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Abstract
Memory management is fundamental to the performance of 
all applications. On modern server architectures, an appli-
cation’s memory allocator needs to balance memory utili-
zation against the ability to use 2MB huge pages, which are 
crucial for achieving high performance. This paper shows 
that prior C++ memory allocators are fundamentally limited 
because optimizing this trade-off depends on the knowledge 
of object lifetimes, which is information allocators lack.

We introduce a two-step approach to attain high memory 
utilization in huge pages. We first introduce a novel machine-
learning approach that predicts the lifetime of freshly allo-
cated objects using the stack trace at the time of allocation 
and treats stack traces as natural language. We then present 
a fundamentally new type of memory allocator that exploits 
(potentially incorrect) object lifetime predictions to achieve 
high memory utilization at full huge page usage. In contrast 
to prior memory allocators that organize their heap around 
size classes and free lists, our allocator organizes the heap 
based on predicted lifetime classes and adjusts to mispre-
dictions on the fly. We demonstrate experimentally that this 
learned lifetime-aware memory allocator (LLAMA) reduces 
fragmentation with huge pages by up to 78%.

Our approach gives rise to a new methodology for apply-
ing ML in computer systems. In addition, similar space-time 
bin packing problems abound in computer science and we 
discuss how this approach has applications beyond memory 
allocation to a wide range of problems.

1. INTRODUCTION
Memory management is a decades-old research area24 that 
is fundamental to the performance of all applications. On 
modern architectures, memory managers determine a 
workload’s ability to use 2MB (and 1GB) huge pages instead 
of traditional 4KB pages. The use of huge pages is crucial 
for performance on modern servers since they substantially 
reduce the cost of address translation by producing a wider 
reach in Translation Lookaside Buffers (TLB), reducing 
misses on the CPU’s critical path.5

Current huge page-aware memory managers13 trade-
off huge page usage with memory utilization, breaking up 
huge pages when they become inefficient. Figure 1 visu-
alizes the source of this trade-off: When a C++ program 
 allocates memory, it calls into a memory allocator library 

The original version of this paper is entitled “Learning-
based Memory Allocation for C++ Server Workloads” 
and was published in Proceedings of the 25th International 
Conference on Architectural Support for Programming 
Languages and Operating Systems, 2020.

(e.g., TCMalloc13), which places the object at a particu-
lar address in memory until the program deletes it. The 
object may not move. The memory allocator has two goals: 
use as little memory as possible while placing as many 
objects as possible into consecutive 2MB ranges of mem-
ory, which enables the utilization of huge pages. The lat-
ter is crucial for performance since these 2MB ranges can 
be represented by one (instead of 512) TLB entries in the 
CPU, reducing the number of TLB misses that slow down 
the application.

Challenges arise because memory allocators can only 
request memory from the operating system at the granular-
ity of a page. As long as a page contains at least one object, 
it cannot be returned to the operating system. Poor object 
placement can therefore lead to mostly empty huge pages 
assigned to an application (Figure 1). These huge pages 

Figure 1. Overview of C++ memory allocation and how long-lived 
objects lead to wasted memory. Had the red and yellow objects been 
swapped, page 2 could be freed and the memory footprint would 
have halved.
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long-running servers. This requirement creates a set of new 
challenges:

• Online profiling is challenging because of overheads. 
Full-context profiling adds 6% overhead,7,20 which can 
be more than memory allocation itself.14 Sampling9 is 
sufficient for opportunistic optimizations but does not 
provide the full coverage we need.

• Offline profiling is challenging because exercising all 
possible application behavior ahead of time is infea-
sible and servers are configured in myriad ways with 
different libraries. Lifetimes are particularly difficult 
to profile since they require observing both an alloca-
tion and a deallocation event. We show that in practice, 
offline profiling does not provide full coverage either.

This paper addresses these problems by sampling a subset 
of allocation contexts and using machine learning (ML) to 
generalize from these contexts to previously unobserved con-
texts. In particular, our novel treatment of symbolized allo-
cation contexts (stack traces) as natural language produces a 
model that extracts the meaning of function names and how 
they appear in stack traces. The model accurately predicts 
object lifetimes, even for previously unobserved contexts.

This new ability to predict object lifetime classes for every 
allocation inspires LLAMA (learned lifetime-aware memory 
allocator), a fundamentally new lifetime-predicting alloca-
tor design for huge pages that substantially reduces frag-
mentation on C++ servers. On allocation, LLAMA predicts N 
lifetime classes, where each class differs by an order of mag-
nitude (≤ 10ms, 100ms, 1s, 10s, etc.). LLAMA organizes the 
heap by assigning each huge page to a lifetime class. It sub-
divides huge pages into blocks and lines, where each block’s 

represent wasted memory or need to be broken up into 4KB 
pages, reducing performance.

