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ABSTRACT
This paper first mathematically models the UAV swarm online co-
operative path planning problem based on the prerequisite assump-
tions of transparent posture and dynamic mission environment.
Then the receding horizon control (RHC) and 2D-equal-step path
generation method are briefly introduced and combined with the
improved firefly optimization algorithm to solve the UAV swarm
online cooperative path planning problem modeled in the previous.
Simulations show that the improved firefly algorithm combining
the RHC and 2D-equal-step path generation methods can be used to
optimally solve the UAV swarm online cooperative path planning
problem for moving mission targets in dynamic environments, and
the improved firefly algorithm is more powerful and more efficient
than the original algorithm in this process of application.
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1 INTRODUCTION
UAV path planning is an important component of UAV mission
planning and is usually defined as the planning process that occurs
after the UAV mission assignment process to determine a com-
prehensive assessment of the optimal path for the UAV from its
current location to the target location of its assigned mission. At
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present, it is usually academically reduced to a mathematical plan-
ning problem of finding the optimal solution to a specific objective
cost function (e.g., distance cost, time cost, threat cost, etc.) under
various constraints (e.g., terrain constraints, no-fly zone constraints,
weather constraints, obstacle constraints, flight control constraints,
UAV performance constraints, etc.), which essentially belongs to
the NP-hard problem.

In recent years, the study of UAV path planning has received
more and more attention from researchers and gradually accumu-
lated a large number of research results. For the existingmainstream
UAV path planning algorithms, academics usually classify them
into two categories: traditional algorithms and intelligent optimiza-
tion algorithms (also known as heuristic algorithms). Among them,
traditional algorithms can be further divided into mathematical
planning-based algorithms (e.g., integer planning [1], nonlinear
planning [2], and dynamic planning [3]), graph search-based algo-
rithms (e.g., Voronoi graph method [4], A* algorithm [5], D* algo-
rithm [6], and Dijkstra algorithm [7]), sampling-based algorithms
(e.g., probability road map method (PRM) [8] and rapidly-exploring
random tree algorithm (RRT) [9]) and artificial potential field-based
algorithms [10]; meanwhile, intelligent optimization algorithms
mainly include swarm intelligence algorithms [11]- [13], deep learn-
ing algorithms [14], reinforcement learning algorithms [15], etc.

At present, although there are more studies on UAV swarm
cooperative path planning, they are studied based on the scenario
of fixed mission targets, and there is a lack of studies on cooperative
path planning aiming at moving mission targets. In this paper, we
propose to conduct an experimental study on UAV swarm online
cooperative path planning in the context of air warfare based on
transparent posture assumptions and dynamic mission scenario
modeling.

2 PROBLEM SETTING AND MODELING
2.1 Problem Setting
In the air warfare scenario of transparent posture, the central bat-
tlefield is set as a 20KM×20KM square bounded airspace, our UAV
cluster and enemy UAV cluster are both 4 homogeneous UAVs (num-
bered as UAV0, UAV1, UAV2 and UAV3 respectively). In the previous
stage, the UAV cluster has been assigned to carry out the strike
mission against the enemy’s UAVs with the same number by our
UAVs. For this purpose, we need to plan the corresponding path
for each UAV in the UAV cluster, and represent them as {O0, P01,
P02, ..., P0m, T0}, {O1, P11, P12, ..., P1m, T1}, {O2, P21, P22, ..., P2m, T2},
{O3, P31, P32, ..., P3m, T3} respectively,so that the coordinated paths
implements the strike mission against the enemy target with the
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Table 1: The initial position coordinates and heading angles of our UAVs and enemy UAVs

Code Name Initial Position Coordinates (km,km) Initial Heading Angles (degree)

Our UAV0 (-9.8,-9.8) 45
Our UAV1 (9.8,-9.8) 135
Our UAV2 (9.8,9.8) 225
Our UAV3 (-9.8,9.8) 315
Enemy UAV0 (4.0,4.0) 180
Enemy UAV1 (-4.0,4.0) 270
Enemy UAV2 (-4.0,-4.0) 0
Enemy UAV3 (4.0,-4.0) 90

minimum threat cost and the shortest distance cost while satisfy-
ing all constraints, where Ov is the origin point of the planning
path, that is, the location of our UAV v (v = 0, 1, 2, 3) at the initial
moment of planning, Tv is the end point of the planning path, i.e.,
the location of the enemy UAV v at the initial planning moment,
{Pv1, Pv2, ..., Pvm} is the set of planning path points of our UAV v.
To simplify the research discussion, the following assumptions are
further made:

1. Assume that all the aircrafts are flying at the same altitude,
i.e., the battlefield environment is two-dimensional(2D).

