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ABSTRACT
Situational awareness plays a critical role in daily life, enabling
individuals to comprehend their surroundings, make informed de-
cisions, and navigate safely. However, individuals with low vision
or visual impairments face difficulties in perceiving their real or
virtual environment. In order to address this challenge, we propose
a 3D computer vision-based accessibility solution, empowered by
object-detection and text-to-speech technology. Our application
describes the visual content of a Web3D scene from the user’s per-
spective through auditory channels, thereby enhancing situational
awareness for individuals with visual impairments in virtual and
physical environments. We conducted a user study of 44 partic-
ipants to compare a set of algorithms for specific tasks, such as
Search or Summarize, and assessed the effectiveness of our caption-
ing algorithms based on user ratings of naturalness, correctness,
and satisfaction. Our study results indicate positive subjective re-
sults in accessibility for both normal and visually-impaired subjects
and also distinguish significant effects between the task and the
captioning algorithm.

CCS CONCEPTS
• 3D on Web → X3DOM; • Machine Learning → Computer
Vision; • Metaverse; • Statistical Analysis;
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1 INTRODUCTION
It is estimated that over 250 million people worldwide are visually
impaired, with over 25 million experiencing complete blindness.
However, if we include those with near or distant vision impair-
ment, this number rises to 2.2 billion [WHO 2022]. Deploying 3D
environments with deep learning capabilities and narration of scene
contents has the potential to significantly improve the situational
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awareness of visually impaired individuals. For example, such mul-
timodal design solutions can be useful in several Metaverse applica-
tions, such as architectural reviews [Polys et al. 2017], virtual field
trips [Polys et al. 2021], and environmental education destinations
[Polys et al. 2018]. This accessibility is analogous to the physical
accessibility improvements made to sidewalks, which not only ben-
efit people who use wheelchairs but also parents with strollers or
individuals carrying heavy suitcases [Elmqvist 2023].

1.1 Design Challenge
Identifying the types, numbers, or dimensions of objects in a room,
image, or virtual environment can pose a significant challenge for
individuals who are visually impaired or blind. Nearsightedness and
farsightedness are two broad categories of visual impairment. Other
factors that may contribute to vision impairment include uncor-
rected refractive errors, age-related eye issues, glaucoma, cataracts,
diabetic retinopathy, trachoma, corneal opacity, or untreated pres-
byopia. It is worth noting that approximately 80% of individuals
who are visually impaired or blind reside in low- andmiddle-income
countries, where they may not have access to expensive assistive
technology.

There are crucial design aspects to be considered for a scene de-
scription or audio captioning interface. First is the activity and task
of the user. In early interviews, it became clear that vision-impaired
people rely on their listening accuity to compensate for their visual
accuity, especially when navigating space. Therefore, instead of
notification pushes (either continuous or periodic), we focused on
solutions that were on-demand. Specifically, at a user-defined time
(for safety, comfort, or need), the user initiates a screenshot of the
3D image plane and receives an audio description of its contents.

In order to enhance accessibility for the visually impaired, it is
necessary to provide a means of portraying the environment that
relies on a strong and comprehensive spatial representation rather
than only visual cues. This can be achieved through sensory substi-
tution, or the transformation of visual representations into other
linguistic encodings, and other presentation modalities. In terms
of accommodating the blind, the two most practical options for
sensory substitution are the modalities of touch and sound [Chun-
dury et al. 2021]. A study involving 10 Orientation and Mobility
(O&M) experts has demonstrated that spatial structure is a useful
representation, even for the blind. Thus, the visual structure of the
scene is the unified reference representation [Elmqvist 2023].

1.2 Contribution
Studies suggest that blind people possess the same level of visual
thinking skills as sighted individuals. Interestingly, visual reason-
ing does not require vision [Elmqvist 2023]. In an interview with
Orientation & Mobility (O&M) professionals, individuals who teach
blind individuals to navigate in the real world, it was suggested that
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all of their students are virtually familiar with visualization from
either their personal or professional lives, or before they became
blind [Chundury et al. 2021].

The current limitations and recent advancements in accessibility
research motivated us to consider solutions that can specifically
aid in increasing users’ situational awareness in Metaverse virtual
environments (and potentially the physical world as an augmented
environment). In order to enhance the comprehensiveness of the
captioned scene information, we integrated four distinct algorithms
(in two distinct categories) on top of Computer Vision object detec-
tion services. Furthermore, the algorithms generate grammatical
natural language descriptions of the scene, which is presented to
the user in an audio description.