We demonstrate that wasted pages present challenges 
for long-running server workloads whose memory foot-
prints shrink and grow over time depending on user 
demand. Many web services exhibit such highly variable 
memory consumption.16 Most objects allocated by a server 
are short-lived but a small fraction lives for a very long time, 
such as session state, logs, or in-memory data. This lifetime 
distribution is not a major problem with a 4KB page size: If, 
conservatively, 99.99% of objects are short-lived and their 
average size is 64B, then using 4KB pages, the probability 
that any given page contains a long-lived object is less than 
1% (1–(0.9999)4096/64). With 2MB huge pages, the correspond-
ing probability is 96%.

When the footprint of a server workload shrinks, most 
of its huge pages cannot be released back to the operating 
system because they contain at least one long-lived object. 
Figure 2 shows this effect for a production image processing 
service on a synthetic workload.

Since C++ cannot move objects, solving this problem 
depends fundamentally on reasoning about object lifetimes 
and grouping objects with similar lifetimes together. In 
practice, the allocator thus needs to use the information it 
has at the time of allocation to make a placement decision 
that avoids long-lived objects being equally spread across 
pages. The most important information is the current stack 
trace at the time of allocation, which is called the allocation 
context. Figure 3 shows an example of such a context and the 
information it contains.

Prior work on compiler and language-runtime optimi-
zation also leverage allocation contexts. Commonly, these 
approaches collect profiles of allocation contexts with asso-
ciated measurements and then leverage these profiles at 
run time. Profiles are collected during execution (online) 
or in a separate profiling run (offline). Allocation context-
driven optimizations are often opportunistic9—they do 
not need to provide full coverage and make a prediction 
for every possible context, but yield improvements in cases 
where they can. In some settings, mispredictions may be 
corrected (e.g., garbage collectors can move objects). In 
contrast, we need to be able to make predictions for every 
possible context we may encounter, since a single long-lived 
allocation may “cost” up to 2MB and errors accumulate on 
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Figure 2. Image server memory usage resizing groups of large and 
small images either backed by huge (red) or small (yellow) pages 
in the OS, derived from analyzing an allocation trace in a simulator. 
Huge pages waste systemically more memory (red) and increasingly 
more over time.

1 __gnu_cxx :: __g :: __string_base char , std :: __g :: char_traits char ,

std :: __g :: allocator char :: _M_reserve ( unsigned long )

2 proto2 :: internal :: InlineGreedyStringParser ( std :: __g ::

basic_string char , std :: __g :: char_traits char , std :: __g ::

allocator char* , char const* , proto2 :: internal :: ParseContext* )

3 proto2 :: FileDescriptorProto :: _InternalParse ( char const* , proto2 ::

internal :: ParseContext* )

4 proto2 :: MessageLite :: ParseFromArray ( void const* , int )

5 proto2 :: DescriptorPool :: TryFindFileInFallbackDatabase ( std :: __g

:: basic_string char , std :: __g :: char_traits char , std :: __g ::

allocator char const ) const

6 proto2 :: DescriptorPool :: FindFileByName ( std :: __g :: basic_string char

, std :: __g :: char_traits char , std :: __g :: allocator char const )

const proto2 :: internal :: AssignDescriptors ( proto2 :: internal ::

AssignDescriptorsTable* )

7 system2 :: Algorithm_descriptor ( )

8 system2 :: init_module_algorithm_parse ( )

9 Initializer :: TypeData :: RunIfNecessary ( Initializer* )

10 Initializer :: RunInitializers ( char const* )

11 RealInit ( char const* , int* , char*** , bool , bool )

12 main

Figure 3. An example of an altered but representative allocation 
context, with colored tokens. A string (1) is allocated within a 
protocol buffer function (2–6) as part of the initialization (9–12) of a 
larger system (7–8).
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lifetime is predicted less than or equal to its huge page. 
LLAMA handles mispredictions by observing actual object 
lifetimes and using them to reclassify huge pages.

Figure 4 shows an overview of the approach. A subset of 
allocation lifetimes is sampled from prior runs and versions 
of a workload. A model is trained against these samples to 
provide predictions for all allocations. This model is com-
piled into the application for use by the novel LLAMA mem-
ory manager algorithm. We also introduce a new caching 
approach to make these predictions fast.

This paper makes contributions to memory management 
and the emerging area of ML for Systems.17 While many 
prior uses of ML in computer systems focused on tuning 
existing heuristics with ML, we instead use ML to reconsider 
the algorithmic context of memory management altogether. 
Our approach delivers the first allocator that substantially 
reduces fragmentation for modern C++ server workloads 
compared to a free-list allocator and only uses huge pages.

Since publication, this work has inspired a general meth-
odology for leveraging ML in systems, with applications in 
operating systems and computer architecture.17 Instead 
of learning a systems problem end-to-end, cheap ML tech-
niques are used to predict a previously unknown property 
(in this case, object lifetimes) and these predictions are then 
used to fundamentally redesign the algorithm around lever-
aging this property while tolerating mispredictions. Some 
insights from this work have also inspired separate (non-
ML) TCMalloc optimizations that are deployed in produc-
tion, leading to an estimated 1% throughput improvement 
across Google’s fleet.18

While this paper focuses on C++ memory allocation, the 
algorithm we present applies to any space-time bin pack-
ing problem: Items (in our case, objects) are assigned to 
resources (in our case, pages) and a resource can only be 
released once all items within it have disappeared. Often, 
the items’ lifetimes are predictable, which enables the 
use of the LLAMA algorithm. For example, we showed in a 
later paper that file lifetimes in storage systems are predict-
able.25 The general LLAMA approach applies to areas such as  
storage systems, OS process management, and potentially 
operations research.

