right after 𝑡0 = 0, similarly to
what was done for a special case of Section 4.2.

The rest of the special cases are not detailed here, but can also be solved in constant time using
methods similar to the ones presented here and in Section 4.2. Note that these cases will for the most
part never happen when running the algorithm on random or real-world data. For example, even
when handling fast-rotating polygons with up to 500 vertices as in the experiments of Section 7.1,
more than 99% of the runs did not encounter a single one of these special cases.

4.4 Non-Convex Polygons
The algorithms presented in Sections 4.2 and 4.3 assume that the moving polygons are convex,
which allows solutions in linear time in terms of number of vertices. In this section, we present
an algorithm for non-convex polygons that makes use of the previously presented algorithms
for convex polygons. The algorithm for non-convex polygons consists of three steps. Firstly, the
polygons are decomposed into convex parts (see Section 4.4.1). Secondly, partial solutions are
computed on the convex parts (see Section 4.4.2). Lastly, the partial solutions are merged into a
final solution (see Section 4.4.3).
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4.4.1 Convex Decomposition. The first step of the algorithm consists of decomposing the non-
convex polygons into convex parts. This has to be done for both polygons in the case of the
polygon-to-polygon distance operation. Even if the polygons are moving, the decomposition only
has to be done on the static polygon at 𝑡 = 0. The movement of the convex parts will then be
determined using the same parameters as the movement of the initial polygon. Specifically, if the
initial polygon has a nonzero rotation, all convex parts will also have a nonzero rotation. The
rotation parameters of each convex part are then defined using the same rotation center and rotation
angle as the initial polygon.

(a) (b)

Fig. 10. Non-convex object (a), with an optimal decomposition in 3 convex parts (b)

Convex polygon decomposition is a well-known problem in computation geometry. Chazelle
[2] and Keil [15] present two optimal solution in respectively O(𝑛 + 𝑟 3) and O(𝑟 2𝑛𝑙𝑜𝑔(𝑛)) time,
where 𝑟 corresponds to the number of reflex vertices (with an inside angle > 180°) and 𝑛 is the
total number of vertices. A more practical algorithm is the Hertel-Mehlhorn algorithm [13], which
returns a convex decomposition in 𝑂 (𝑛 + 𝑟𝑙𝑜𝑔(𝑟 )) time, with at most 4 times the optimal number
of convex parts. We will write the number of convex parts of a polygon using the uppercase letter
of its number of vertices. For example, a polygon with 𝑛 vertices will have 𝑁 convex parts when
decomposed using Hertel-Mehlhorn. Figure 10 shows an example of a non-convex polygon, as well
as its optimal decomposition in convex parts. In the example shown, we have 𝑁 = 3.

Note that the decomposition required to compute the temporal distance is less restrictive than a
traditional convex decomposition problem. For example, Figure 11a, shows an example of a decom-
position in only 2 overlapping convex parts. This is less than the optimal convex decomposition
without overlap, which is beneficial for the next step. Another case is when a convex part does
not contain any edges of the initial non-convex polygon. In this case, that specific convex part can
be omitted, as there will always be at least one other part with a smaller distance to the second
object. An example of such a case is shown in Figure 11b, where the center square can be omitted.
In this specific case, the omitted part is convex as well, but this is not a requirement since it does
not participate in the distance computation. Determining a good (or optimal) convex polygon
partitioning, taking into account overlapping and superfluous parts, is left as future work.

4.4.2 Computing Partial Solutions. With the moving polygons being decomposed in convex parts,
the next step consists of computing partial solutions using the previously explained algorithms
for convex polygons. For the point-to-polygon distance, this has to be done once per convex part.
For the polygon-to-polygon distance, every part from one polygon has to be combined with every
part of the other polygon. With the two polygons having 𝑁 and𝑀 convex parts respectively, the
algorithms for convex polygons will thus be called 𝑁 and 𝑁 ∗𝑀 times, for the point-to-polygon and
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(a) (b)

Fig. 11. (a) Overlapping or (b) superfluous parts in the convex decomposition

polygon-to-polygon problems respectively. As discussed in the previous subsection, only convex
parts that share an edge with the initial non-convex polygon need to be part of this computation.

Section 2 mentions techniques for non-convex polygons making use of bounding hierarchies to
reduce the total number of computations necessary. Similar techniques could be used in this step
to improve the running time of the algorithm, but this is left as future work.