2. Assume that all the aircrafts are flying at a constant speed,
without considering the speed’s change or adjustment, and set the
constant to 200m/s.

3. Assume that the threat range of all threat sources (i.e., the 3
UAVs outside the enemy aircraft of the mission target) becomes
circles centered on the coordinates of their position at the current
moment and with their mounted missile range as the radius.

4. Assume that the performance of the missiles mounted on our
UAVs is superior to that of enemy UAVs, which allows us to ensure
priority strikes. It is further specified that the missile range of our
UAVs is 3 km and and the missile range of enemy UAVs is 2 km.

5. Assume that the enemy UAVs’ maneuvering strategy is fixed
area patrol, and they change course every 50s.

6. All aircraft are considered as mass points in the map.

2.2 Environment Modeling
Using a 20KM×20KM bounded airspace (the center as the origin
(0,0)) to construct a two-dimensional coordinate system. At the ini-
tial moment (t=0), as shown in Table 1, we set the initial positions
coordinates of UAVs and their heading angles (counterclockwise ro-
tation angle in the positive direction of the x-axis of the coordinate
system) be:

Any time after the t=0 moment, let our UAVs’ heading angle be
𝜑vt (v = 0,1,2,3),and their position coordinates are (xv,yv)t.

Figure 1 shows the air warfare posture at the initial moment.
The symbols and lines are explained by legends on the right side of
the figure.

2.3 Constraints
The UAV collaborative path planning constraints usually in-
clude three broad categories of self-relative constraints, mission
environment-related constraints and collaborative-related con-
straints.

Figure 1: The air warfare posture at the initial moment.

2.3.1 Self-related constraints. Self-related constraints mainly in-
clude yaw angle constraint, climb/dive angle constraint, flight speed
constraint, flight altitude constraint, minimum path segment con-
straint, maximum distance constraint(also be expressed as fuel
constraint), etc. These constraints are merely related to the UAV’s
own flight control and platform parameters, and can also be re-
garded as the hardware constraints. Specifically, the maximum yaw
angle constraint and the minimum path segment constraint are the
most relevant constraint for the problem set in this paper.

1. Maximum yaw angle constraint
For v= 0, 1, 2, 3 and i= 1, 2, ..., m, define the heading angle of

UAVv on Pi-1Pi path segment (P0 is viewed as the origin point Ov of
the path planning) as𝜑v(i) and the heading angle of it on PiPi+1 path
segment (Pm+1 is viewed as the end point Tv of the path planning)
as 𝜑v(i+1). Then the yaw angle of UAVv at point Pi could defined as
△𝜑v(i), so there are inequality constraint as below:

Δ𝜑𝑣 (𝑖 ) =
��𝜑𝑣 (𝑖+1) − 𝜑𝑣 (𝑖 )

�� ≤ Δ𝜑𝑚𝑎𝑥 ∀𝑣
= 0, 1, 2, 3; ∀𝑖 = 1, 2, ...,m (1)

In this research, △𝜑max will be set as 30 degrees.
2. Minimum path segment constraint
For v= 0, 1, 2, 3 and i= 1, 2, ..., m+1, define the path length of

UAVv on Pi-1Pi path segment (as mentioned above, P0 represents
the planning origin point Ov and Pm+1 represents the planning
ending point Tv) as Sv(i), then there is the constraint as below:

𝑆𝑣 (𝑖 ) ≥ 𝑆𝑚𝑖𝑛 ∀𝑣 = 0, 1, 2, 3; ∀𝑖 = 1, 2, ...,m + 1 (2)

In this research, Smin will be set as 500 meters.
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2.3.2 Mission environment-related constraints. The mission
environment-related constraints mainly include mission boundary
constraints, terrain constraints, no-fly zone constraints, obstacle
constraints, electronic interference constraints, threat source
constraints, etc. Since the problem context assumed in this paper
is free high altitude confrontation, only the mission boundary
constraint and threat source constraint are considered.

