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ABSTRACT
Deep code generation is a topic of deep learning for software en-

gineering (DL4SE), which adopts neural models to generate code

for the intended functions. Since end-to-end neural methods lack

domain knowledge and software hierarchy awareness, they tend to

perform poorly w.r.t project-level tasks. To systematically explore

the potential improvements of code generation, we let it participate

in the whole top-down development from expressibles to executables,
which is possible in limited scopes. In the process, it benefits from

massive samples, features, and knowledge. As the foundation, we

suggest building a taxonomy on code data, namely code taxonomy,

leveraging the categorization of code information. Moreover, we

introduce a three-layer semantic pyramid (SP) to associate text data

and code data. It identifies the information of different abstraction

levels, and thus introduces the domain knowledge on development

and reveals the hierarchy of software. Furthermore, we propose a

semantic pyramid framework (SPF) as the approach, focusing on

software of high modularity and low complexity. SPF divides the

code generation process into stages and reserves spots for potential

interactions. In addition, we conceived preliminary applications in

software development to confirm the neuro-symbolic framework.
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1 INTRODUCTION
To promote the productivity of software development, using deep

learning to assist related activities is a lasting research trend [16, 36].

For example, neural models trained on massive code-related data

could assist programming through code generation [17]. However,

we identified a few restrictions of neural methods waiting to be

overcome. First, models lack the necessary domain knowledge on

software development. For example, models can merely learn the

idiomatic usage of the relevant API dependency but cannot ensure

validity or avoid possible misuse issues. Second, models require

accurate and complete functional descriptions, even related to the

context and method call. The truth is that it is better to let mod-

els infer the requirement based on the software hierarchy. Third,

neural methods are weak in transparency and flexibility, thereby

tend to underperform in scenarios where potential interactions are

required, such as manual inspection or intervention. Based on the

above considerations, we propose adopting neural models in the

whole top-down development from expressibles to executables. In

this way, we explore performance improvements in various scenes,

by providing domain knowledge and software hierarchy to code

generation. Considering the difficulty, the research scope is limited

to softwares of high modularity and low complexity.

Figure 1: Diagram of modular WebUI development, © Bit.Cloud [5],
where each UI component in the webpage is supported by a separate
dependency, and meanwhile filled with specific resources or values.

The webpage in Fig. 1 is an illustrative example of top-down code

generation. Its implementation from expressibles to executables can

be a 3-step process: (1) everything starts with a prototype, which

clearly describes the webpage layout. For example, there should be

a navigation bar, an avatar and a search bar in the header, and a grid

view to display cards in the webpage body; and (2) a knowledge

engine that knows available libraries suggest API usages to fulfill

the requirements, such as recommending “featured-hotels@1.x” and

“hotel-card@2.x” for the grid view and cards, with the compatibility

consideration; and (3) a set of utility codes accessing algorithms

and data resources arrange and control UI components, including

personalizing the product list, loading the product detail.

To achieve the goal of adopting code generation in the top-down

development process, we start with taxonomy on code data, namely

code taxonomy, in the light of code information. On the basis of

code taxonomy, we designed the scheme of a three-layer seman-

tic pyramid (SP) to associate program realizations with human

intentions. In each SP layer, we take corresponding techniques to

organize data in the form of graphs. By taking SP as the mental

model, we plan to further construct a semantic pyramid framework

(SPF). SPF makes code data high-quality and well-organized, and

besides, introduces program semantics and domain knowledge.
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Table 1: Categorization of code information

Group Type Description Example

Attributes Constraint restrictions on the applicable scope conditions, inputs, outputs

Element discriminative implementation details operators, numerics, strings

Knowledge conventions and usages in reusing code API dependencies, frameworks

Syntactics Relevance connections among relevant information sequence, syntax trees and graphs

Semantics Concept entities referred to and their interrelations contexts, identifiers (objects, values)

Function logical functions to be actually executed calculations, operations, exceptions

2 APPROACH
Code Taxonomy. We define the term “code taxonomy” as the prac-

tice of categorization of code data. It is straightforward to build a

taxonomy referring to software purposes or topics, however, that

manner seems insufficient in reflecting the capability of methods,

especially for code generation. Therefore, we describe the task from

another viewpoint: beyond the influence of software purpose or topic,
by what basis could we further build taxonomy on code data?

In our approach, we regard code data as a mixture of different

types of information and disentangle this information to build code

taxonomy. Considering the inherent properties of code data and

the semantic associations with related text data, we classify code

information into 3 groups and 6 types, as shown in Table 1. Based on

the categorization of code information, we suggest quantifying the

information abundance of data samples on each information type

for various usages. For example, when we evaluate code generation

respecting the difficulty of data samples, it is natural to assess the

results separately for cases like whether there are API dependencies.