2 BACKGROUND AND RELATEDWORK
Prior to commencing the development of our proposed solution, we
conducted a thorough review of relevant literature and analyzed
interviews [Anderson 2022] with individuals with visual impair-
ments to gain a better understanding of the challenges they face
with respect to virtual reality (VR) technology. The literature indi-
cates that VR poses significant accessibility challenges for blind and
low-vision users, with the in-headset user interface being the most
difficult aspect of the technology for such individuals to access.

2.1 Legibility
Although there are commercially available accessibility tools and
software, such as screen magnifiers, high-contrast VR dashboards,
screen readers, or game interfaces, these tools are not specifically
designed to meet the needs of individuals with visual impairments
in VR environments. For example, the SeeingVR project, a Microsoft
research initiative aimed at improving the accessibility of VR tech-
nology for individuals with visual impairments, has not yet pro-
gressed beyond the research stage.

In order to improve the accessibility of virtual reality (VR) for in-
dividuals with visual impairments, it is essential to provide a range
of text size options, preferably controlled via a slider controller. This
feature not only benefits individuals with significant vision loss
but also those who wear glasses. Magnification and menu narra-
tion are additional critical features that are essential for low-vision
and blind users. These features offer a promising starting point
for enhancing the accessibility of VR for individuals with visual
impairments. However, continued research and development are
necessary to ensure that the needs of this population are fully met
in the context of VR technology.

2.2 Sonifying the Environment
Within the broader field of sensory substitution, there exist several
works. For instance, Daniel Kish, who is blind, has effectively uti-
lized "mouth clicks" for autonomous navigation activities, such as
riding and trekking, through the employment of accurate echolo-
cation abilities. Similarly, Neil Harbisson, a colorblind artist, has
constructed a device capable of converting color information into
sound frequencies. Voice technology [Vines et al. 2019] has made
significant attempts to transfer visual perception to sound through
a system that analyzes each camera snapshot from left to right, link-
ing height with pitch and brightness with loudness. However, the

employment of these sensory substitution techniques can present a
high learning curve. In contrast, our study employs visual recogni-
tion algorithms with deterministic grammars, which facilitate more
straightforward and direct approaches to comprehend objects in a
visual scene.

In recent years, researchers have investigated sonification meth-
ods to enhance access visual information for individuals with visual
impairments. Such methods have been employed to improve ac-
cessibility to graphs [Walker and Mauney 2010][Constantinescu
et al. 2020], explore maps and graphics [Geronazzo et al. 2016][Ah-
metovic et al. 2019], and provide rotating instructions for ease of
navigation in various environments [Aziz et al. 2019] by furnishing
explicit details on specific features and points of interest. Ferati et
al. have proposed Audemes, a prospective solution for the provi-
sion of educational spoken writings to visually impaired students,
employing auditory icons [Ferati et al. 2011].

Aziz et al. [Aziz et al. 2019] conducted a study on the use of
earcons and auditory icons as a sonification strategy for auditory
route overviews via text-to-speech. The research found that aural
icons were appropriate for conveying information about points
of interest. In a similar vein, Tislar et al. [Urbanietz et al. 2019]
analyzed the effects of sonification via different mediums, such
as music, spearcons, and lyricons, to explore sound-relatedness,
meaning attribution, and intuitiveness. Notably, the study failed
to evaluate the efficacy of the sonification mediums on individuals
with visual impairments, thereby limiting the generalizability of the
findings. The varied preferences and cognitive demands of sighted
and visually impaired individuals for user interfaces [Walker and
Mauney 2010] further underscore the need for more focused re-
search in this domain.

2.3 Audible Interfaces: Captioning Scenes
Dingler et al. [Dingler et al. 2008] conducted a study that bears
resemblance to our research in terms of sonification. The study
compared the efficacy of using earcons, auditory icons, spearcons,
and speech for object representation and learning. However, the
study failed to incorporate temporal constraints for the duration of
sounds, which is crucial when presenting multiple items within a
limited period. Some methods employ computer vision techniques
to detect indoor and outdoor scenes and notify users via voice [Hub
et al. 2003][Zeng et al. 2017] or vibrotactile feedback [Saha et al.
2019].

Katz et al. [Mascetti et al. 2016] and Presti et al. [Katz et al. 2012]
described a novel technique for supporting wayfinding. Katz et
al. worked to detect outdoor environments using computer vision
technologies which are sonified using spatialized 3D sound. One
crucial issue is that the technique only localises a single class of
items at a time. Computer vision innovations, such as YOLO, have
been used to assist users in an augmented, annotated, physical
world [Gupta et al. 2022; Kumar and Jain 2022; Mahendru and
Dubey 2021].