4.4.3 Merging Partial Solutions. The last step of the non-convex algorithm consists of merging the
partial solutions into a final output. Let’s denote the number of partial solutions 𝐿. 𝐿 will either be
equal to 𝑁 or 𝑁 ∗𝑀 , depending on which problem is being solved. Every partial solution consists
of a list of 𝑘𝑙 (𝑙 ∈ {0, ..., 𝐿 − 1}) pairs of closest features with their corresponding timestamps. We
will also assume that in the point-to-polygon distance problem, the second feature in the closest
feature pair always contains the moving point. The two problems can thus be solved using the
same algorithm. The remaining problem consists of finding for every timestamp between 0 and 1,
which solution contains the actual closest features of the non-convex problem. Figure 12 shows
an example of when a closest feature changes from one convex part to another. The green line is
a type of boundary in the Voronoi diagram of the non-convex polygon that does not exist in the
convex case (see Figure 3).

vj+2(t)

vj(t)

Fig. 12. Evolution of closest features for a non-convex polygon

The problem is solved in multiple steps. Firstly, for every partial solution, the distance is computed
at every timestamp in the list of closest features, as well as at 𝑡 = 1. In total these are𝐾 =

∑𝐿−1
𝑙=0 𝑘𝑙 +1

distance computations. We now have 𝐿 lists of tuples, where each tuple contains a timestamp, a
pair of closest features, and a distance value. The timestamp and distance values can thus be seen as
piecewise-linear functions, where every linear piece has an associated pair of closest features. In this
representation, the distance between two computed instants is assumed to be linearly interpolated
between the previous and the next instant. Figure 13 shows an example with two partial solutions.
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Fig. 13. Piece-wise linear functions of two partial solutions. The dotted red line corresponds to the actual
timestamp 𝑡∗4 (computed using Eq. 22) at which the solutions switch.

In the second step, we track the minimum of these piecewise-linear solutions using a sweep-line
algorithm such as the Bentley–Ottmann algorithm [5]. The sweep-line will have to maintain a
binary search tree with 𝐿 elements (the 𝐿 solutions) throughout the complete algorithm. An event
will be either a change in segments from a single solution or a crossing between two solutions.
The main purpose of this step is to determine when the actual closest features switch from one
convex part to another. This corresponds in the sweep-line algorithm to a crossing between the
two lowest elements in the binary search tree. These crossings can be detected using the linear
approximation of the distance, but the actual timestamps at which these solutions swap still have
to be computed. In Figure 13, for example, one swap in convex parts takes place at the red vertical
line. To determine when the actual swap takes place (the red dotted line), however, the real distance
functions (the black dotted lines) have to be used instead of the linear approximation.

Since every linear segment of the linear approximation is associated with a pair of closest features,
this can be done by finding the timestamps where the distance between the pair associated to the
first segment is equal to the distance between the pair associated to the second segment. Depending
on the type of closest features, the distance functions will be different. If the closest features are
two moving vertices 𝑣𝐴 (𝑡) = (𝑥𝐴 (𝑡), 𝑦𝐴 (𝑡)) and 𝑣𝐵 (𝑡) = (𝑥𝐵 (𝑡), 𝑦𝐵 (𝑡)), then the (squared) distance
function corresponds to Eq. 20. The distance between a moving vertex 𝑣𝐴 (𝑡) = (𝑥𝐴 (𝑡), 𝑦𝐴 (𝑡))
and a moving edge 𝑒𝐵 (𝑡) is equal to the distance between the vertex and the closest point on
the edge. From Section 4.1, we know that the closest point on the edge is given by 𝑒𝐵 (𝑠 (𝑡), 𝑡) =
(𝑥𝐵 (𝑠 (𝑡), 𝑡), 𝑦𝐵 (𝑠 (𝑡), 𝑡)), where 𝑒𝐵 (𝑠, 𝑡) is an arbitrary point on the edge, and 𝑠 (𝑡) is given by Eq. 8.
The (squared) distance is thus given by Eq. 21.

𝑑2𝐴𝐵 (𝑡) = (𝑥𝐵 (𝑡) − 𝑥𝐴 (𝑡))2 + (𝑦𝐵 (𝑡) − 𝑦𝐴 (𝑡))2 (20)

𝑑2𝐴𝐵 (𝑡) = (𝑥𝐵 (𝑠 (𝑡), 𝑡) − 𝑥𝐴 (𝑡))2 + (𝑦𝐵 (𝑠 (𝑡), 𝑡) − 𝑦𝐴 (𝑡))2 (21)
To determine when the closest features change from (F𝐴, F 𝐵) to (F𝐶 , F 𝐷 ), we thus have to

solve Eq. 22 between 𝑡𝑖 and 𝑡𝑖+1, where the actual distance function of both pairs of features is
either Eq. 20 or 21.