Semantic Pyramid.We propose a semantic-aware framework as

the follow-up work of introducing code taxonomy for code gen-

eration. SPF guarantees the recognizability of code data via code
assetization and establishes the connectivity between intentions

and realizations via semantic bridging. Its mental model is visualized

as a three-layer semantic pyramid, shown in Fig. 2.

Figure 2: Diagram of the three-layer semantic pyramid, where the
code information of each layer is specified. The higher the layer, the
closer to text data, and vice versa, the closer to code data.

The code information is divided into 3 abstraction layers. The

intention layer cares about semantic information, namely semantic

concepts and logic functions of code data. The specification layer

is about the outline of code implementations, such as constraints

and dependencies that cannot be ignored. The realization layer is

about the detail of code implementations, where concrete elements

or structures matter. Every node of any graph in the upper layer

points to the complete graph in the lower layer, and each graph in

the lower layer is pointed to by multiple nodes in the upper layer.

Table 2: Definitions of the datatype for code taxonomy

Datatype
Attributes Syntactics Semantics

Constraint Element Knowledge Relevance Concept Function

Code Pattern ✗ ✗ ✓

Code Template/Sketch ✓ ✗ ✓

Code Instance ✓ ✓ ✓

Code Property Graph ✓

Semantic Entity ✓ ✗

Semantic Pattern ✗ ✓

Semantic Frame/Sketch ✓ ✓

The involved information is intended to be organized in the form

of graphs even though it corresponds to different abstraction levels

in different layers. The reason is that graph-form expressions are

ideal as the medium to explicitly represent various information,

and performant to establish connections with each other. Consider-

ing the differences of the information itself and their roles in the

framework, we introduce suitable techniques to build graphs and

find ways to bridge different graphs, and thus associate intentions

to realizations crossing the concept hierarchy of software.

Semantic Pyramid Framework. To describe the mechanism of our

framework, we distinguish the involved datatypes based on their

information abundance following the code taxonomy. For simplicity,

we prefer the qualitative division but not the quantitative one. As

shown in Table 2, we use the check mark (✓) to indicate a datatype

is rich in some types of code information, and the cross mark (✗)

for the opposite case. If an information type is not that important

to a datatype, we leave blank the marked area.

Figure 3: Overview of the semantic pyramid framework, where
rectangles are databases of the corresponding datatype, trapezoids
are spots for human-machine interactions, and ellipses represent
data instances. The color is to distinguish datatypes and procedures.

By characterizing the role of datatypes defined following code

taxonomy, we divide the mechanism of the framework into three

stages, as illustrated in Fig. 3. In the first stage named code asseti-
zation, code data is first processed into subprograms as templates

to increase the sample richness. Then, we use a property graph

as the code representation for the higher recognizability of sam-

ples [39]. Eventually, we mine code patterns from code property

graphs to reduce the effect of variants. In the second stage named

semantic bridging, leveraging the informative property graphs, we
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extract semantic entities and patterns to collect involved concepts

and functions. Furthermore, we compose semantic frames based

on concepts and functions with external knowledge bases. In the

third stage named top-down pipeline, we introduce code generation
to assist top-down development, leveraging the databases on fea-

tures, knowledge, and samples from the former stages. It divides

the development into stages and reserves spots for interactions,

corresponding to the abstraction layers in the semantic pyramid.

2.1 Code Assetization
We define Code Assetization as organizing code data into samples,

following code taxonomy. It focuses on the realization layer.

In the process of code assetization, SPF decouples semantics,

syntactics, and attributes information from code samples. We need

to generate high-quality representations of code samples [37] to

support operations such as retrieval and clustering. As code data

could be parsed as ASTs, CFGs, and PDGs, it is a cheap but precise

practice to first convert code data into the graph form, as the joint

data structure of the above-mentioned parsed results [39].

We build a sample base of code templates and code patterns

through data processing. Except for the handling of the elements,

the code template is roughly equivalent to the code sample, since

both reserve the divergence of concrete implementations. In con-

trast, the code pattern represents a bunch of similar code samples

and has no tolerance for variants. Leveraging diff computation [6]

and subprogram division [1], code patterns are extracted from code

templates but shorter in length and fewer in amount. As the prop-

erty graph is preferred to represent code data, code patterns could

be seen as the idiomatic usage of a partial code template.