3 NARRATION PLATFORM DESIGN
3.1 Object Detections from Screenhots
The solution’s essential components are the object detection model
and the 3D scene rendering on the Web. YOLO was utilized to
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address the object recognition issue as it has shown promising
outcomes in image recognition. Our four algorithms required us
to extract particular image parameters, including the confidence
score, anchor point (x, y), height and width of the object, class
name, and area, to design them. Extracting these critical details
post-recognition provided us with the flexibility to execute our
algorithms. Additionally, the object detection solution and narra-
tion algorithms were combined with the 3D scene on the Web
environment rendered using X3DOM technology. Our approach
utilizes X3DOM, a Web technology that enables the rendering of
3D environments on a browser, and integrates object-recognition
algorithms to generate a natural language description of the scene.

3.2 Architecture

Figure 1: Architecture Diagram of the end-to-end solution.

The architecture design of our solution comprises several com-
ponents that contribute to its functional end-to-end service. At the
top left of the architecture diagram is X3DOM, which is a standard
that aided us in rendering a 3D scene on the Web browser. Users
can easily navigate the 3D scene and capture a screenshot using the
green-colored button. The captured PNG image is then transmitted
to the cloud infrastructure via APIs, which includes the machine
learning module, algorithm module, and narration system. The
machine learning module is responsible for extracting the required
data from the input image and producing a JSON file. This JSON
file is then served as input to the chosen algorithm type, which
generates a corresponding description.

Subsequently, this description is conveyed to the narration mod-
ule via APIs for the narration system to convert it into speech and
present it to the user. To summarize, the narration platform’s cloud
infrastructure includes a machine learning module responsible for
image captioning services, as well as an algorithm module. Upon
processing the JSON file, the output generated by these modules
is transferred to the Narration Module. This module is responsible
for parsing the text of the scene description and using grammatical
rules to form an accurate depiction. The resulting output is then
passed to the speech or sonification plugin, which generates the
audio output for the user.

3.3 X3DOM
X3DOM (XML3D in DOM) [Behr et al. 2009][Behr et al. 2011][Behr
et al. 2010] is an open-source JavaScript framework that provides

a declarative way to create and display 3D content on the web. It
allows developers to create 3D graphics and animations by defining
objects in XML and using HTML5 and JavaScript to manipulate
them. X3DOM is built on top of the Document Object Model (DOM),
which is used to represent HTML and XML documents as objects.
This makes it easy to integrate 3D content with other web tech-
nologies and create interactive web applications. X3DOM is based
on the Extensible 3D (X3D) standard, which is an open standard
for representing 3D graphics on the web. X3D provides a rich set
of features for creating and manipulating 3D content, including
geometry, materials, textures, lighting, animation, and scripting.
X3DOM extends the capabilities of X3D by providing a way to use
X3D content in a webpage using standard HTML and JavaScript.

X3DOM is a powerful and flexible technology for creating and
displaying 3D content on the web. It provides a declarative way to
define 3D objects and animations using XML, and makes it easy to
integrate 3D content with other web technologies using JavaScript
and HTML. With X3DOM, developers can create interactive and
immersive 3D applications that run in any modern web browser. In
our application at a Web address in their browser, users navigate
a 3D scene with an interactive perspective camera; at any point,
they can click a button to take a screenshot of the scene. Then,
the Web page sends those screenshots from the scene to the server
where the captioning service and model reside and the narration is
returned.

3.4 Object Detection Model - YOLO
The YOLO algorithm, ’You Only Look Once’, detects objects in im-
ages through their bounding boxes. To achieve this, the algorithm
employs R-CNN and other region proposal techniques to generate
the bounding boxes on the images before executing the classifier
on the proposed boxes. Using a single convolution neural network,
the YOLO algorithm is able to predict multiple bounding boxes and
class probabilities for those boxes simultaneously. This approach
simplifies the object detection process, making it more efficient to
deploy. This is because the detection problem is defined as a re-
gression problem, eliminating the need for a complex pipeline. The
YOLO algorithm is an efficient and effective method for detecting
objects in images. Its use of a single convolution neural network to
predict bounding boxes and class probabilities makes it a simple
yet powerful tool for object detection.