1. Mission boundary constraint
For v= 0, 1, 2, 3 and i= 1, 2, ..., m, define the planning path points

Pi of UAVv with the position coordinates (xv(i),yv(i)), so we get
mission boundary constraint:

−10000 ≤ 𝑥𝑣 (𝑖 ) , 𝑦𝑣 (𝑖 ) ≤ 10000
∀𝑣 = 0, 1, 2, 3; ∀𝑖 = 1, 2, ...,m (3)

2. Threat source constraint
For v= 0, 1, 2, 3 and i= 1, 2, ..., m+1, assume Pvij is one point on

Pi-1Pi segment of the UAVv’s planning path which be the closest
point to the threat source center Tj (again, P0 is the planning ori-
gin point Ov and Pm+1 is the planning ending point Tv), then the
minimum distance dvij between Pvij and Tj can be calculated by
the following equation:

𝑑𝑣𝑖 𝑗 =



���−−−−−−−−→𝑃𝑣 (𝑖−1)𝑇𝑗
��� 𝑖 𝑓

−−−−−−→
𝑃𝑣 (𝑖−1)𝑇𝑗 ·

−−−−−−−−−→
𝑃𝑣 (𝑖−1)𝑃𝑣 (𝑖 )���−−−−−−−−−→𝑃𝑣 (𝑖−1)𝑃𝑣 (𝑖 )

���2 ≤ 0���−−−−−→𝑃𝑣 (𝑖 )𝑇𝑗
��� 𝑖 𝑓

−−−−−−→
𝑃𝑣 (𝑖−1)𝑇𝑗 ·

−−−−−−−−−→
𝑃𝑣 (𝑖−1)𝑃𝑣 (𝑖 )���−−−−−−−−−→𝑃𝑣 (𝑖−1)𝑃𝑣 (𝑖 )

���2 ≥ 1���−−−−−−→𝑃𝑣 (𝑖 )𝑥𝑇𝑗
��� 𝑖 𝑓 0 <

−−−−−−→
𝑃𝑣 (𝑖−1)𝑇𝑗 ·

−−−−−−−−−→
𝑃𝑣 (𝑖−1)𝑃𝑣 (𝑖 )���−−−−−−−−−→𝑃𝑣 (𝑖−1)𝑃𝑣 (𝑖 )

���2 < 1

∀𝑣 = 0, 1, 2, 3; ∀𝑖 = 1, 2, ...,m; 𝑗 ∈ (0, 1, 2, 3) 𝑎𝑛𝑑 𝑗 ≠ 𝑣

(4)

Where Pv(i)x is the vertical foot point from the threat source
center Tj to the path segment Pi-1Pi of UAVv.

Thus, the threat source constraint is obtained as follows:

𝑑𝑣𝑖 𝑗 > 𝑟 𝑗 ∀𝑣 = 0, 1, 2, 3;
∀𝑖 = 1, 2, ...,m; 𝑗 ∈ (0, 1, 2, 3) 𝑎𝑛𝑑 𝑗 ≠ 𝑣

(5)

Further, rj is the threat radius of threat source Tj, which corre-
sponds to the enemy UAVj’ missile range and is uniformly 3km in
this paper.

2.3.3 Collaborative-related constraints. The collaborative-related
constraints mainly include spatial collaborative constraints and
temporal collaborative constraints, which are used to regulate the
consistency of time and space in the process of the UAV swarm’s
collaborative mission execution. Since the hypothetical problem in
this paper does not have the requirement and necessity of synergy
for the completion time of each aircraft’s strike mission, only the
spatial collaborative constraint is considered.

For v,u= 0, 1, 2, 3(v≠u) and i= 1, 2, ..., m, any two of our UAVs
UAVv and UAVu are required to maintain a minimum safe distance
dmin at all times during their flight and without collision, then there
are constraint:

𝑑

(
𝑃𝑣 (𝑖 ) , 𝑃𝑢 (𝑖 )

)
≥ 𝑑𝑚𝑖𝑛 ∀𝑣 = 0, 1, 2, 3;

∀𝑖 = 1, 2, ...,m; ∀𝑢 = 0, 1, 2, 3 not 𝑣
(6)

Where Pvi and Pui are the i-th planning pathpoints of UAVv and
UAVu respectively, and d(Pv(i),Pu(i)) represents their spacing.