2. OBJECT LIFETIME PREDICTION
This section describes how we predict the lifetimes of 
C++ objects at the time of allocation, which has several  
challenges: (1) Lifetime depends on the entire calling  
context at allocation, not only the allocation site where the 
allocator was called. (2) The overhead of online profiling is 

impractical because it costs 6% CPU performance,7,20 which 
would be more than allocation alone.14 (3) Full coverage of 
calling contexts and perfect accuracy are not achievable with 
offline profiling. Because servers evolve and are configured 
in myriad ways with different libraries, an offline profiler 
will thus only ever see a subset of contexts.

We address overhead and coverage challenges by sam-
pling a subset of allocations across multiple executions 
(Section 2.1). We connect to a given application for a sample 
period and collect lifetimes for a small fraction of all alloca-
tions that occur during this period. Sampling is suitable for 
both server applications in datacenters and multiple runs 
of a popular application (e.g., a web browser) on a client.

Sampling may not observe all allocation contexts and 
we must combine samples from a heterogeneous set of 
different software versions, while the code bases are con-
stantly updated. Our solution uses ML on observed samples 
of tokenized (subdivided) contexts to predict object life-
times. We train a supervised model (Section 2.2) that maps 
from calling context to lifetime and generalizes to unseen 
contexts.

Another challenge is to perform prediction without sig-
nificant overhead. For example, TCMalloc’s allocation fast 
path is 8.3ns (Table 1), which is too short to obtain a predic-
tion from an ML model. In fact, it is not even sufficient to 
gather all the required features, since collecting a deep stack 
trace takes 400ns. We address this problem with a hashing-
based cache (Section 2.3) that identifies previously seen con-
texts by using values that are already in registers (the return 
address and stack pointer) to index a hash table and execute 
the model only if the lookup fails. We thus amortize model 
executions over the lifetime of a long-running server. We 
next explain each component in more detail.

2.1. Sampling-based data collection
Always-on collection of allocation lifetimes incurs a sub-
stantial overhead. For example, stack tracing adds 14% end-
to-end overhead, and writing to disk further increases the 
cost, making continuous profiling infeasible in production. 
We thus introduce a cheap sample-based continuous profil-
ing mechanism and implement it in TCMalloc,13 similar to 
other production profiling tools.14 Our sampling approach 
periodically connects to servers (for a short duration such 
as »5 min) and samples a subset of all memory allocations 
within the process. Each sample includes a stack trace, 
object size, and address at allocation and deallocation time.

We implement this profiler with TCMalloc hooks that 
are called periodically, based on the number of allocated 
bytes. These hooks incur virtually no overhead when they 
are disabled. We also assign each sampled object an identi-
fier at allocation time and match it at deallocation time to 
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Figure 4. Overview of our ML-based allocator.

TCMalloc fast path (new/delete)
TCMalloc slow path (central list)
Capture full stack trace
Look up stack hash (Section 2.3)

8.3ns
81.7ns
396ns ± 364ns
22.5ns

Table 1. Timescale comparisons.
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compute lifetimes. For each sampled allocation, we keep 
a running tally of the distribution of lifetimes, by storing 
the maximum, minimum, count, sum, and sum of squares. 
We calculate the mean and variance of the lifetimes dur-
ing post-processing. At the end of a sampling period, we 
store the result in a protocol buffer for later analysis using 
pprof.11

2.2. Lifetime prediction model
Our sampling approach collects allocation contexts and 
their associated lifetimes. The simplest way to use these 
samples would be to store the values in a lookup table that 
maps allocation contexts to a lifetime class. Within a binary, 
an allocation context can be stored as a sequence of 64-bit 
pointers representing the locations of the instructions on 
the call stack. Building this table online is prohibitive due 
to the large overheads of always-on profiling. We, therefore, 
use data from prior executions of the application.

However, stack traces are brittle when used across execu-
tions. Even stack traces from the exact same binary may dif-
fer due to address layout randomization. Using symbol 
information, it is possible to compare stack traces based on 
the original method name for each stack frame, but differ-
ent builds of the same binary may still differ. For example, 
changing libraries can affect inlining decisions, different 
compiler settings lead to slightly different symbol names, 
and function names and interfaces change over time. This 
problem also occurs when collecting traces across a large 
number of instances of the same server with different build 
configurations and software versions. Table 2 shows that the 
fraction of matching stack traces between builds with even 
minor changes is low and decreases over time. This shows 
that a lookup table would not be suitable, particularly since 
our predictor needs to provide a high-quality prediction for 
every allocation context, which includes unseen contexts.