Convolutional Neural Network of the YOLOModel. YOLO is imple-
mented as a convolutional neural network and often evaluated by
the PASCAL VOC detection dataset [Everingham et al. 2015]. The
network comprises early convolutional layers that extract visual
features and fully connected layers that predict output probabil-
ities and coordinates. The model’s architecture is based on the
GoogLeNet image categorization model [Szegedy et al. 2014]. The
YOLO network consists of 24 convolutional layers, which are fol-
lowed by two fully connected layers. Unlike the GoogLeNet incep-
tion modules, the authors employed 1x1 reduction layers followed
by 3x3 convolutional layers [Lin et al. 2013]. The ImageNet 1000-
class competition dataset was employed to train the convolution
layer of the YOLO model [Russakovsky et al. 2014]. The authors
utilized the first twenty convolution layers for pre-training, fol-
lowed by an average-pooling layer and a fully-connected layer. The
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model was trained over several weeks and achieved a top 5% accu-
racy when evaluated on the ImageNet 2012 validation set, which is
comparable to the performance of GoogleNet models. The Darknet
framework was used for both inference and training.

Limitations of YOLO. The YOLO algorithm is limited spatially
due to each cell’s predictions of only two boxes and having a single
class [Redmon et al. 2015]. This limitation restricts the number of
objects that the algorithm can predict and poses challenges when
dealing with group objects. Moreover, the model’s generalizability
is not particularly robust when presented with new or uncommon
aspect ratios. In addition during training, the loss function used
to estimate detection performance treats errors in small and large
bounding boxes equally. However, a minor error in a large box is
typically inconsequential while a small error in a small box can
significantly impact the Intersection over Union (IOU) metric. In-
correct localizations are the primary source of errors in the model.
YOLO results are returned as a JSON object that includes the ob-
jects detected (name), their bounding box in the image, and the
confidence rating of each identification.

3.5 Text-To-Speech
In our implementation, we utilized the text-to-speech (TTS) method
on the client side (browser) for the narration of the scene in our
X3D web application. As JavaScript does not possess a built-in TTS
application programming interface (API), we accessed the TTS API
provided by most modern web browsers through JavaScript. The
Web Speech API proved particularly beneficial in providing speech
synthesis functionality for TTS, which enabled us to incorporate
TTS into our web application.

Wewere able to access this API through anymodernweb browser,
including Google Chrome, Mozilla Firefox, Microsoft Edge, and Ap-
ple Safari. To leverage the Web Speech API, we instantiated the
SpeechSynthesis object and established the various properties of
the SpeechSynthesisUtterance object, such as the voice and speech
rate. Then, we pass our algorithmically-generated text description
to the Utterance objects, which prompts the browser to articulate
the text description using the specified voice and speech rate.

4 CAPTION GRAMMARS
From the user’s screenshot of the 3D scene, the YOLO service
returns its object detection results in a JSON package. The data
includes the name, bounding box, and confidence score for each
detection. From this result array, we want to generate a narration
string that describes the scene. This string can then be given to
a Text-to-Speech application to be read out loud to the user (ren-
dered sonically). In this section, we describe the design process and
rationale for each algorithm.

The primary goal of these narration algorithms is to provide
situational awareness to the user: to transcode the visual signals
of the scene into an audio description. Through multiple ideation
sessions, we brainstormed scenarios and considered how the YOLO
detection on the screenshot could be formed into an English caption
(a string) that could be rendered with text-to-speech. First, we
considered the question "What is in the scene?". This led a set
of algorithm ideas that centered on the object data, such as their
name, count, and size in the image plane. Algorithm 1 counts the

objects in a scene and then lists them in order of frequency: highest
to lowest. Algorithm 2 lists the objects in order of size from largest
to smallest.

Second, we considered how narration algorithms could support
awareness of "Where are things in the scene?". Algorithm 3 uses
the spatial metaphor of reading European languages from left to
right and lists objects in this order. Without explicit depth informa-
tion in our screenshot of the image plane, we also considered the
case where objects closer to the user could be more relevant. Thus,
Algorithm 4 reads the object detections from bottom to top, which
presumes that objects lower in the frame are closer to the user and
therefore more relevant.

It is notable that the captioning algorithm designs break down
roughly along the lines of results from cognitive neuroscience.
Namely that the ventral pathway of processing visual information
is generally concerned with objects and recognition. In contrast,
the dorsal pathway processes action and attention-based aspects
of the visual scene [Zhan et al. 2018]. In the following section, we
provide details for each of the 4 grammars tested.

• "Object-Centric"
Algorithm One - (Count): This algorithm gives us the ex-
act Count of the different objects in the view. This count al-
gorithm is a part of the "Object Centric" algorithms category.

Algorithm Two - (Prominence): The Prominence algo-
rithm gives us the results based on the largest to the smallest
area of the objects in the view. This count algorithm is a part
of the "Object Centric" algorithms category.