𝑑2𝐴𝐵 (𝑡) − 𝑑2𝐶𝐷 (𝑡) = 0 (22)
The final step of the merging part consist of creating the final list of closest features. This process

is straightforward, since after solving Eq. 22 for the different switches between minimum solutions,
the minimum/closest solution is known for every instant between 0 and 1. In the example in
Figure 13, 𝑆1 is closest when 𝑡 ∈ [0, 𝑡∗4 ] and 𝑆2 is closest when 𝑡 ∈ [𝑡∗4 , 1].
To summarise the more complex case of polygon-to-polygon distance, the first step consists of

decomposing both polygons into convex parts. This will create 𝑁 and𝑀 convex parts respectively.
The second step calls the algorithm for convex polygons using every combination of convex parts of
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the two initial polygons. This results in 𝑁 ∗𝑀 partial solutions. Finally, these solutions are merged
together. A sweep-line algorithm is used to compute the intersections between the solutions, and
the exact timestamps of the intersections between the two minimum solutions are computed using
Eq. 22. The final solution is then created by combining the partial solutions at the times where they
are the actual closest solution in the non-convex problem.

5 NON-ROTATING POLYGON OPTIMIZATION
Section 3 assumes that the movement of the polygons is a combination of a translation and a rotation.
The rotation is the cause of the non-linearity of the equations in Section 4. If the movement of the
polygons only contains a translation, then the movement of its vertices is linear, and most of the
equations presented in this paper become linear or polynomial. If this is the case, then the equations
present direct solutions and can thus be solved without numerical methods. Without directly
impacting the complexity of the algorithms, this can still significantly improve their performance.
Real-world examples where this could be of use include logistics robots, objects moving on fixed
tracks, cars on a highway and more. Whenever an object has a rotation \ < 𝜖 between two
timestamps, these direct solutions can be used to speed up the algorithms.
With the movement of the polygons being defined using only translation parameters, the

equations of the moving vertices defined in Eq. 5 can be simplified to Eq. 23.

𝑥𝑖 (𝑡) =𝑥𝑖 + 𝑡 ∗ 𝑑𝑥
𝑦𝑖 (𝑡) =𝑦𝑖 + 𝑡 ∗ 𝑑𝑦

(23)

With the equations of the vertices being linear, Eq. 6 can be rewritten as Eq. 24.
𝑒 (𝑠, 𝑡) = 𝑣𝑠 (𝑡) ∗ (1 − 𝑠) + 𝑣𝑒 (𝑡) ∗ 𝑠, 𝑠 ∈ [0, 1]

= 𝑣𝑠 ∗ (1 − 𝑠) + 𝑣𝑒 ∗ 𝑠 + 𝑡 ∗ (𝑑𝑥, 𝑑𝑦)
(24)

Two important equations that need solving are 𝑠 (𝑡) = 0 and 𝑠 (𝑡) = 1, with 𝑠 (𝑡) as defined in
Eq. 8. As a reminded, 𝑝 (𝑡) = (𝑥𝑝 (𝑡), 𝑦𝑝 (𝑡)) is the moving point, and 𝑣𝑠 (𝑡) and 𝑣𝑒 (𝑡) are the start
and end points of the moving segment. We will call (𝑑𝑥𝑝 , 𝑑𝑦𝑝 ) the translation of the moving point,
and (𝑑𝑥, 𝑑𝑦) the translation of the edge. Examples where these equations are required for different
combinations of moving point andmoving edge are Eqs. 11, 12, 15, 16, and 17. The direct solutions for
these equations are shown in Eqs. 25 and 26. These equations only have solutions if the movement
of the point is not perpendicular to the edge ((𝑑𝑥𝑝 − 𝑑𝑥) ∗ (𝑥𝑒 − 𝑥𝑠 ) + (𝑑𝑦𝑝 − 𝑑𝑦) ∗ (𝑦𝑒 − 𝑦𝑠 ) ≠ 0).