To address this problem, we design an ML-based pre-
dictor that learns calling contexts of tokenized class 
and method names to produce accurate predictions for 
unobserved contexts. We train this model using supervised 
learning. Training data is generated by grouping samples 
by allocation context and calculating the distribution of 
observed lifetimes for each context. We use the 95th per-
centile  of observed lifetimes of context i to assign a label  
Li e {1, …, 7, ¥} such that . Objects the 
program never frees get a special long-lived label ¥. This 
produces lifetime classes of 10ms, 100ms, 1s, 10s, 100s, 
1000s, ≥1000s, and ¥. Our model classifies stack traces 
according to these labels. To ensure our model assigns 
greater importance to stack traces that occur more often, 

we weigh each stack trace according to the number of 
times it was observed and sample multiple copies for fre-
quently occurring traces. The resulting datasets for our 
applications contain on the order of tens of thousands of 
elements.

The use of wallclock time for lifetime prediction is a 
departure from prior work that expresses lifetime with 
respect to allocated bytes,4 which can be more stable across 
environments at short timescales. We experimented with 
logical time measured in bytes, but believe wallclock 
time works better because (1) our lifetime classes are 
very coarse-grained (10×) and absorb variations, (2) if the 
speed difference between environments is uniform, noth-
ing changes (lifetime classes are still a factor of 10× apart). 
Meanwhile, variations in application behavior make the 
bytes-based metric very brittle over long time ranges. 
For example, in our image server, the sizes of submitted 
images, number of asynchronous external events, etc. dilate 
logical time.

We use a model similar to text models. In recent years, 
there has been an explosion of work that learns text repre-
sentations of code,2 and our paper represents an example of 
this approach. In contrast to much of this work, we use code 
to reason about dynamic program properties rather than 
static code, an area that has seen less attention.8

First, we treat each frame in the stack trace as a string 
and tokenize it by splitting based on special characters 
such as, and ::. We separate stack frames with a special 
token: @. We take the most common tokens and create a 
table that maps them to IDs. One special ID is reserved for 
unknown or rare tokens, denoted as UNK. The table size 
is a configuration parameter (for example, 5000 covers the 
most common tokens).

We use a long short-term memory (LSTM) recurrent neu-
ral network model.12 LSTMs are typically used for sequence 
prediction, for example, for next-word prediction in natural 
language processing. They capture long-term sequential 
dependencies by applying a recursive computation to every 
element in a sequence and outputting a prediction based 
on the final step. In contrast, feed-forward neural networks 
like multi-layer perceptrons10 or convolutional neural net-
works15 can recognize local patterns, but require some form 
of temporal integration in order to apply them to variable-
length sequences.

Our choice of an LSTM is informed by stack trace struc-
ture. Figure 3 shows an example. Sequentially processing a 
trace from top to bottom conceptually captures the nesting 
of the program. In this case, the program is creating a string, 
which is part of a protocol buffer (proto) operation, which is 
part of another subsystem. Each part on its own is not mean-
ingful: A string may be long-lived or short-lived, depending 
on whether it is part of a temporary data structure or part 
of a long-lived table. Similarly, some operations in the proto 
might indicate that a string constructed within it is tempo-
rary, but others make the newly constructed string part of 
the proto itself, which means they have the same lifetime. 
In this case, the enclosing context that generates the proto 
indicates whether the string is long or short-lived.

To learn these patterns, our model must step through the 

Version difference Matching/total # traces

Revisions 1 week apart
Revisions 5 months apart
Opt. vs. non-opt. build

20,606/35,336 (58.31%)
127/33,613 (0.38%)
43/41,060 (0.10%)

Table 2. Fraction of individual stack traces that match between 
different binary versions using exact match of symbolized function 
names.
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value. To address this problem, we periodically discard 
cached entries. Every, for example, 1000 cache hits, we run 
prediction again. If the result agrees with the current entry, 
we do nothing. Otherwise, we set the cache entry to the 
maximum lifetime of the old and new predictions. We use 
maximum because the allocator is more resilient to over-
predicted lifetimes than under-predicted lifetimes.

3. LIFETIME-AWARE ALLOCATOR
This section introduces LLAMA, a fundamentally new design 
for C/C++ memory managers based on predicted object life-
times. Instead of building an allocator around segmenting 
allocations into size classes,13,24 we directly manage huge 
pages and segment object allocation into predicted lifetime 
classes. We further divide, manage, and track huge pages 
and their liveness at a block and line granularity to limit 
fragmentation. We implement our allocator from scratch. 
LLAMA is a fundamentally different approach to heap man-
agement, although its hierarchical heap organization has 
similarities to Immix.6 LLAMA is an untuned research pro-
totype but demonstrates the potential of a lifetime-based 
memory allocation approach.

3.1. High-level structure
LLAMA organizes the heap into huge pages. To limit frag-
mentation, we divide huge pages into 8KB blocks and track 
their liveness. LLAMA assigns each active huge page one of 
N lifetime classes (LC), separated by an order of magnitude 
(e.g., 10ms, 100ms, 1000ms, …, ¥).