• "Environment-Centric"
Algorithm Three - (LTR): This algorithm is called Left-To-
Right. The algorithm is a part of the spatial environment-
centric category. It utilises the coordinate geometry rules to
decide the positions of the objects in the scene from the left
spatial point to the right spatial point.

Algorithm Four - (BTT): This algorithm is called a Bottom-
To-Top. The algorithm is a part of the spatial environment-
centric category. It utilises the coordinate geometry rules
to decide the positions of the objects in the scene from the
bottom (closest in the scene) spatial point to the topmost
spatial point (farthest).

After constructing our narration string from the YOLO detec-
tion, we pass this string to the Text-To-Speech API, which can be
customized for voices of different genders and nationalities. At this
point, the narration plays through the system’s audio outputs.

5 EVALUATION
Our study aimed to compare four different narration algorithms
through user ratings across randomly selected 3D worlds on the
Web. The data collected through this study was analyzed using
comprehensive statistical techniques to answer our research ques-
tions and test our hypothesis. Adult participants were presented
with several 3D worlds and asked to rate them based on their sub-
jective experience. The study was conducted on the Web, and the
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selection of worlds presented to the participants was randomized to
prevent any ordering bias. We used four different algorithms to gen-
erate the world narrations, and we compared the ratings given by
participants. These algorithms are presented a pseudocode above.

Based on the literature and our algorithm design, we hypothesize
that:

• Hypothesis One: "Object-centric" algorithms will be better
for Search tasks.

• Hypothesis Two: "Environment-centric" algorithms will be
better for Summarize tasks.

5.1 User Study Design
The user study included the object detection algorithm, X3DOM’s
[Behr et al. 2009] implementation for supporting 3D scenes on the
Web, and APIs connecting the system from end to end. The study ap-
plication employed X3DOM’s [Behr et al. 2011] implementation to
run the 3D worlds on desktop/laptop web browsers, and it was com-
patible with browsers such as Chrome, Safari, Firefox, and Opera.
Therefore, the user study design involved subjects interacting with
the scene via their desktop or laptop web browsers, capturing a
postcard image (screenshot), hearing narrations, and rating those
narrations.

Figure 2: ANOVA Variable Tree

The first independent variable is the user’s task when presented
with the virtual environment. The task types are:

(1) Search: The user is asked a question to find relevant objects
in the scene. The relevant objects can be any object present
in the environment. For example: "Find the chair/chairs in
the scene and take a picture."

(2) Summarize: This is the second task where the user is asked
to "Get a wider view of the scene and take a picture." The user
zooms out and finds a viewpoint that can be considered as a
wider view where they can see multiple objects clearly.

The second independent variable was algorithm by type (Figure
3). A survey system was designed to conduct the study. The survey
system presented users with random scenes generated by random
algorithms and randomly assigned task types. It was ensured that
each user had a different combination of tasks, worlds, and algo-
rithms, ensuring complete impartiality in the study. The random
assignments of questions begin by randomizing the task type. Each
user participated in 24 trials, and each trial involved a randomly
selected scene from a pool of eight 3D worlds. Additionally, each
trial featured a randomly selected algorithm for narration. In Figure

4, there is a representation of one of the worlds. A total of eight
worlds were included, and users performed 24 trials in total (3 trials
per condition).

Figure 3: Stimuli example: Task Type Search;
scene courtesy VT Theater Department (Chris Russo)

Figure 4: Stimuli example: Task Type Summarize

The second independent variable in this experiment was Algo-
rithm. We designed four narration algorithms in two categories:
Object-centric (Count, Prominence) and Environment-centric (LTR,
BTT). The algorithmic narrations for the above screenshots are as
follows:

• COUNT: ’There are: THREE CHAIRS.’ (Fig 4)

• PROMINENCE: ’The most prominent objects from biggest to
smallest are: DINING TABLE, CHAIR, PLATE,WINE GLASS.’
(Fig 5)

• LEFT-TO-RIGHT (LTR): ’The objects in the image from left
to right are: SOFA, PERSON, PERSON, CHAIR, TABLE.’ (Fig
4)

• BOTTOM-TO-TOP (BTT): ’The objects in the image from
bottom to top are: CHAIR, DINING TABLE, PLATE, AND
WINE GLASS.’ (Fig 5)
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Table 1: Questions asked for each trial

Survey Questions
How correct was the caption for the scene?

How natural was the language of the caption?
How satisfying was the narration of the scene?