2.4 Objective Cost Function
The design of the objective cost function for the UAV swarm online
path planning problem usually depends on the specific mission re-
quirements and the selection preferences of the command decision
maker,even though, in academic, the most commonly cost functions
are distance cost, time cost, path threat cost and path feasibility
cost.

Regardless of the choice of one or more objective costs, and
regardless of how exactly the objective cost function is designed,
the objective cost function basically boils down to the following
general expression:

min 𝐹 =

𝑛∑︁
𝑖

𝜔𝑖 𝐽𝑖 (7)

Where, F denotes the composite cost, i.e., the objective function
of the optimization problem; Ji denotes a specific cost, 𝜔 i is its
weight coefficient, and there is:

𝑛∑︁
𝑖

𝜔𝑖 = 1 (8)

If the optimization is not weighted by subcosts but is split sepa-
rately, it needs to be solved optimally as a multi-objective optimiza-
tion problem.

In this paper, the objective cost function is designed as following:

min 𝐹 = 0.2 ×
3∑

𝑣=0

𝑚∑
𝑖=1

𝐹𝜑𝑣𝑖
+ 0.2 ×

3∑
𝑣=0

𝑚+1∑
𝑖=1

𝐹𝑆𝑣𝑖

+0.3 ×
3∑

𝑣=0

𝑚+1∑
𝑖=1

3∑
𝑗=0;𝑗≠𝑣

𝐹𝑇ℎ𝑟𝑒𝑎𝑡𝑣𝑖 𝑗 + 0.3 ×
3∑

𝑣=0

3∑
𝑢=0,𝑢≠𝑣

𝑚∑
𝑖=1

𝐹𝑑𝑣𝑢𝑖

(9)
Of which, F𝜑vi denotes the yaw angle cost of UAVv at planning

path point Pi and satisfies:

𝐹𝜑𝑣𝑖
=

{
Δ𝜑𝑣𝑖 if ∆𝜑𝑣𝑖 ≤ Δ𝜑𝑚𝑎𝑥

∞ if ∆𝜑𝑣𝑖 > Δ𝜑𝑚𝑎𝑥
(10)

(read maximum yaw angle constraint for reference)
FSvi represents the path length cost of UAVv on Pi-1Pi path seg-

ment and satisfies:

𝐹𝑆𝑣𝑖 =

{
𝑆𝑣𝑖 if 𝑆𝑣𝑖 ≥ 𝑆𝑚𝑖𝑛

∞ if 𝑆𝑣𝑖 < 𝑆𝑚𝑖𝑛
(11)

(read minimum path segment constraint for reference)
FThreatvij means the threat cost of UAVv on Pi-1Pi path segment

subject to the threat source Tj and satisfies:

𝐹𝑇ℎ𝑟𝑒𝑎𝑡𝑣𝑖 𝑗 =

{
𝑟 𝑗/𝑑𝑣𝑖 𝑗 if 𝑑𝑣𝑖 𝑗 > 𝑟 𝑗

∞ if 𝑑𝑣𝑖 𝑗 ≤ 𝑟 𝑗
(12)

(read threat source constraint for reference)
Fdvui is the spatial collaborative cost of any two UAVs v and u at

the i-th planning path point Pi and satisfies:

𝐹𝑑𝑣𝑢𝑖 =


𝑑𝑚𝑖𝑛/𝑑

(
P𝑣 (𝑖 ) , 𝑃𝑢 (𝑖 )

)
if 𝑑

(
P𝑣 (𝑖 ) , 𝑃𝑢 (𝑖 )

)
≥ 𝑑𝑚𝑖𝑛

∞ if 𝑑
(
P𝑣 (𝑖 ) , 𝑃𝑢 (𝑖 )

)
< 𝑑𝑚𝑖𝑛

(13)

(read spatial collaborative constraint for reference)
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Figure 2: Schematic diagram of receding horizon con-
trol. (https://link.springer.com/article/10.1007/s12544-014-
0140-6)

3 RECEDING HORIZON CONTROL METHOD
Since the mission targets in the modeled UAV swarm online path
planning problem are all dynamic moving platforms, the previous
offline path planning algorithms are no longer applicable to it. At
the same time, the amount of computation required for each path
planning is very large, and how to maintain the real-time planning
according to the changing air combat posture during the execution
of task becomes the key problem and core difficulty of UAV swarm
online path planning in dynamic mission environment.