𝑠 (𝑡) = 0⇔

𝑡 =
(𝑥𝑠 − 𝑥𝑝 ) ∗ (𝑥𝑒 − 𝑥𝑠 ) + (𝑦𝑠 − 𝑦𝑝 ) ∗ (𝑦𝑒 − 𝑦𝑖 )
(𝑑𝑥𝑝 − 𝑑𝑥) ∗ (𝑥𝑒 − 𝑥𝑠 ) + (𝑑𝑦𝑝 − 𝑑𝑦) ∗ (𝑦𝑒 − 𝑦𝑠 )

(25)

𝑠 (𝑡) = 1⇔

𝑡 =
(𝑥𝑒 − 𝑥𝑝 ) ∗ (𝑥𝑒 − 𝑥𝑠 ) + (𝑦𝑒 − 𝑦𝑝 ) ∗ (𝑦𝑒 − 𝑦𝑠 )
(𝑑𝑥𝑝 − 𝑑𝑥) ∗ (𝑥𝑒 − 𝑥𝑠 ) + (𝑑𝑦𝑝 − 𝑑𝑦) ∗ (𝑦𝑒 − 𝑦𝑠 )

(26)

When working with rotating polygons, it is possible that two edges become parallel, and that
the closest features change at that moment (Section 4.3.2). In this case, since the polygons do not
rotate, two edges of different polygons are either always or never parallel. Eqs. 18 and 19 thus do
not need to be solved for 𝑡 anymore.
Using Eqs. 25 and 26, the algorithms of Sections 4.2 and 4.3 can thus be run without using

numerical methods. The experimental evaluation on real data in Section 7.2, shows that more than
half the movement segments are non-rotating, thus the impact of this performance optimization is
significant.
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6 IMPLEMENTATION IN A MOVING OBJECTS DATABASE
In Section 4 we presented a general solution to the problem of computing the temporal distance
between two moving points or polygons. The described algorithms return a list of 𝑘 closest features
with their associated timestamps. This list of closest features, together with the corresponding
moving objects, completely defines the equation of the temporal distance between these moving
objects. Indeed, the temporal distance is a piece-wise defined function, where every piece is defined
using either Eq. 20 or Eq. 21. To compute the distance value at a given timestamp 𝑡 , we can thus
determine the closest features at that timestamp in O(𝑙𝑜𝑔(𝑘)) time using binary search on the list
of features. Given the closest features at 𝑡 , we then use the corresponding equation (Eq. 20 or 21) to
determine the distance value in O(1) time.

When using these algorithms to implement a distance operator in a moving objects database, the
returned distance function still needs to be transformed into the data model used in the database.
In this section, we describe how the algorithm of Section 4 has been used to implement various
distance operators in MobilityDB [31], an open-source moving objects database.

6.1 Linear Approximation of the Distance
MobilityDB defines a temporal float type (tfloat), which is used to store the temporal evolution
of a real-valued parameter as a piecewise linear function. This temporal type is used for example
to store temperature measurements, the speed of a moving object, etc. It is also the return type
of the distance operators that involve temporal objects, e.g., the operator computing the distance
between two moving points.
Since the temporal distance between two moving objects is not piecewise linear, we need to

compute and store its linear approximation. This linear approximation will accurately store the
correct start and end distance values of every movement segment, as well as the extreme points of
the function, i.e., all minima and maxima. An example of such a linear approximation of a nonlinear
function is shown in Figure 14 as the red line. This choice of linear approximation is the same as
the one already done in MobilityDB when computing the distance between two moving points
[31]. Since this approximation maintains the extreme points of the distance function it can be used
to compute the exact nearest approach distance between two moving bodies. This is also explained
in Section 6.2.

Fig. 14. Approximation of a nonlinear continuous function (in blue) using a piecewise-linear function (in red).

The previously presented distance algorithm returns a list L representing the evolution of closest
features between two moving objects. In case the distance is computed between a moving point
and a moving polygon, we can assume that the second feature always corresponds to the moving
point itself.

L = [(𝑡0 = 0, F𝐴
0 , F 𝐵

0 ), ..., (𝑡𝑘−1, F𝐴
𝑘−1, F

𝐵
𝑘−1), (𝑡𝑘 = 1, F𝐴

𝑘−1, F
𝐵
𝑘−1)] (27)

As explained in Section 4.3, the closest feature pairs stored in the list can either be two moving
vertices or a moving vertex and a moving edge. Between every pair of timestamps [𝑡𝑖 , 𝑡𝑖+1], the
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closest features remain the same. In case these closest features are twomoving vertices, the (squared)
distance function is described by Eq. 20. If the two features are a moving vertex and a moving edge,
the function corresponds to Eq. 21.
The linear approximation of the distance function is computed in three steps. Firstly, for every

period [𝑡𝑖 , 𝑡𝑖+1], 𝑖 ∈ {0, ..., 𝑘 − 1}, the time coordinate of the extreme points are computed for the
corresponding distance function. This is done by computing the derivative of the (squared) distance
functions, and finding the roots of this new function between 𝑡𝑖 and 𝑡𝑖+1. Again, this has to be
solved using numerical methods if the rotation is nonzero. In this case, however, we are looking for
all the roots, instead of only the first. If there is no rotation, the distance functions will be quadratic,
and there will thus be a single extreme point. The developments for this direct solution are omitted
here.