Table 2: Language Distribution

Languages Data
English 58.97%
Hindi 12.82%
Spanish 5.13%
French 2.56%
Arabic 1.28%
Other 19.23%

5.2 Evaluation Procedure
After listening to narrations generated by four different algorithms,
the users were asked three questions (Table 1). Before starting the
survey, the users were asked to fill out a pre-study questionnaire
which consisted of questions related to demographics, gender, age
etc. As the user study was conducted online, participants were
required to navigate the scene in order to capture the appropriate
screenshot as per the questions asked, using the ’take screenshot’
button. To facilitate this process, a pre-survey training session was
conducted to familiarize the users with the scene navigation.

During the training session, users were instructed on the proper
use of the controls and the steps required for the survey. The con-
trols were explained to the users both verbally and in written format.
Key instructions were provided to ensure that all users were ade-
quately prepared for 3D navigation and scene controls. When the
user affirmed they understood the controls, the study proceeded.
Users were shown 24 random 3D scene and algorithm combinations,
each with a rating form.

6 RESULTS AND ANALYSIS
6.1 Study Demographics
In this study, data was collected from 24 trials that were presented
to each of the 44 volunteer participants recruited from Virginia
Tech; all were age 18 years or older. Recruitment was carried out
via email, with the consent form and associated terms and con-
ditions shared with potential participants. Prior to commencing
the survey, all participants were asked to complete a demographic
questionnaire (Tables 2 and 3). In this study, data regarding the
vision status of participants was collected. The recruitment process
did not exclude individuals with normal vision, and efforts were
made to include participants with and without vision problems, as
well as those who use corrective lenses. This approach was taken
to evaluate the robustness of the system in terms of its ability to
accommodate the needs of all users, regardless of their vision status.
The inclusion of participants with normal vision also allowed for a
more comprehensive evaluation of the system’s efficacy.

Table 3: Vision Distribution

Vision Data
Myopia 54.35%

Hyperopia 2.17%
Normal 43.48%

6.2 Two-Way ANOVA with Repeated Measures
This is a 2x4 within-subjects experimental design with two inde-
pendent variables: task and algorithm. The study was repeated
measures and randomized conditions where users experienced 3
trials under each condition. The dependent variables were users’
subjective ratings of correctness, naturalness, and satisfaction. We
used repeated measures ANOVA to determine the effects of both
task types and algorithms on user ratings. From two-way ANOVA,
we can test three hypotheses. The Null Hypothesis being:

(1) There is no significant effect of task type on user ratings of
the narration.

(2) There is no significant effect of algorithm type on user ratings
of the narration.

(3) There is no significant interaction of tasks and algorithms
both on user ratings of the narration.

Figures 6 and 7 show how the user ratings of Correctness were
found to be significantly influenced by the algorithms (p = .003) and
their interaction with the task (p < .001). However, the task type
alone did not have a significant effect on the ratings. The analysis re-
vealed that the Count, Prominence, and Bottom-To- Top algorithms
consistently performed well in all tasks. Among them, the Promi-
nence and Bottom-To-Top algorithms received marginally higher
ratings in the Search tasks. On the other hand, the Left-to-Right
algorithm received poor ratings in the Search tasks but significantly
improved to achieve competitive ratings in the Summarize tasks
(Figure 7).

Similar rating patterns were observed for the user ratings of
Naturalness, with algorithms playing a significant role (p < .001)
and dominating the interaction effect with the task (p = .036). How-
ever, the task type alone did not have a significant effect on the
ratings. The analysis revealed that the Count, Prominence, and
Bottom-To-Top algorithms consistently performed well in all tasks.
The Left-to-Right algorithm received poor ratings in the Search
tasks, but it improved significantly to achieve moderate ratings in
the Summarize tasks (Figures 8 and 9). The algorithm 1 (Count)
performed best overall.

The user ratings of Satisfaction were found to be significantly
influenced by the algorithms (p < .001) and their interaction with the
task (p < .001). Additionally, the task type had a weakly significant
effect (p = .046), with users being less satisfied with the Summa-
rize tasks. Based on the analysis, it was observed that the Count,
Prominence, and Bottom-Up algorithms consistently performed
well in all tasks. Among them, the Prominence and Bottom-Up algo-
rithms received slightly higher ratings in the Search tasks. On the
other hand, the Left-to-Right algorithm received poor ratings in the
Search tasks, but it significantly improved to achieve competitive
ratings in the Summarize tasks (Figures 10 and 11).
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Figure 5: Task vs Algorithm Performance for Cor-
rectness Rating

Figure 6: Algorithm Performance for Correctness
Rating

Figure 7: Task vs Algorithm Performance for Natu-
ralness Rating

Figure 8: Algorithm Performance for Naturalness
Rating

Based on the analysis of all tasks, trials, and subjective ratings, it
was observed that the Object-centric algorithms outperformed the
Environment-centric algorithms. Furthermore, among the Object-
centric algorithms, both the Count and Prominence algorithms

performed equally well. Conversely, the Left-Right algorithm was
rated the lowest among all the algorithms. These results were con-
sistent across all participants and were particularly evident among
the myopic participants.