LLAMA’s global allocator manages huge pages and their 
blocks. It acquires and releases huge pages from the OS as 
needed. It directly manages large objects (>= 8KB), plac-
ing them into contiguous free blocks in partially free huge 
pages or new huge pages. Small objects are handled by 
thread-local allocators that request ranges of blocks from 
the global  allocator. A huge page may contain large and 
small objects. We will first describe the global allocator’s 
algorithm for large objects and then describe the handling 
of small objects in Section 3.5.

3.2. Lifetime-based huge page management
LLAMA stores a small amount of metadata for each huge 
page. Huge pages have three states: open, active, and free. 
Open and active huge pages are live and consume 2MB of 
memory each. Each huge page has an associated LC and 
only one huge page per LC is open at a time. While a huge 

stack frames, carrying through information, and, depend-
ing on the context, decide whether or not a particular token 
is important. This capability is a particular strength of 
LSTMs (Figure 5). We feed the stack trace into the LSTM as 
a sequence of tokens (ordered starting from the top of the 
trace) by first looking up an “embedding vector” for each 
token in a table represented as a matrix A. The embedding 
matrix A is trained as part of the model. Ideally, A will map 
tokens with a similar meaning close together in embedding 
space, similar to word2vec embeddings19 in natural lan-
guage processing. Here lies an opportunity for the model 
to generalize. If the model can learn that tokens such as 
ParseFromArray and InternalParse appear in similar 
contexts, it can generalize when it encounters stack traces 
that it has not seen before.

Note that our approach is not specific to LSTMs. We 
chose the LSTM architecture since it is one of the simplest 
sequence models, but future work could explore more 
sophisticated model architectures that incorporate more 
details of the underlying program, for example, Graph 
Neural Networks trained on program code.3

We implement and train our model using TensorFlow.1 
Calling into the full TensorFlow stack to obtain a lifetime 
prediction would be prohibitively expensive for a memory 
allocator, so after training, we use TensorFlow’s XLA com-
piler to transform the trained model into C++ code that we 
compile and link into our allocator directly.

2.3. Speeding up predictions
The allocator must predict object lifetimes quickly to meet 
latency requirements. TCMalloc allocation times are <100 
cycles—recording the complete calling context and invok-
ing even a simple neural network takes microseconds, and 
both are thus too costly. Table 1 shows recording the call-
ing stack for an allocation alone can take an order of mag-
nitude longer than the allocation. We solve these problems 
by cheaply caching predictions, using a hash of values that 
are already in registers. We cache predictions as shown in  
Figure 6 by computing a hash of the return address, stack 
height and object size, and indexing a thread-local hashmap. 
Prior work shows that stack height identifies C/C++ stack 
traces with 68% accuracy.20 We add object size to increase 
the accuracy further. If the hash hits, we use the cached pre-
diction. Otherwise, we run the compiled model, which takes 
hundreds of ms, and store the result in the cache.

When stack hashes with very different lifetimes alias or 
workloads change, prediction accuracy suffers. We found 
that 14% of predictions disagreed with the currently cached 

Figure 5. LSTM-based model architecture.
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3.4. Tolerating prediction errors
Since not all predictions made by the model are correct, 
LLAMA needs the ability to handle both over-predicted and 
under-predicted lifetimes.

Over-predicted lifetimes are handled using the mecha-
nism that reclassifies huge pages once all residual objects 
are gone. For example, if residual blocks are freed before 
their lifetime has expired, the page will be reclassified ear-
lier, which may result in it freeing up earlier.

Under-predicted lifetimes are more difficult. For exam-
ple, if a huge page in the lowest lifetime class contains a 
long-lived object, it can result in a large amount of frag-
mentation since the page does not become free and also 

page is open, LLAMA only assigns its blocks to objects with 
the same predicted LC as the huge page. LLAMA transitions 
a huge page from open to active after filling all its constitu-
ent blocks for the first time. The huge page remains active 
for the rest of its lifetime. A huge page is free when all its 
blocks are free and is immediately returned to the OS.

All blocks on a huge page are free or live; and residual 
or non-residual. These properties are tracked via bitmaps. 
When blocks on an open huge page are assigned, these 
blocks are marked as residual, which means that they are 
predicted to match the LC of their huge page. An active huge 
page may also contain other live (non-residual) blocks, but 
these blocks will contain objects of a shorter lifetime class, 
as explained below.

LLAMA initially places objects in the open pages corre-
sponding to their predicted LC and transitions these pages 
from open to active once they are full. At this point, the 
huge page contains residual blocks and maybe free blocks. 
Figure 7 shows a simple example with three lifetime classes, 
separated by orders of magnitude. A large number of initial 
allocations are placed in open pages (Figure 7a), including a 
large object in huge pages 11 and 12. Figure 7b then shows 
many frees, which cause LLAMA to return free huge pages 2 
and 6 to the OS.