To this end, this paper intends to make an attempt to solve the
problem based on the receding horizon control method.

Receding horizon control (RHC), also known as model predictive
control (MPC), proposed by Richalet J and Rault A et al [16], is a
modern control theory developed and improved in the late 1970s,
mainly aim at the uncertainty caused bymodelmismatch, distortion,
perturbation or other reasons, it is a method to split a large-scale
complex global optimization problem into a series of small-scale
simple local optimization problems in a time-rolling manner, re-
flecting the idea of "simplifying the complexity". At present, it has
been applied academically to the problem of UAV path planning,
reference the job in [17].

Specifically, for the application of RHC in UAV swarm online
path planning, as shown in Figure 2 By selecting a fixed prediction
domain first, the optimal path is predicted in this domain, mean-
while, set a determined control time domain △t, in this control time
domain the UAV will not need to re-plan the path but fly according
to the predicted optimal path in the prediction domain. Once the
control time domain is exceeded at the next moment, the predicted
domain and the control time domain for the next phase are rede-
fined, and so on, until the UAV reaches the location of the mission
target.

The disassembly process steps are as follows:

• Assume current time is tk, based on the current UAVs’ lo-
cation O(tk) and mission tasks’ location T(tk), the optimal
Path(tk) of the UAVs from O(tk) to T(tk) is solved optimally
in a finite time domain [t,t+x], x is an unknown variable, and
we don’t care it’s value.

• Select the previous part of the trajectory represented by the
time domain [tk : tk+1] in the Path(tk) as the reference flight
path of the UAVs, during the period we need not to re-plan
the path.

• At the moment tk+1, the new optimal Path(tk+1) of the UAVs
from the current location O(tk+1) to the mission tasks’ cur-
rent location T(tk+1) is solved optimally in a finite time do-
main [tk+1,tk+1+y], also, y is an unknown variable.

• Starting from the time tk+2, repeat the above steps until
triggering the termination condition of iteration. Here, is
the situation when all the enemy UAVs arrived within the
missile range of our corresponding UAVs.

Although the introduction of RHC into online path planning can
solve the problem that the original planning path cannot be applied
to the new mission environment due to the dynamic change of
the mission environment, and ensure the real-time performance of
online path planning. However, since RHC is a continuous local op-
timization process with time-rolling manner, which is similar to the
greedy algorithm, the final output trajectory cannot be guaranteed
to be globally optimal.

4 IMPROVED FIREFLY OPTIMIZATION
ALGORITHM

The firefly optimization algorithm (FA) is a swarm intelligence
algorithm proposed by Yang in 2009 and inspired by the courtship
behavior of fireflies [18], which is based on the principle of using
artificial fireflies to simulate an arbitrary solution vector in the
solution space, using the brightness of fireflies to characterize the
magnitude of the objective function value of the solution vector,
using the attraction and movement behavior of the fireflies due
to the difference in brightness to simulate the search optimization
process of the algorithm.

4.1 Principle of firefly optimization algorithm
According to the algorithm, fireflies are attracted to each other
regardless of their sex, i.e., all fireflies can be attracted to each other.
The attraction of a firefly is related to its own brightness (i.e., the
magnitude of the objective function of its location vector), and a
brighter firefly will attract other fireflies around it that are not as
bright. At the same time, the brightness of a firefly decays with the
distance it travels. For any firefly, if there is no firefly brighter than
it, it will move randomly.

Specifically, the firefly optimization algorithm process is as fol-
lows:

4.1.1 Random initialization of artificial firefly swarm. Suppose the
dimension of the solution space of the optimization problem Y =

f(X) to be solved is D. Further, let the size of the artificial firefly
population be n. The initial moment k = 0 generates n fireflies in the
solution space using random initialization, which are respectively
X1 to Xn. Then for any artificial firefly Xi, it can be expressed as
Xi = (xi1, xi2, ..., xiD). For the objective function Y = f(X), let maxi-
mization be the optimization direction, the attraction relationship
between fireflies will occur according to the brightness which is
the magnitude of the objective function value, while assuming that
the distance between different artificial fireflies is defined as the
Cartesian distance between their location vectors.