7 POST-HOC TESTS
Following the ANOVA analysis, we see that different algorithms and
tasks have a statistically significant effect on user ratings. In order to
parse out the individual effects of each group, Tukey’s HSD and the
General Linear Model were employed to identify significant pairs
formed between the task and algorithm categories. This involved
conducting multiple pairwise comparisons, commonly referred to
as Post-Hoc comparisons.

It is worth noting that for the purpose of this study, algorithm
1 and algorithm 2 (Count and Prominence) were grouped under
a single category termed ’Object centric’, while algorithm 3 and
algorithm 4 (Left to Right and Bottom to Top) were grouped under
’Environment centric’ or Spatial Algorithms. Furthermore, both
algorithm categories were tested in conjunction with the search
tasks to evaluate the impact of each category on the ratings. The
graphs and table presented in the following section indicate the
results of these analyses, where OC represents Object-centric and
EC represents Environment-centric.

7.1 Captioning Grammar by Task Type
Post-hoc tests are conducted to determine whether there are sig-
nificant differences between groups when the ANOVA indicates a
significant result. These tests control the error rate, either between
groups or family-wise. Post-hoc tests adjust the p-values (using the
Bonferroni adjustment) or critical values (using Tukey’s HSD) to
ensure appropriate levels of statistical significance. The purpose
of post-hoc tests is to identify which specific groups exhibit sig-
nificant differences, as the ANOVA only indicates the presence of
differences between groups. By controlling the error rate, post-hoc
tests help to reduce the likelihood of false positives or type I errors,
and thus provide more reliable and accurate results.
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Figure 9: Task vs Algorithm Performance for Satis-
faction Rating

Figure 10: Algorithm Performance for Satisfaction
Rating

Figure 11: Group Impact on Rating One - Correct-
ness

In the post-hoc analysis, we aggregated the algorithm types
into two categories: Object-centric (Count and Prominence) and
Environment-centric (Left-to-Right and Bottom-to-Top) algorithms.
For the Correctness ratings, the task type had a significant effect
(p < .001), with users rating the Summarize tasks lower than the
Search tasks (Figure 12). Similarly, for the ratings of Naturalness,
users rated all interfaces significantly lower in the Summarize tasks
(p < .001) (Figure 13). In the user ratings of Satisfaction, the task had
a significant effect, with the Summarize tasks being rated lower
overall (p < .001; ). Additionally, there was a significant effect of the
algorithm, where Object-centric algorithms were rated significantly
better (more satisfying) than Environment-centric algorithms for
Search tasks (p = .012).

7.2 Descriptive Statistics
In order to examine the distribution of responses, we calculated
descriptive statistics. These showed that algorithm 2 (Prominence)
received consistently higher ratings for the search task in terms of
correctness. On the other hand, algorithm 4 (BTT) was perceived
as performing relatively better for the summarize task. The results
suggest that algorithm 1 (Count) is the highest-performing algo-
rithm for both task types, followed by algorithm 2. In contrast,
algorithm 3 (LTR) consistently received lower ratings for both the
search and summarize tasks.

Figure 12: Group Impact on Rating Two - Natural-
ness

Figure 13: Group Impact on Rating Three - Satisfac-
tion

The results indicate that algorithm 2 (Prominence) received con-
sistently higher ratings for the search task in terms of satisfaction,
followed by algorithm 1 (Count). For the summarize task, all four
algorithms received consistently equal ratings. However, algorithm
3 (LTR) was perceived as performing worse for the summarize task,
followed by algorithm 4 (BTT).

Based on the correlation coefficients and significant values, it
can be concluded that there is a strong correlation between vision
status and ratings two and three (Naturalness and Satisfaction).
These findings suggest that the ratings received are significantly
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effected by user vision status, indicating an increased subjective
value for narrations in that population.

Vision Status and Rating Two (Naturalness). The results indicate
that vision status group 4 provided the highest ratings for the
naturalness of the narration, with over 50% of the group rating the
narration between 3 to 5. The majority of users within this group
rated the narration a 3. Approximately 30% of users with normal
vision rated the naturalness of the narration as 3. Over 50% of the
group rated the narration 3 or higher. These findings suggest that
individuals with normal vision generally found the naturalness of
the description to be good.

