Check for
Updates

There is also only one zero (near b;) if § < 0. Providing
a correct zero for all cases entails a sharp distinction on
6 at 0.

Our solution procedure to this problem employs a
slight variation of the Dekker algorithm [4], by which
the zero of f(x) is enclosed in successive subintervals
la;, b;] where f(a,) and f(b) are always of opposite sign.
When the width of the interval [a;, b;] is sufficiently
small, depending on the number of decimal places
requested, an »# decimal place approximation to the
zero may be obtained from a; (or b;). However, when a
point a; or b, is encountered such that its function
value is so extremely small in absolute value that its
sign can not readily be determined (as criterion we
again employ the outcome of a floating point de-
termination), then the procedure is halted. The value
a; or b, is printed since this information may be useful,
but no claim is made that a zero has been found.
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An Interactive
Graphic Display for
Region Partitioning
by Linear
Programming
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Applications

Using linear programming, an interactive graphic
display system has been implemented to solve the region
design problem of partitioning a region into IV
nonoverlapping subregions in such a way that their
areas are in specified proportions and that the total cost
of servicing them is a minimum. In a conversational
manner, a user can easily obtain different partitionings
by specifying and modifying the boundary, the service
centers’ locations, the area proportions, and the cost
functions. Examples are included.

Key Words and Phrases: interactive graphic display,
region partitioning, area specification, linear
programming
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1. Introduction

In the study of region design problems such as
urban planning, districting, warehousing, and facility
allocation, the following problem often arises: Given a
region R and N “service centers,” it is required to
partition R into N nonoverlapping subregions R;,
J=1,2,..., N, in such a way that, R; , being serviced
by the jth center, has a specified proportion of the total
area, and the total “cost” of providing these services is a
minimum. For example, the service centers may be
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fire stations and the cost may be the response time to
fire alarms. For operational or financial reasons, the
area sizes of the subregions are often prespecified.

To date, there appears to be relatively little work
published on this problem. A purely graphical technique
was discussed by Keeney [3] for a very particular case
where the cost function is the Euclidean distance and no
area sizes are specified. Some theoretical results are
given in [1].

In the system described in this paper an interactive
display provides a user with the desirable features of
the graphical description of the partitions and the
possibility of obtaining different solutions with relative
ease. Approximating the region’s boundary by polygons,
a user first types in the coordinates of their vertices. In
response, the system (hereafter referred to as DESIGN)
displays the polygons and the input data. The names
and locations of the service centers, the discretization
intervals, and the cost functions are then entered.
Throughout the whole process a user may insert or
delete some of the vertices or service centers by using
the lightpen and the keyboard. On obtaining these
data, DESIGN will determine and display the partition-
ing. The user may request that the partitioning be sub-
ject to specified ratios or that two partitionings be dis-
played at the same time.

As pointed out by Rosen [7], application of linear
programming using interactive graphic display is a
potentially promising area for future research. This
paper describes one such contribution. Application to
data fitting and the approximate solution of boundary
value problems were discussed in [4, 5, 6].

In Section 2 we formulate the problem and discuss
its mathematical foundation. In particular, the dis-
cretized problem with area specification will be shown
to be equivalent to a transportation problem. Section
3 describes the interactive program DESIGN. Two ex-
amples are given in Section 4.

2. Formulation as a Transportation Problem

Let Ay : A, : -+ : Ax be the ratios of the areas of
the subregions. Set 4 = Y 1A;. Then A4;/A is the
area proportion of subregion R;. Let f;(x,y) denote
the “cost” of servicing a location (x,y) € R by the jth
center and P(R) denote the set of all possible parti-
tions of R into N nonoverlapping subregions with the
area of R; proportional to 4, . Our problem is to find a
partition which minimizes the total cost, i.e.

Min(e, zy, -, &y} € P(R) {;L.fj(xy)’)} (1)

A global minimum to problem (1) is called a minimal
partition. Under the general assumptions: (i) A;,

j=12,--- N, are positive real numbers; (ii) R and
R;j,j=1,2 ... N, are bounded and Lebesque-
measurable; and (iii) f;,/ = 1, 2, ..., N, are real-
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valued and L-integrable over R; Corley and Robert
[1] obtained some theoretical results—they proved the
existence of a minimal partition to problem (1) and
gave the necessary and sufficient conditions for such a
solution.