The realization layer is focused on the synergy of code patterns

with extra knowledge bases. Since the divergence in code samples

is mainly caused by contexts and dependencies, we thus define two

types of knowledge bases to complement the information missed

by code patterns. One knowledge base is on internal context, which

determines the constraints of code templates. The other one is on

external dependencies, which determines the API dependencies.

2.2 Semantic Bridging
We define Semantic Bridging as seeking features and knowledge to

express requirements. It is about intention and specification layers.

For semantic bridging, we propose to jointly utilize semantic

parsing and knowledge graph. On one side, semantic parsing con-

verts natural language utterances to machine instructions [24]. It

mines information from text data with techniques like named entity

recognition and relation extraction. On the other side, knowledge

graphs use graph structures to organize semantic entities and their

interrelations [13]. It provides further flexibility by linking together

with available commonsense or domain knowledge graphs.

The intention layer relies on a linguistic meaning theory called

frame semantics [7]. A semantic frame is a conceptual structure of

the involved participants and is used to describe events, scenes, etc.

It usually contains frame elements as semantic roles in the formal

definition and lexical units that evoke other frames. That makes it

very similar to a function module or class definition in programs.

This similarity inspires us to build a corpus oriented to program

intentions, for example, based on FrameNet lexical database [29].

The specification layer emphasizes the semantics information of

code patterns, which is represented by its own description and the

relations with others. The description could come from related text

data, such as comments, API directives, and even identifiers. The

relations could be meaning representation of text data [38], or the

logic representation of code data [22]. Compared with the intention

layer, the specification layer differs in granularity, even though they

both revolve around semantic entities and interrelations.

2.3 Top-Down Pipeline
In the framework, the top-down pipeline associates text code with

code data through two transitions: the transition from intentions to

specifications, and from specifications to realizations. Their medium

data is respectively the semantic sketch and the code sketch [31].

In the transition from intentions to specifications, the semantic

sketch purely cares about concepts and functions. Both semantic

frame and semantic sketch take concepts as nodes and functions as

edges. However, compared with code sketches, their concepts could

be more abstract while functions could be more complex. Thereby,

the transition aims to adopt alignment methods to eliminate the

semantic gap between semantic sketch and code sketch, especially

the granularity inconsistency. Other concerns are the details in the

transition, such as issues on constraint and knowledge.

The transition medium from specifications to realizations is the

code sketch. The code sketch is different from the code template,

even though both are graphs taking code patterns as nodes. The

code sketch takes semantic dependencies between code patterns as

edges while the code template takes actual dependencies in samples

as edges. Therefore, assuming we have a code sketch from the

upstream, we could retrieve code templates for each code pattern in

the given code sketch, then composite or generate code templates

as candidates. Further, with manual inspection or intervention on

elements and structures, the optimal code instance is determined.

2.4 Scope of Application
Due to the complexity and diversity in actual development, it is

important to find suitable application scopes for the framework.

Thereby, we considered some as preliminary targets.

One conceived application is assistive top-down developments

for specific purposes or topics, including WebUI programming as

mentioned. Similarly, mobile application development is worth

attention, since it follows a conventional standard to implement

preset interactions. For example, an app can be recognized as a

transition graph of activities, where each activity corresponds to a

UI page and its functional code. The implementation of an activity

is usually decoupled as layout code, functional code, and method

call hierarchy [3], and thus well fits the requirements of SPF.

In addition, to reveal the potentiality of SPF in associating in-

tentions with realizations, automated construction of modular API

dependency can be a topic. It elicits and reacts to potential develop-

ment needs. For example, a new web framework is at its early stage

andwants a series of features, already implemented in similar frame-

works but partially and scattly. A solution is to massively spawn

and smoothly assemble the migrated implementations. Leveraging

SPF, we refine the process and let it be effective and efficient.
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3 ROADMAP
To obtain experience in building the code taxonomy, and form an

effective methodology, we divide the whole process into three steps.

First, we start with neural methods that learn from both code prop-

erties and data distributions, focusing on program representation

and code generation. Then, we build code taxonomies in limited

application scopes and evaluate their effectiveness and drawbacks.

Finally, we seek decent models for a complete framework and in-

crease the scale of the engineering to explore its applicability to

real-world use. The milestones to be achieved are as follows:

• First, we would conduct a mining study on open source

software distinguished by the purpose or topic. The object

data is coding patterns, complemented by the information

on context and API dependence.

• Further, we would seek solutions for semantic associations

between program sketches and functional descriptions or

API directives, but more focused on graph representations

of multiple granularity or modality.