In a second step, the distance is computed at every 𝑡 ∈ {𝑡0, ..., 𝑡𝑘 }, as well as at every timestamp
returned by the first step. These values are stored in a list of time-value pairs, sorted by increasing
timestamp. Finally, the intermediate timestamps 𝑡 ∈ {𝑡1, 𝑡𝑘−1} that do not correspond to an extreme
point are removed from the list. The extreme point condition can be checked by looking at the
values of the previous, current and next timestamp. The current point will then be extreme if its
value is either smaller or larger than both other values. This last check is required in case the switch
from one closest feature to another does not happen at an extreme point.
This algorithm results in a list of time-value pairs that stores a linear approximation of the

distance between two moving bodies. This is also the MobilityDB representation of a tfloat value
that does not contain temporal gaps. The temporal distance operator in MobilityDB will thus
combine the algorithms described in Section 4 with the linear approximation algorithm to return a
tfloat representing the temporal distance between its two operands.

6.2 Distance operators
The previous section describes how we implement the distance operator in MobilityDB. Addition-
ally, we also define three additional operators: nearestApproachDistance, nearestApproachInstant
and shortestLine, with the signature in Figure 15. All three of these operators are defined in the
OGC Moving Features Access standard [20]. The types tgeompoint and tgeometry are the types
representing moving points and moving polygons respectively in MobilityDB. For brevity, let’s also
use the notation A to denote the set of types {tgeompoint, tgeometry, point, polygon}.

distance tgeometry × A → tfloat
nearestApproachDistance tgeometry × A → float
nearestApproachInstant tgeometry × A → timestamptz
shortestLine tgeometry × A → geometry

Fig. 15. List of implemented distance operators

NearestApproachDistance is an operator that, given two moving objects, returns the smallest
distance ever obtained between them during their movement. This operator is important as it
is used for nearest neighbour searches. Its implementation first computes the distance function
using the distance operator, and then finds the minimum value of the result using the MobilityDB
minValue function. Indeed, as described in Section 6.1, the linear approximation of the distance
maintains all the extreme points of the function. The nearestApproachDistance operator will thus
return the correct value despite the linear approximation step.

The nearestApproachInstant operator is complementary to the nearestApproachDistance operator,
as it computes the timestamp at which the nearest approach distance is obtained. If this happens
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more than once, the first timestamp is returned. Lastly, the shortestLine operator computes the
shortest linestring between the two moving objects at the nearest approach instant.

7 EXPERIMENTAL VALIDATION
In this section, we evaluate the performance of the distance operator as it is described in Sections 4
and 6. The section is divided into two parts. Firstly, we validate the analytical complexity of the
algorithms described in Section 4. This is done on synthetic data, as this allows us to control the
size and the movement parameters of the polygons. In a second step, we compare the existing
MobilityDB distance function for moving points to the newly implemented distance operator for
moving polygons. Since moving points have a more simple data model and distance function, we
use them as a baseline to get an insight into the performance of the proposed moving body distance
function in practice. This second experiments section uses real-world AIS data.

7.1 Validation of Computational Complexity
In this section, we evaluate complexity of the algorithms of Sections 4.2 and 4.3, as well as the
speed-up received by the optimized version when the polygons are non-rotating. The algorithms
are coded in Python 3.6 and the experiments are repeated for both the point-to-polygon and the
polygon-to-polygon problems. The code and explanations to replicate these results are available on
GitHub1.
In the point-to-polygon case, a random convex polygon with 𝑛 vertices is generated, using the

algorithm in [29]2, in the box (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 ) = (0, 0, 𝑛, 𝑛), with a translation (𝑑𝑥, 𝑑𝑦) =
(0, 𝑛) and a rotation \ . The random point is then generated in the box (2𝑛, 𝑛, 3𝑛, 2𝑛), with a
translation (0,−𝑛) and the first algorithm is applied to these two moving objects. For the polygon-
to-polygon problem, we apply the same generation technique but generate a second polygon with
𝑚 = 𝑛 vertices in the box (2𝑛, 𝑛, 3𝑛, 2𝑛), with a translation (0,−𝑛) and the same rotation \ as the
other polygon. In both cases, the rotation center of the polygons corresponds to their centroid.
These starting and movement conditions allow us to vary the number of vertices 𝑛 and the rotation
\ of the polygons while making sure that the moving objects do not intersect. We vary the number
of vertices 𝑛 between 3 and 500 and the rotation \ between 0 and 𝜋 .
Two elements of the algorithms can be analyzed: the size 𝑘 of the result and the runtime 𝑡