A practical computational method for obtaining an
approximate solution is now described. Let R lie com-
pletely within a rectangle. Discretize this rectangle by
dividing its sides into equidistant intervals. The case
without area specification is simple. A discrete point P
is assigned to R; if f{(P) < fi(P) for all k 5 j, and to
either R; or R, (but not both) if £;(P) = fi.(P). In the
following, the more general case (1) will be formulated
as a transportation problem.

Let D be the set of discrete points which lie within R
and M denote the number of points of D. We shall
determine a set of integers {a;}}~ in the following way:
Let a; be the integer closest to MA;/A4 (e.g. if 99.5 <
MA;/A < 100.5,seta; = 100). Setk = M — > YV a;.
If Kk > 0 (k € 0), add 1 to (subtract 1 from) k of the
ajys randomly. If k = 0, do nothing. In this way, we get
M=) ia;anda :a: - :ay X Ay Ay: -+ i Ay

For any point (x;, y;) € D, denote ¢;; = f;(x:, y:)-
Problem (1) can then be approximated by the following
linear program

N
-
-~
<
il

L, i=1,2--,M
in {3 2 1e,| & 2)
min tij Cij
tij 2":‘3.*1 ’ ]Ztij=ai’j=ly2y”')Ns
=1

tj=0 or 1

where ¢;; is equal to 1 if (x;, y,) is assigned to the jth
center and is equal to 0 if not.

Problem (2) is the personnel classification problem,
a particular case of the well-known transportation
problem. The method we use for solving problem (2) is
an implementation of the algorithm given by Dennis

2].

3. Interactive Program

The interactive program DESIGN is written in Fortran
and implemented on an 1BM 360/67 computer, using a
cDC graphic terminal. At the beginning, DESIGN asks
the user to type in the vertices of the polygons. The
following types of constants are acceptable:

Type Example

Integer 104, —115
Floating-point 2.1, -9.1
Exponential 2.8E-2, —1.01E30

After the polygons are displayed, a user may make
modifications, or type in the sizes of the discretization
intervals, the names and locations of the service centers
and the area ratios. The cost functions are entered (as
data) symbolically as follows. DESIGN accepts elementary
functions, which, by definition, are obtained by addi-
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Fig. 1(a). Regional division for helicopter emergency system at
Eastern Canada (with area proportions 2:2:1:1:1).
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Fig. 1(b). Regional division for a helicopter emergency system at
Eastern Canada (no area specification).
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Fig. 1(c). Regional division for a helicopter emergency system at
Eastern Canada (no area specification).
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Table I(a). Vertices of Boundary Polygons

Polygon Vertices (in counterclockwise order)

1 (4,49), (0,46), (4,46), (8,42), (7,26), (13,19)
(24,21), (41,32), (36,34), (33,46), (35,53),
(28,51), (24,54), (4,54)

2 (37,29.4), (34,24), (46,24), (38,20), (37,22),
(24,13), (21,6), (25,0), (40,12), (66,24), (59,29),
(53,26), (39,30.7)

3 (68,42), (62,32), (64,26), (72,27), (75,30),
(72,34), (69,34), (70,40)
4 (40,44), (38,39), (41,34), (52,30), (53,33),

(57,36), (49,36), (40,40)

Table I(b). Service Centers

Label Location Cost Function

1 (30.0,42.0) ((X-30) 124 (Y—42) 12)!10.5
2 (20.0,21.0) ((X—=20) 124+ (Y-21)12)!0.5
3 (42.0,14.0) ((X—42) 124+ (Y—14) 12) 10.5
4 (50.0,26.0) ((X=50) 124 (Y—26)12)!10.5
5 (72.0,32.0) ((X=72) 124+ (Y—-32)12) 105

tion, subtraction, multiplication, division, exponentia-
tion, and composition of the variables x,y and constants,
and the functions ¢, sin(v), cos(v), arctan(v), log(v)
and | v|, where v itself is an elementary function. The
following symbols are used for operations:

Symbols Operations
+, — addition, subtraction (or negation)
*,/,1 multiplication, division, exponentiation

SIN, COS, ATAN
LN, EXP, ABS

sin( ), cos( ), arctan( )
log( ), exp( ), absolute value

Examples of elementary functions are:

(X=31)124+ (Y—15)12) 105
—~0.31 4+ (SIN(EXP(X+Y) -+ .5E4) » 4.) 10.1/2

When the user types in the instruction ‘‘PARTITION’’,
DESIGN will start the partitioning process. It will dis-
cretize the region and evaluate the function values at the
interior discrete points. Since the functions are also
input data, they have to be evaluated interpretively,
using a method similar to the Polish notation. (See, for
example, LaFata and Rosen [4].) DESIGN will then
partition these discrete points by the method as de-
scribed in Section 2, plot the numeric labels of the
service centers at the discrete points, and draw the
subregion boundaries. These graphs are created in
different display files and transmitted to the terminal
for display. The user can then make any necessary
modifications, using the lightpen and the keyboard, and
continue the conversation until satisfied with the
partitioning obtained.

4. Examples

The data used in the following examples are chosen
arbitrarily, for the purpose of illustration only. During a
normal load of the computing system, each problem
takes about 3 minutes.
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Table 1I(a). Vertices of Boundary Polygons
Polygon Vertices (in counterclockwise order)

1 (2,28), (2.5,22), (0,14), (3,8), (10,5.5), (18,0),
(18,2), (29.5,4), (31.5,0.5), (32.5,2), (31.5,5),
(35.5,10), (34.5,10.9), (38.5,19.5), (39.18),
(42,21), (41,21.5), (39.5,20), (38,23.5), (41,25),
(41,28), (29,28), (28.5,26), (29,23), (28,22.5),
(26.5,25.5), (22,28)

2 (8,21.5), (15,20.7), (14,14), (15.5,13.7), (15.4,13),
(20,12.7), (20.5,12), (20.5,10), (10,11), (10.5,14),
(9.5,14.5), (10.17.5), (9,17.6), (7.5,20.5)

3 (24,20.5), (26,19.5), (27,18.5), (22,18.5)

4 (27,18.5), (29,18), (29.5,17), (28.5,15.5),
(26.5,11.5), (26,14.5), (25,13.5), (25,17.5)

5 (30.5, 16.5), (31.5,16.5), (29,14), (28,14)

Table II(b). Service Centers

Label Location Cost Function

1 (32.0,19.0) ((X=32)124(Y-19)12)10.5
+ 0.2*ABS(Y—19)

2 (10.0,25.0) (X—=10) 12+ (Y—-25)12)10.5
+ 0.15+ABS(Y —25)

3 (19.5,14.0) (X—19.5) 124+ (Y — 14) 12) 10.5
+ 0.1sABS(Y —14)

4 (7.5,8.0) ((X=7.5)12+(Y-8)12)10.5

5 (28.5,7.5) ((X—28.5) 124 (Y-7.5)12)10.5

Example 1. Suppose the Maritime provinces (except
Newfoundland) of Eastern Canada want to set up a hel-
icopter emergency system. The helicopter stations are
located at Newcastle, Lancaster, Halifax, New Glas-
gow, and Sydney. Assume that the response time to an
emergency call is proportional to the distance between
the place where the accident occurs and a station. Two
cases are considered, the first with area proportions:
2:2:1:1:1, and the second without area specification.
The data shown in Table I(a) were first typed in. In
less than one minute, the region’s boundary (in dashed
lines of Figure 1(a)) appeared. The area ratios 2:2:1:1:1
and the data shown in Table I(b) were then entered.
After about 3.5 min, the graph in Figure 1(a) was
displayed. Next, DESIGN was instructed to partition the
same region without area specification. Figure 1(b) was
then shown. Using the lightpen, the user eliminated
the two service centers—New Glasgow and Sydney—
and inserted a new one—Antigonish. Figure 1(c) shows
the display after such modification.

Example. 2. Suppose the southern part of Canada
and the mainland of the United States plan to establish
a joint environmental control and development project.
The states Montana, Wyoming, Colorado, and Kansas
do not participate. (This assumption is purely for the
purpose of making the problem more complex.) The
centers are set up at Ottawa, Edmonton, Omabha,
Phoenix, and Atlanta. The data for this problem are
shown in Table 1I{a) and Table 1I(b). Area ratios are
2:2:2:3:3. The interactive process was similar to
Example 1. Displayed graphs are shown in Figure

2(a) and Figure 2(b).
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Fig. 2(a). Regional division for an environmental control and
development project in Southern Canada and the United States
(area proportions 2:2:2:3:3).
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Fig. 2(b). Regional division for an environmental control and
development project in Southern Canada and the United States
(no area specification).
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