4.1.2 Calculation and comparison of the fluorescence brightness
and relative fluorescence brightness of fireflies themselves. For any
artificial firefly Xi, calculate the objective function value of its
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Figure 3: Pseudocode of FA.

location vector f(Xi), as its own fluorescence brightness Ii0. And
calculate the relative fluorescence brightness of another firefly Xj
relative to it by the following equation:

𝐼 𝑗𝑖 = 𝐼 𝑗0 × 𝑒−𝛾×𝑟𝑖 𝑗 (14)

where 𝛾 is the light intensity absorption coefficient, which is also
the fluorescence attenuation coefficient; rij is the distance between
firefly i and firefly j.

4.1.3 Firefly location update. If for firefly Xi, its own fluorescence
brightness Ii0 is greater than or equal to the relative fluorescence
brightness of all the other (n-1) fireflies for it, then firefly Xi moves
randomly in the current iteration round (k+1), and its location
update equation is as below:

𝑥𝑘+1
𝑖 = 𝑥𝑘𝑖 + _ × 𝛼 (15)

where _ is a random number uniformly distributed in the interval
[-1,1]; 𝛼 is the step vector.

Otherwise, firefly Xi is attracted and moves closer to one of the
(n-1) fireflies, Xj, for which it has the greatest relative fluorescence
brightness for Xi, and Xi updates its value by the following equation:

𝑥𝑘+1
𝑖 = 𝑥𝑘𝑖 + 𝛽 𝑗𝑖 ×

(
𝑥𝑘𝑗 − 𝑥𝑘𝑖

)
(16)

Where, 𝛽 ji is the relative attraction of firefly Xj to firefly Xi,
which determines the amplitude of the movement from Xi to Xj,
and is calculated by this equation:

𝛽 𝑗𝑖 = 𝛽0 × 𝑒
−𝛾×𝑟 2

𝑖 𝑗 (17)

𝛽0 is the maximum attractiveness and is generally set to 1.

4.1.4 Loop iteration. Repeat steps 4.1.2 and 4.1.3 until the algo-
rithm iterations reach the maximum number of iterations Tmax

or the setted search precision, and output the location of the fire-
fly with the largest fluorescence brightness of itself, which is the
optimal solution of the algorithm iteration.

In summary, the firefly optimization algorithm pseudocode is as
Figure 3

4.2 Improvements to the firefly optimization
algorithm

The firefly optimization algorithm is simple in principle and has
a low computational complexity of O(n2). However, there are two
drawbacks about it, which are relatively easy to fall into local opti-
mum and insufficient local search capability, for which the following
improvements are proposed in this paper.

4.2.1 The introduction of the subgroup metric factor dnear and the
subgroup maximum proportionality factor C.. After each round of
location update, for each firefly Xi, calculate the distance rij between
any other firefly Xj and it and count the times m when rij is less
than the subgroup metric factor dnear. If m > n*C, where C is the
subgroup maximum proportionality factor, then it indicates the
existence of a subpopulation of fireflies with very compact distance
and number exceeding the threshold, reflecting the possibility that
the algorithm iterates into a local optimum. At which time, firefly Xi
will be reinitialized with other m fireflies, forcing the subpopulation
to be dissolved and then continue iteration.

4.2.2 Orientation perturbation for location update. In formula (16),
since 𝛽 ji is a constant, thus xik+1 is updated from xi to xj. Although
this location update formula can make the firefly swarm quickly
gather to the brighter individuals and accelerate the convergence
speed of the algorithm, while it is too deterministic and loses the
stochastic exploration that the swarm intelligence algorithm should
have, and does not match the real movement trajectory of fireflies in
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nature. For this reason, this paper proposes to introduce a random
directional perturbation to the location update formula, so as to
enhance the diversity and local search range of the algorithm.

The improved location update formula is as follows:

𝑥𝑘+1
𝑖 = 𝑥𝑘𝑖 + 𝛽 𝑗𝑖 × 𝑆𝑘 ×

(
𝑥𝑘𝑗 − 𝑥𝑘𝑖

)
(18)

Where Sk is the introduced random perturbation factor, and each
of its d-dimensional components Sdk is random number uniformly
distributed in the interval [0,1].