• To bridge intentions and specifications in a formal way, we

plan on constructing a lexical database leveraging frame

semantics and knowledge graphs. Besides, we connect it to

available instances from relevant fields.

• To bridge specifications and realizations and promote code

reusability, we plan on building a code corpus, where the

data are templatized but composable subprograms, with the

compatibility support of code variants.

• Once the code taxonomy is constructed, we would design

retrieval-based neural models or inference engines to pair

with this knowledge base. The framework should apply to

other scenes where the semantic pyramid fits.

• Eventually, we plan to study the behavior and impact of the

framework on building programs with a certain complexity,

moreover, on building highly modular software or libraries

that can satisfy actual development requirements.

4 RELATEDWORK
For code taxonomy, we mainly refer to other practices on taxonomy

for deep learning. Meanwhile, for SP and SPF, we consider tasks

connecting code data and text data as related work. Besides, we are

aware of topics involved in implementing the framework, including

code features, and topics about actual applications.

Taxonomy for Deep Learning. When some tasks are hard to

learn or evaluate, it is a strategy to build a taxonomy. For example,

in software engineering, there is a taxonomy on build failures in

continuous integration [33], a taxonomy of faults in deep learning

systems [12]. In other areas, taxonomy for deep learning even plays

a considerable role. In natural language processing, FrameNet

motivated the study on automatic semantic role labeling [29]. In

computer vision, ImageNet [30] is an image database for visual

object recognition, it follows theWordNet [25] hierarchy, where

each node is depicted by massive samples.

Code Retrieval, Generation and Comprehension. Sometimes,

programmers want alternatives to current implementations, for

example, Aroma [23] recommends code snippets based on the sim-

ilarity of structural features. To search code snippets for the given

query, CODEnn aligns the semantics of code data and text data by

jointly modeling their representations in the same vector space [9].

CSRS [4] considers both relevancematching and semantic matching,

while Yogo [27] recognizes different but mathematically-equivalent

alternatives based on dataflow graphs and rewrite rules. Inspired

by machine translation, code generation translates descriptions

to implementations, such as the pseudocode-to-code one by Se-

manticScaffold [42]. TRANX introduced a transition system to

generate formal meaning representations for code generation [40].

Code comprehension uses proper natural utterance to describe

the given code data, which could help understand programs: Con-

text2Name [2] generates meaningful variable names based on

the usage contexts, AdaMo [8] assembles foundation models to

describe the functionality of code snippets, CodeQA [21] demon-

strates the value of generating textual answers for the pairs of code

snippet and various types of question.

Program Analysis and Reasoning. By adopting changes to code

data, the critical features can be stressed, such as S4Eq [14], which

proves the equivalence by computing a verifiable sequence of rewrite

rules, and Perses [32], which reduces programs to smaller ones

in a syntax-guided way, and further help localizes bugs. Also, pro-

gram analysis can mine code features. For example, Lupa [34] sup-

ports fine-grained analysis on the usage of programming language,

PyART [11] extracts features from the context of the program point

for API recommendation [10]. Besides, code clone detection and

code evolution promote code reuse [41]. In addition, neuro-symbolic

approaches shown the reasoning capability in vision and natural

language, and might work on code data, such as Scallop [20].

Assisted Programming and Development. There have proposed
performant methods to assist programming, CodeGen [26] and

CodeT5 [35] introduce large-scale language models to support com-

mon coding tasks, such as code autocompletion, code translation.

In contrast, assisted development focuses on the solution itself but

not the programming process. For example, AlphaCode [19] ap-

plies sampling, filtering, clustering on program samples to generate

human-level submissions for competitive programming challenges.

Some work is oriented to other tasks in the development, for ex-

ample, TransCoder improves the application of back-translation

for program translation [15, 28], SkCoder reuses the code sketch,

extracted from similar code, for reliable code generation [18].

5 CONCLUSIONS
To summarize, to overcome a few restrictions of neural methods, we

suggest building a code taxonomy in light of code information. And

then, we propose a semantic-aware framework, taking the semantic

pyramid as its mental model, for top-down code generation.

SPF promotes code reusability through solid recognizability of

code data and intense connectivity from expressibles to executables.

SPF indicates a novel framework of semantic awareness, especially

when centered on the graph-form expression of code-related data.

Its capability to support inspection or manipulation, requirement

elicitation, and multimodal representation is beneficial.

As an exploratory work, top-down code generation is novel but

faces challenges. For example, human-machine interactions could

be very heavy in some cases where requirements are hard to capture

or fulfill. Thus, we focus on realizing the proposed framework in

limited scopes and seek continuous evolutions thereafter.
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