3.3. Recycling blocks to limit fragmentation
As shown in Figure 7b, active huge pages contain free blocks 
and live residual blocks of the same LC. If the free blocks 
were never reused, the allocator would waste significant 
amounts of memory to fragmentation. LLAMA limits frag-
mentation by aggressively recycling such free blocks for 
objects in shorter LCs. Given a request for LC lr, the global 
allocator prefers to use free blocks from a longer-lived active 
huge page (LC > lr). These recycled blocks are marked as 
non-residual, as illustrated in Figure 7c. If no such recycla-
ble blocks exist, the global allocator uses block(s) from the 
open huge page of the same LC = lr.

Intuitively, if the predictor is accurate, all objects on a 
huge page with lifetime class LC will be freed within 1.1× 
LC. All residual objects have a lifetime of at most LC and all 
non-residual objects are of at most the next-lower lifetime 
class, that is, 0.1× LC. Because lifetime classes are sepa-
rated by an order of magnitude, the allocator may reuse 
the non-residual blocks many times while the longer-lived 
objects on the huge page are in use, reducing the maxi-
mum heap footprint.

For example, given the heap state in Figure 7b and a 
request for a two-block large object with lr < 10ms, the global 
allocator allocates it into huge page 7 with LC < 100 ms and 
marks the blocks non-residual, as illustrated in Figure 7c. 
Once the program has freed all the objects on residual blocks 
within a huge page, all remaining (non-residual) blocks have 
a lifetime class at least one less than the huge page’s current 
lifetime class. At this point, the huge page is reclassified as 
the next-lower lifetime class and all the current live blocks 
are set to residual (Figure 7d). Allocation then proceeds 
as before, filling the gaps between these blocks with even 
shorter-lived blocks and repeatedly reducing the lifetime 
class of the page until it is free.

Figure 7. LLAMA’s logical heap organization with three lifetime 
classes (< 10 ms, < 100 ms, < 1 s). Each live huge page is A(ctive) or 
O(pen) and divided into blocks. Block color depicts predicted LC or 
free (white). Residual blocks are marked with a dot. Deadlines and 
lines are omitted.
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(a) Initial allocations. Huge pages are bump-pointer allocated
into LC regions. Each huge page is first filled with same LC
blocks, marked residual with a dot.
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(d) Huge page 9 only contains non-residual blocks and con-
sequently, LLAMA decreases its LC. It marks all live blocks
residual since they match or are less than the huge page’s LC.
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(e) When huge page 1’s deadline expires, residual blocks are
still live (misprediction). LLAMA increases the huge page's
LC by one, from 10 to 100 ms. Residual blocks remain resid-
ual; their expected lifetime is now at least 100 ms.

freed to    S

freed to    S

(b) After object frees, some blocks and huge pages are free
(white). LLAMA immediately returns free huge pages to the

S to control maximum heap size.

(c) Subsequent allocations of shorter LC objects first fill
free blocks in the highest LC in A(ctive) huge pages 9 and 10,
and then blocks in huge page 7. These blocks are not residual
(no dot) and expected to be freed before the residual blocks.

(pen) pages 5, 8, and 12 are ineligible for such allocation.
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in a research setup on a workstation with a 6-core Intel Xeon 
E5-1650 CPU running at 3.60GHz with 64GB of DRAM and 
Linux kernel version 4.19.37.

Image Processing Server. A Google-internal production 
image processing server that filters and transforms 
images, using synthetic inputs for measurement that 
produce fragmentation consistent with production.

TensorFlow. The open source TensorFlow Serving frame-
work21 running the InceptionV323 image recognition 
model. This workload exercises libraries with complex 
memory allocation behavior, such as the Eigen linear 
algebra library. It runs 400 batches of requests in a har-
ness. While running an old model, the benchmark is 
representative of modern workloads as well.

Data Processing Pipeline. A Google-internal data process-
ing workload running word count on a 1GB file with 
100M words. We run the entire computation in a sin-
gle process, which creates very high allocator pressure, 
resulting in 476 parallel threads and 5M allocations 
per second.

Redis. The open source Redis key-value store (4.0.1) run-
ning its standard redis-benchmark, configured with 
5K concurrent connections and 100K operations of 
1000B.

These workloads stress every part of our allocator. They use 
tens to hundreds of threads, a mix of C++ and C memory 
allocation, object alignment, a large ratio of allocation to live 
objects, and a large amount of thread sharing. They frequently 
communicate objects between threads, causing the free lists 
to be “shuffled” and leading to fragmentation. We believe 
these workloads are representative of modern C/C++ server 
applications. They stress the memory allocator significantly 
more than workloads used in some prior C/C++ memory 
manager evaluations, such as SPEC CPU. These patterns 
are similar to Java applications, illustrating the evolution of 
C/C++ applications and how they now heavily rely on their 
memory managers.