With the introduction of the location update random pertur-
bation factor, the enhancement of individual search range allows
the firefly swarm to cover more areas in the search space during
movement.

5 2D-EQUAL-STEP PATH GENERATION
METHOD

The 2D-equal-step path generation method was proposed by Zhu
W et al. in 2013 [19] and is used in combination with the chaotic
biological predator algorithm to optimally solve the 2D spatial UAV
path planning problem presented in that paper, and the final result
was satisfactory. Inspired by the method, this paper intends to com-
bine it with the receding horizon control method and the improved
FA for an attempted solution of UAV swarm online path planning
for moving mission targets in dynamic mission environment.

The following describes the step-by-step ideas of the method:
1. Determine the planning origin point O (UAV’s current location)

and the end point T(moving mission’s current location) for two-
dimensional spatial path planning, connect OT and equate OT into
(m+1) segments by m equidistant interval points, and the length of
each segment, i.e., the planning step length d= |OT| / (m+1).

2. At each equidistant interval point make m lines L1, L2, ...,
Lk, ..., Lm, perpendicular to OT, respectively, using (x1,y1), (x2,y2),
...,(xk,yk), ..., (xm,ym) denote any point on these m lines, the 2D-
equal-step path can be expressed as a sequential connection of the
following discrete points:

𝑃𝑎𝑡ℎ =

{
𝑂 → (𝑥1, 𝑦1) → (𝑥2, 𝑦2) →
... → (𝑥𝑘 , 𝑦𝑘 ) → ... → (𝑥𝑚, 𝑦𝑚) → 𝑇

}
(19)

3. Coordinate transformation of the 2D space, the transformed
coordinate system takes O as the origin and OT as the horizontal
axis, as shown in Figure 4. The conversion equation is as follows
as: [

𝑥 ′𝑘
𝑦′𝑘

]
=

[
cos\ sin\
− sin\ cos\

] [
𝑥𝑘 − 𝑥𝑜
𝑦𝑘 − 𝑦𝑜

]
(20)

where (xo,yo) is the coordinate of the planning origin point O in
original coordinate system, (xk,yk) is the coordinate of any point
on Lk in original coordinate system; (x’k,y’k) is the new coordinate
after coordinate transformation of (xk,yk); \ is the angle between
the x-axis of the original coordinate system and the x-axis(OT) of the
new coordinate system, which can be calculated by the following
equation:

\ = arctan
(
𝑦𝑡 − 𝑦𝑜

𝑥𝑡 − 𝑥𝑜

)
(21)

where (xt,yt) is the original coordinate of the task endpoint T.
4. Since the horizontal coordinates of the path points are all

known to be fixed in the new coordinate system, the path points’

Figure 4: Coordinate system conversion of 2D-equal-step
path generation. [19]

coordinates that need to be solved optimally after coordinate con-
version are their vertical coordinates merely, i.e. {y’1, y’2, ..., y’m},
which greatly reduces the computation complexity.

At this stage, the selection of traditional path planning algo-
rithms is very dependent on the digital map modeled by the path
planning problem. For example: the application of probabilistic
sampling algorithms such as Probabilistic Road Marking (PRM)
algorithm and Rapid Expansion Random Tree (RRT) algorithm
require modeling based on probabilistic maps; the application of
direct search algorithms such as Dijkstra algorithm, A* algorithm
and D* algorithm requires modeling based on static road network
maps (among them the rasterized digital maps is the most widely
used); the application of Voronoi diagram algorithm and artificial
potential field algorithm are based on their respective specific mod-
eling maps. While as for the intelligent optimization algorithms,
especially the swarm intelligence algorithms, the solution to the
path planning problem is mainly based on the optimization of the
objective cost function with constraints, which is different from
the traditional path planning algorithms to a large extent. In lay-
man’s terms, this means that the application of swarm intelligence
algorithms for UAV path planning has no additional requirements
on the modeling of digital maps, which makes it possible to have
the advantages of fast real-time and easy computation required for
online path planning problems.