of the algorithm. Firstly, we analyze the size of the result with respect to the parameters \ and
𝑛 (remember that𝑚 = 𝑛 in the experiments). Figure 16 shows the graphs of 𝑘 as function of 𝑛
(point-to-polygon problem) or 𝑛 +𝑚 (polygon-to-polygon problem), for varying values of \ . We
can see that the size of the result is linear in the number of vertices, but that the actual value of 𝑘
also heavily depends on \ . The results are averaged over multiple runs with the same values for 𝑛
and \ .
Secondly, we analyze the runtime 𝑡 of the algorithms with respect to the result size 𝑘 . This is

done by running the algorithms for random values of 𝑛 and \ , and storing the size of the result
and runtime of the algorithms as (𝑘, 𝑡) pairs in a list. The list is then sorted by 𝑘 and displayed on
the graph. For this experiment, only theWhile loop of Algorithm 1 is timed. The computation of
the initial closest feature in O(𝑙𝑜𝑔(𝑛)) is omitted, as it is done using existing algorithms. We thus
expect the time 𝑡 to be linear in 𝑘 as detailed in Sections 4.2 and 4.3.

The results of these experiments can be seen in Figure 17. The blue and orange lines correspond
to the point-to-polygon and the polygon-polygon cases respectively, and Figures 17a and 17b show
the result for the non-optimized (\ ≠ 0) and optimized (\ = 0) algorithms respectively. As expected,

1https://github.com/mschoema/tgeometry_python
2https://cglab.ca/~sander/misc/ConvexGeneration/convex.html

ACM Trans. Spatial Algorithms Syst., Vol. 0, No. 0, Article 0. Publication date: 2023.

https://github.com/mschoema/tgeometry_python
https://cglab.ca/~sander/misc/ConvexGeneration/convex.html


0:22 Maxime Schoemans, Mahmoud Sakr, and Esteban Zimányi

(a) (b)

Fig. 16. Graphs of k in function of n (point-to-polygon, (a)) and n + m (polygon-to-polygon, (b)) for fixed
value of \ .

the duration of the different algorithms are all linear with respect to their result sizes (𝑡 = O(𝑘)).
The average duration per result (𝑡/𝑘) for the non-optimized algorithm is 𝑡/𝑘 = 38`s and 100`s
for the point-to-polygon and polygon-to-polygon problems respectively. The respective average
duration per result for the optimized algorithms are 𝑡/𝑘 = 7`s and 13`s. The optimized algorithms
are thus about 5 to 8 times faster than the non-optimized one for identical result sizes.

(a) (b)

Fig. 17. Graphs of t (in ms) in function of k for the non-optimized (\ ≠ 0) (a) and optimized (\ = 0) (b)
algorithms.

7.2 Danish AIS Use Case
With Section 7.1 confirming the computational complexities of the algorithms presented in Section 4,
it remains to assess the running time of a distance query in a real-world use-case. For this, we test
the MobilityDB implementation of the distance operator3 on a real-world AIS dataset from the
Danish Maritime Authority4. This dataset contains historic AIS data and is publicly distributed as
CSV files containing each one full day of data. We use the CSV files from September 2020, which
contain in total 250M AIS points in 40K ship tracks spread over 30 days, for a total of 61.6GB
of raw data. The data is cleaned and loaded in MobilityDB in both moving point and moving
polygon format. The moving point data is constructed using the timestamp, longitude and latitude
fields of the AIS data. To construct the moving polygons, we first construct the static geometry
at each timestamp using the latitude, longitude, heading and the fields sizea, sizeb, sizec, and
3https://github.com/mschoema/MobilityDB/tree/tgeometry
4https://dma.dk/safety-at-sea/navigational-information/ais-data
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sized, giving the distances of the sides of the vessel to the GPS point at which the longitude and
latitude are computed. The static geometry constructed from this data is a pentagon in the shape
of a rectangle with an additional triangle on one side representing the front of the vessel. The
construction of this polygon representation of a vessel can be seen in Figure 18. Since both the
position, size, and the orientation information is extracted from the AIS data, we can assume that
the moving polygon closely approximates the real movement and geometry of the vessel.