The goal of the evaluation is to (1) demonstrate that 
the LLAMA approach is promising and works on large 
production code bases; (2) understand trade-offs, such as 
the model’s generalization abilities; and (3) characterize 
LLAMA. The original paper contains more details and a 
comparison to Mesh.22

4.1. End-to-end evaluation
Table 3 shows end-to-end fragmentation improvements 
over TCMalloc for the four workloads, ranging from 19% to 
78%. Figure 8 shows the image processing server’s fragmen-
tation as a function of time. Since vanilla TCMalloc did not 
support huge pages at the time the paper was written (it does 
now13), we reconstructed the number of occupied and free 
huge pages from its bookkeeping information. This method 
is a lower bound because it does not take into account that 
TCMalloc does not immediately (or sometimes ever) release 
pages to the OS. TCMalloc’s actual occupancy will be between 
this amount and the largest peak in the trace, depending on 
the page release rate. Even when compared with the most 

cannot be used for allocating new objects. We detect 
under-prediction of lifetimes using deadlines. When a 
huge page becomes full for the first time, the global alloca-
tor transitions it from open to active and assigns it a dead-
line as follows:

deadline = current_timestamp + K ´ LCHuge  Page

When LLAMA changes the LC of a huge page, it assigns the 
huge page a new deadline using the same calculation. The 
intuition is that when all predictions are correct, the page 
would be free after 1.1×LC. If we observe that a huge page 
has been active without reclassification for much longer 
than this (e.g., setting K = 2), we know that one or more of its 
constituent blocks were under-predicted.

When a huge page’s deadline expires, then the predic-
tor made a mistake. To recover, LLAMA increases the huge 
page’s lifetime class and gives it a new deadline. The huge 
page remains in the active state. Figure 7e depicts this case. 
The residual blocks in huge page 1 outlive their deadline 
and LLAMA increases its LC to 100ms. A huge page may 
also contain non-residual blocks, which are left unchanged. 
If blocks live for even longer than this LC, this process 
will repeat until the blocks are freed or reach the longest-
lived LC. This policy ensures that huge pages with under- 
predicted objects eventually end up in the correct lifetime 
class, tolerating mispredictions.

3.5. Handling small objects
LLAMA achieves scalability on multicore hardware by using 
mostly unsynchronized thread-local allocation for small 
objects (<=8KB). The global allocator gives 16KB block spans 
to local allocators upon request. Local allocators hold one 
or two block spans for each LC. LLAMA further subdivides 
block spans into 128 B lines and recycles lines in partially 
free block spans for small objects. It tracks line and block 
liveness using counters that describe how many objects live 
within this span or line.

Small objects occupy one or more contiguous lines within 
the same span. Once a span is closed (filled at least once), 
subsequent frees may create a fully or partially free span. 
Fully free spans are returned to the global allocator. Partially 
free spans are recycled, but only after the deadline of their 
huge page expires. On huge page expiration, the global allo-
cator scans the huge page and adds any closed partially free 
spans to a list, to be reassigned to thread-local allocators in 
the future. When a span is assigned to a thread-local alloca-
tor, it is marked as open.

A local allocator may have one or two open spans per LC: 
one initially partially free and one initially fully free. LLAMA 
sequentially allocates small objects into partially free spans 
until it encounters an occupied line or the end of the span. 
When it encounters an occupied line, it skips to the next free 
line(s). If an object still does not fit, the allocator uses the 
fully free span, similar to Immix.6

4. EVALUATION
We evaluate LLAMA on four workloads. Except for Redis, 
they are large production code bases. Experiments are run 
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shows that stack hashing reduces model evaluations. To 
evaluate the accuracy, we sample predictions and measure 
how often they disagreed with the cached value. They dis-
agree 14% of the time, but only require updates to longer 
lifetime classes for 1.6% of allocation sites.

Finally, we characterize LLAMA’s overall performance 
using a microbenchmark that stress tests the allocator. The 
average latency for global allocations hitting in the cache is 
88.0ns (vs. 81.7ns for TCMalloc) while fast path allocations 
take 48.8ns (vs. 8.3ns for TCMalloc), much of it because 
of predictions. In practice, the memory allocator receives 
much less pressure than in this stress test and the differ-
ence is thus less pronounced. For example, the image server 
slows down » 12.5% per query compared to TCMalloc.

Our allocator is largely unoptimized. The global allo-
cator is protected by a central lock that is currently the 
main performance bottleneck. We believe the prototype’s 
bottlenecks can be addressed in a production implemen-
tation. Production allocator optimizations could include 
rigorous tuning of every instruction on the fast path, soft-
ware prefetch instructions, use of restartable sequences to 
reduce synchronization overheads, size class tuning, and 
fine-grained locking.

5. DISCUSSION
This section discusses how we believe this work has broader 
implications for other space-time bin packing problems 
and the emerging field of ML for Systems.

5.1. Generalization to other problems
While this paper focuses on 2MB huge pages, 1GB huge 
pages are already available on current hardware. However, 

optimistic variant, we eliminate 43% of the fragmentation 
introduced by TCMalloc for the image server (in steady state 
and at termination). Note these results include the memory 
overheads of our model.