Meantime, the 2D-equal-step path generationmethod introduced
in previous can further enhance the computational advantages of
the swarm intelligence algorithm applied to the UAV swarm online
path planning problem, which is mainly achieved by dimensionality
reduction of the mapping from the original 2D solution space to
the 1D solution space. Thus, by combining the 2D-equal-step path
generation method with the improved FA, the complexity of digital
map modeling is reduced on the one hand, and the optimization dif-
ficulty of the original intelligent optimization algorithm is reduced
on the other hand, thus ensuring the real-time performance and
possibility of UAV swarm online path planning under the receding
horizon control mechanism.
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Table 2: The initial parameters of FA and improved FA

Parameters of FA The Initial Value Parameters of Improved FA The Initial Value

n: Artificial Firefly Swarm Size 100 n: Artificial Firefly Swarm Size 100
k: Initial Iteration Round 0 k: Initial Iteration Round 0
D: The Dimension of Solution Space1 4 D: The Dimension of Solution Space1 4
𝛾 : Fluorescence Attenuation Coefficient 1 𝛾 : Fluorescence Attenuation Coefficient 1
𝛽0: Maximum Attractiveness Coefficient 1 𝛽0: Maximum Attractiveness Coefficient 1
tmax: Maximum Iterations 100 tmax: Maximum Iterations 100

C: Subgroup Maximum Proportionality Factor 0.2
dnear: Subgroup Metric Factor 10

1 It is also the number of path points of planning path.

6 SIMULATION EXPERIMENT
In order to verify the research idea of "the improved firefly opti-
mization algorithm combining with the receding horizon control
method and 2D-eaual-step path generation method can solve the
UAV swarm online path planning problem for moving mission
targets in dynamic mission environment", and to compare the per-
formance difference between the improved firefly optimization
algorithm and the basic firefly optimization algorithm when ap-
plied to the path planning problem modeled in chapter two of this
paper, series of experiments are conducted in a Python program-
ming environment on a Linux Server with four 2.8 GHz CPU(P4
Xeon).

The initial parameters of both FA and improved FA are set as
Table 2 display:

Figure 5 shows the planning paths of the basic FA combined with
RHC and 2D-equal-step method from the initial posture (t= 0) to
the terminal posture (t= 62), Figure 6 shows the planning paths of
the improved FA combined with RHC and 2D-equal-step method
from the initial posture (t= 0) to the terminal posture (t= 54).

We could find that, the improved FA have well planned the flight
paths to avoid all the threat sources for UAVs, and the planning paths
satisfy all the constraints proposed in chapter two obviously.While
the FA did not plan well, its planning paths are less smoother
than former and lack of robustness, also, which visibly violate the
maximum yaw angle constraint and spatial collaborative constraint.
Leave that aside, just judging by the final result, its planned flight
paths also apparently failed, which can be seen in the last subgraph
in Figure 5, our UAVs are all within enemy UAVs’ missile range(t=62)
before they complete their strike mission against their respective
targets. By contrast, as shown in Figure 6, throughout the whole
planning process, the UAVs’ RHC paths planed by improved FA are
always out of the enemies’ missile range, which ensures priority
strike and finally completed the strike mission against the moving
UAV targets, and the whole process is highly collaborative, which
are not too much to call it beautiful!

We could further find the difference in performance between
the two methods from the Figure 7 below, which reveals that the
improved FA is much faster than the basic FA in the convergence
rate.

Figure 5: The air warfare posture from the initial moment to
teminal moment for the FA.

7 CONCLUSIONS
In this paper,an algorithm based on the improved firefly optimiza-
tion algorithm combined with receding horizon control method and
2D-equal-step path generation method was proposed for solving
the UAV swarm online path planning problem aiming at moving
targets in dynamic mission environment. The generated paths can
ensure the maximum safety with the minimum fuel cost and steer-
ing cost of UAVswithin the various constraints, which aslo maintain
a high degree of collaboration in real-time throughout the plan-
ning process at the same time, as shown in the simulation results.
Further, the comparative simulation between FA and improved FA
also indicates that the latter is more powerful and efficient than the
former in solving previous problem.

Our future work will focus on the extensive application of our
proposed method in UAV swarm online path planning of 3D space,
which is a challenging issues for next stage.
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Figure 6: The air warfare posture from the initial moment to teminal moment for the improved FA.

Figure 7: Comparison of optimization ability between FA and improved FA in the same solution space (t = 0).
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