S
ize

D
S
ize

C

SizeB
SizeA

N

Heading

GPS

Fig. 18. Construction of the geometry of a vessel from its position, size and heading information.

The experiments in this section thus correspond to the case where 𝑛 = 5. The two constructed
tables are the following:

ships_point(mmsi integer, trip tgeompoint), and
ships_poly(mmsi integer, trip tgeometry).

After this transformation into a MobilityDB data format, the table sizes are respectively 4.4GB
and 5.5GB. We now compare the existing distance operator for moving points with the newly
implemented operator for moving polygons.

As a first example use-case, let us analyze the entrance of the port of Helsingborg. For security
reasons, when entering the port, the vessels should not come too close to the dyke at the entrance of
the port. Query 1 thus computes the temporal distance between the vessels stored as moving points
(1a) or polygons (1b) and a fixed point at the end of the dyke at the entrance of the Helsingborg
port. Figure 19a shows the position of this point as well as the trajectories of the vessels around
it. For demonstration purposes, the query is only run on the first day of data. The running time
of Query 1a is 3.65 seconds (average of 10 runs), while the same query on moving bodies (1b)
takes 5.06 seconds. Note that this is the total running time of applying the algorithm on the 6.5M
segments that make up the movement of the vessels. The distance operator for moving polygons
is thus about 1.4 times slower as the operator for moving points, which is to be expected due to
the increased complexity of the algorithm. Another thing to note here is that for the trips of table
ships_poly, 65.7% of the segments have a rotation angle of 0. This indicates that the optimized
solution for non-rotating polygons is heavily used in real-world use-cases.
Query 1a: SELECT distance(trip, 'Point(729493 6216766)')

FROM ships_point;
Query 1b: SELECT distance(trip, 'Point(729493 6216766)')

FROM ships_poly;

Let us also query for the vessel that came closest to the query point during its movement. Query 2
computes the nearest approach distance of every vessel to the query point and returns the vessel id
(mmsi) and distance of the vessel with the smallest nearest approach distance. Again, this query is
run with the vessels being represented as moving points (2a) and moving polygons (2b) for the
first day of data. Table 1 shows the running time and results of both queries. Consistently with
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(a) (b)

Fig. 19. (a) Entrance to the port of Helsingborg, with the query point in red and the vessel trajectories in
blue. (b) Visualization of the vessel with the closest approach in both the point (blue) and polygon (green)
representation.

the results obtained in Query 1, the running times of Query 2 are similar since the processing
of the distance operator takes the majority of the query time. Looking at the result values, we
can see that the smallest distance is 10.42m when computed using moving points, and 5.21m
when computed using moving polygons, which illustrates the gain in precision. More important is
that the vessels (identified by mmsi) returned by the queries are also different. This means that
the impression introduced by computing distances using the moving point approximation led to
returning a wrong vessel id in this query. This result is also visualized in Figure 19b.
Query 2a: SELECT mmsi,

nearestApproachDistance(trip,
'Point(729493 6216766)') AS min_dist

FROM ships_points
ORDER BY min_dist LIMIT 1;

Query 2b: SELECT mmsi,
nearestApproachDistance(trip,

'Point(729493 6216766)') AS min_dist
FROM ships_polys
ORDER BY min_dist LIMIT 1;

Query Running time (s) mmsi min_dist (m)
2a 3.59 265610940 10.42
2b 4.94 265041000 5.21

Table 1. Running time and result of Query 2

In a second experiment, we demonstrate the scalability of the algorithms. As reference geometries,
we generate a point and 5 convex polygons of varying sizes that we arbitrarily placed below the
island of Læsø. Table 2 lists the generated geometries with their number of vertices and Figure 20
shows four of these geometries on the map. Note that, since we are working with convex polygons,
the polygon with 75 vertices already has a smooth contour. We thus limit ourselves to polygons
with at most 75 vertices. To link this experiment to a practical problem, the generated polygons
can be seen as the extent of an offshore wind farm. European member states and, in particular,
Denmark already possess many offshore wind farms5 and are planning on adding more to be able
5www.4coffshore.com/windfarms/denmark/
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to meet ambitious goals related to renewable energy67. For security reasons, vessel traffic cannot
come within a certain distance of these wind farms [25]. When planning a new project, it is thus
important to know the distance between the planned wind farm and the surrounding vessel traffic.