4.2. Model evaluation
This section evaluates the accuracy of our model. Figure 9  
shows that classification accuracy remains high when 
training our model on one version of the image server and 
applying it to another, and at relatively low sampling rates. 
The same configuration in Table 2 shows almost no match-
ing stack traces with a lookup table. In contrast, the model 
achieves upwards of 80% accuracy when applied to the 
other revision, and increases to 95% when ignoring errors 
where the prediction is off by at most one lifetime class.

We see an interesting effect for the non-optimized build. 
This example achieves few exact matches but higher accu-
racy for off-by-one errors. We hypothesize that because the 
non-optimized version of the code runs slower, lifetimes are 
consistently in a higher class than optimized code.

4.3. Performance overheads
This section explores overheads compared to TCMalloc. 
The original paper contains more details. The model 
takes 100–500ms per prediction for common stack sizes, 
which would be too expensive to run on every allocation 
but is acceptable in the context of LLAMA since the model 
only runs when missing in the cache. The allocator con-
sumes 56MB for our first workload, less than 2% of the 
maximum heap size. As we show in Section 4.1, LLAMA 
recoups this memory easily.

We next evaluate our stack hashing approach. For the 
image server, 95% of predictions hit in the cache, which 
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Workload

Prediction accuracy (%) Final steady-state memory (MB) Fragmentation 
reduction (%)

Weighted Unweighted TCMalloc LLAMA Live

Image processing server 96 73 664 446 153 43

TensorFlow InceptionV3 
benchmark

98 94 282 269 214 19

Data processing pipeline 99 78 1964 481 50 78

Redis key-value store 100 94 832 312 115 73

Table 3.  Summary of model accuracy and end-to-end fragmentation results.
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6. CONCLUSION
We show that modern ML techniques can be effectively used 
to address fragmentation in C++ server workloads that is 
induced by long-lived objects allocated at peak heap size. 
We use language models to predict lifetimes for unobserved 
allocations contexts, a problem unexplored in prior lifetime 
prediction work. We introduce LLAMA, a novel memory 
manager that organizes the heap using huge pages and life-
time classes, instead of size classes.

LLAMA packs objects with similar lifetimes into the same 
huge pages, tracks actual lifetimes, and uses them to correct 
for mispredictions. It limits fragmentation by filling gaps 
created by frees with shorter-lived objects. In this context, 
this work solves challenges related to applying ML to sys-
tems problems with strict resource and latency constraints. 
We believe that the LLAMA approach applies to a wide range 
of other space-time bin packing problems.
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to our knowledge, they are not widely relied upon for C++ 
workloads. LLAMA could feasibly be extended to handle this 
use case as well but may need to adjust some of its policies.

While this paper focuses on memory management, 
the LLAMA algorithm applies to any space-time bin pack-
ing problem where items are assigned to resources and 
a resource can only be released once all items within it 
are gone. These kinds of resource scheduling problems 
abound in computer science. For example, a component 
of a system can only be switched off if nothing is running 
on it, a storage system may require that a block can only 
be freed once it is fully empty, and load balancing in dis-
tributed systems often cannot move workloads and can 
only free resources once all running jobs on them have 
finished. Another example is NAND blocks in flash-based 
SSDs: When an SSD runs out of empty blocks, it needs to 
reclaim existing blocks and relocate all remaining data 
within them, incurring overhead for any block that is not 
completely empty.

In many of these cases, the lifetimes of items are pre-
dictable, for example, how long it will take to process a 
particular request or how long a particular file will persist. 
In this case, the LLAMA algorithm may provide an effec-
tive solution to these problems. The prerequisite is that 
there is some additional information that enables predic-
tions, such as stack traces, memory addresses, or request 
metadata.25

5.2. A general pattern of ML for systems
Generalizing some of the insights from this paper led to a 
new methodology for applying Machine Learning in com-
puter systems.17 Prior work on ML for systems focused on 
learning a problem end-to-end, which can be inefficient 
and requires complex models. This paper instead shows 
an approach to using ML to learn only a particular piece of 
information that was previously unavailable—in this case, 
the lifetime of an allocated object. By applying ML to a more 
limited problem, simpler models can be used and learning 
can be integrated into a traditional system in a more practi-
cal way. At the same time, exploiting the new information 
may require redesigning the rest of the system, both a cost 
and an opportunity, and it certainly requires adding the 
ability to tolerate mispredictions.

Isolating the portion of the problem that needs to be 
learned also means that the community now can establish 
best practices, benchmarks, and tools for these specific sub-
problems. We found that most of these problems fall into a 
small number of categories.17

5.3. Follow-up work since the original paper
While LLAMA focuses on memory allocation, we also worked 
on storage systems and showed that similar patterns repeat 
in this area.25 Since the publication of the LLAMA paper, the 
TCMalloc team has published a paper about Temeraire, a 
new huge page-aware allocator.13 We applied insights 
from this work to Temeraire, in order to make better deci-
sions about when to break up huge pages in this allocator, 
which led to an estimated 1% throughput improvement 
across Google’s fleet.18
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