Vision Status and Rating Three (Satisfaction). We explored the
various vision categories and their corresponding ratings for satis-
faction, which pertains to how satisfied users were after hearing
the narration from the system. The results suggest that users within
vision status group 4 (Myopia) reported the highest satisfaction
ratings for the narration, with over 60% of the group providing a
rating of 3 or higher. The most common rating provided by users in
this group was a 3; however, a notable number of users within this
group expressed satisfaction with the caption they heard. Given
the results indicating that the Myopic user group reported higher
ratings for naturalness and satisfaction, we conducted a deeper
analysis to determine which algorithms performed best for this
group and received the highest ratings for different rating ques-
tions overall. Algorithm 1 (Count) was best in the Naturalness
rating, as rated by Myopic (vision 4) group participants. Algorithm
1 (Count) was best in Satisfaction rating, as rated by Myopic (vision
4) group participants.

8 CONCLUSION AND FUTUREWORK
8.1 Contributions
We have developed an audio captioning service that incorporates
YOLO for object detection and X3DOM’s capabilities for 3D render-
ing in a Web page. The navigation feature of the solution enables
users to view the scene from their own perspective, take screenshots
of the scene, and receive captions based on one of four captioning
algorithms: count, prominence, left-to-right, and bottom-to-top.
To evaluate the narration performance of the system with this di-
verse set of algorithms and narration techniques, a user study was
conducted with 44 participants recruited from Virginia Tech. The
online study was designed to assess the system’s performance with
different combinations of algorithms and scenes.

Our study aimed to investigate which type of grammar is bet-
ter for captioning a scene for Summarize tasks and Search tasks.
Upon analyzing the ratings and conducting statistical analysis, we
discovered that participants on average rated the Summarize task
type higher than the Search tasks. We also observed that the ratings
for spatial algorithms, namely algorithm 3 and algorithm 4, were
higher for Summarize tasks than for Search tasks. Therefore, we
can conclude that spatial or Environment-centric algorithms are
more effective for comparison or Summarization tasks. Additionally,
we found that the Environment-centric Left-To-Right algorithm
received the lowest ratings overall.

We also observed that the Object-centric Count and Prominence
captions (algorithm 1 and algorithm 2) were rated better for Search

tasks. On the other hand, the Environment-centric captions (algo-
rithm 3 and algorithm 4) received higher ratings in the Summarize
task type. Specifically, Environment-centric captions performed
better than Object-centric captions in the Summarization tasks. We
also found that the Environment-centric Left-To-Right captions
received the lowest ratings. These findings support our hypothesis
that Object-based caption grammars are better for Search tasks,
while Environment-based caption grammars are better for Sum-
marize tasks. These results are promising, and may provide an
advantageous paradigm to further develop deterministic audio cap-
tion grammars for 3D scene content.

8.2 Limitations
The online user study was conducted on desktop computers using a
Web browser. In order to optimize scene rendering on the browser,
certain strategies were enforced, such as reducing texture quality
and optimizing geometry to achieve better performance in less time.
However, due to the reduced texture quality in some scenes, certain
objects could not be accurately identified by the algorithms, leading
to a decrease in system accuracy. Additionally, navigating the scene
on the browser with a trackpad or mouse proved to be challenging
for some users; in addition, some scenes took several seconds to
load, impacting the overall experience for remote users.

This work demonstrates an end-to-end service-based method for
captioningWeb3D scenes; similarly ’theMetaverse’.We have simply
shown a method - auditory postcards, which can be improved in
many ways; for example, our tasks and task types are still coarse,
we don’t use client-side depth buffer information, or cloud-based
large language models; these are topics of future work. We collected
information about our participants’ vision status and performed an
analysis to investigate the correlation between the vision group and
the algorithm of choice. However, as we did not gather specific data
about the severity or degree of visual impairment, we cannot draw
any definitive conclusions at this time. Therefore, future research
could explore the user’s captioning preferences based on their task
context and the type and magnitude of their visual impairment.

8.3 Future Work
In the future, we will utilize Head-Mounted Displays (HMDs) for
both virtual and augmented environments where users can immerse
or augment the scene and interact with the objects while hearing
the narrations. Most object-detection systems can only process a
single image plane capture (not stereo). However, with access to the
depth buffer, and/or a depth camera in an AR headset, we believe
accuracy and satisfaction could be improved. The captions could
also be improved by utilizing more sophisticated natural language
processing models on top of the pre-trained network for object
detection used in this study. However, great care must be taken
in the grammatical construction, since captions must be reliable,
accurate, and reproducible. The ultimate goal would be to generate
more accurate and natural descriptions for users to access and
understand their 3D environment and to complete their tasks.
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