Geometry Name Point A Poly B Poly C Poly D Poly E Poly F
# of Vertices 1 5 10 25 50 75

Table 2. Sizes of the generated geometries

Fig. 20. Visualization of four generated geometries: Point A (yellow), Poly B (green), C (Blue) and F (red).

In this experiment, we compute the temporal distance between the vessel trajectories in moving
polygon representation and each of the generated reference geometries. Additionally, we also
compute the temporal distance between the moving point representation of the trajectories and the
first point geometry, since this is currently the only existing distance function for moving objects in
MobilityDB. Figure 21 shows the query duration for data sizes varying from 1 day to a full month
of data. For the full data size, computing the temporal distance between the moving polygons and
a static geometry takes about 80 seconds.

The first thing we note in the figure is that computing the distance for the polygon representation
of the vessels is at most 1.5 times slower than for the point representation. This is coherent with
the result from the previous experiment. Secondly, the polygon-to-point algorithm (A Poly) is
ever so slightly faster than the polygon-to-polygon algorithm (B-F), which is expected since the
polygon-to-polygon algorithm needs to solve more complex equations to determine changes in
closest features. Lastly, the number of vertices of the second polygon does not visibly influence the
duration of the query. Indeed, the duration of the algorithm is linked to the number of changes in
closest features. For many trajectories that are relatively far away from the wind farm geometry,
increasing the number of vertices of the geometry will not directly increase the number of changes
in closest features during the movement.

The last remaining particularity of Figure 21 is the shape of the graph. Notice that the data size is
given in terms of number of trajectories. Each trajectory represents a sequence of linear segments,
as discussed at the end of Section 3. The distance algorithm is thus called subsequently on each
individual segment. Querying the distance for trajectories with more segments would thus take
longer than for trajectories with less segments. Looking at Figure 22a, we can indeed see that the
6energy.ec.europa.eu/news/member-states-agree-new-ambition-expanding-offshore-renewable-energy-2023-01-19_en
7www.offshorewind.biz/2023/02/20/denmark-to-auction-off-9-gw-of-offshore-wind-in-2023/
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Fig. 21. Duration of temporal distance queries in function of the number of trajectories. Queries A (Poly) and
B-F use the polygon representation of the vessels, while query A (Point) uses the point representation.

total number of segments does not increase linearly with the number of trajectories. This means
that some trajectories contain more segments than others. Plotting now the query duration in
function of the total number of segments (Figure 22b), we can see that the query duration is linear
in terms of trajectory segments. The average duration per segment is 539ns, 775ns and 800ns for
the point-to-point, polygon-to-point and polygon-to-polygon algorithms respectively. The last
value is computed as the average of the four polygon-to-polygon queries since they all have similar
duration.

(a) (b)

Fig. 22. (a) Relation between the number of trajectories and the number of segments. (b) Duration of temporal
distance queries in function of the number of segments.

8 CONCLUSION
To conclude, we described the problem of computing the time-varying distance between a continu-
ously moving body and other static and moving objects in 2D and presented algorithms to solve
this problem efficiently. When the moving bodies are convex, the algorithm computes the evolution
of their closest features in O(𝑙𝑜𝑔(𝑛) + 𝑘) time, where 𝑛 is the total number of vertices, and 𝑘 is the
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number of times the closest features change (size of the result). This evolution is stored as a list of
length 𝑘 that, together with the initial moving bodies, completely determines the equation of the
temporal distance between the moving objects. This list can thus be used to determine the distance
at a given timestamp in O(𝑙𝑜𝑔(𝑘)) time.

Around this distance algorithm, multiple extensions have been described. Firstly, we developed
an optimization for the case where the movement contains no rotation. This case appeared to be
the most common one in the test we performed on a real dataset. Secondly, the algorithm was
generalized for non-convex polygons. Finally, we described how this algorithm, together with an
additional linear approximation step, is used to implement the distance operators specified in the
OGC Moving Features Access standard in the moving object database MobilityDB.

The experiments confirm the linear complexity of the algorithm in terms of 𝑘 , and show a 5-8×
speed-up when using the optimized algorithms for non-rotating moving bodies. Additionally, we
show that the increased complexity of representing vessels using moving polygons can result in
increased precision during distance computations with only a 1.4x increase in computation time.
This paper presents a solution for moving objects in 2D, but the idea of tracking the closest

features between two objects can also be applied in 3D. In this case, the moving bodies are either
3D points or polyhedrons, and the features are vertices, edges or faces of the objects. Future work
would thus be to generalize this algorithm to compute the time-varying distance between 3D
moving bodies.
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