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ABSTRACT

Emotions play a significant role in teamwork and collaborative ac-
tivities like software development. While researchers have analyzed
developer emotions in various software artifacts (e.g., issues, pull
requests), few studies have focused on understanding the broad
spectrum of emotions expressed in chats. As one of the most widely
used means of communication, chats contain valuable information
in the form of informal conversations, such as negative perspec-
tives about adopting a tool. In this paper, we present a dataset of
developer chat messages manually annotated with a wide range of
emotion labels (and sub-labels), and analyze the type of information
present in those messages. We also investigate the unique signals of
emotions specific to chats and distinguish them from other forms
of software communication. Our findings suggest that chats have
fewer expressions of Approval and Fear but more expressions of
Curiosity compared to GitHub comments. We also notice that Con-
fusion is frequently observed when discussing programming-related
information such as unexpected software behavior. Overall, our
study highlights the potential of mining emotions in developer
chats for supporting software maintenance and evolution tools.

CCS CONCEPTS

« Software and its engineering — Collaboration in software
development.

KEYWORDS
emotion analysis, software developer chats

ACM Reference Format:

Anmirali Sajadi, Kostadin Damevski, and Preetha Chatterjee. 2023. Towards
Understanding Emotions in Informal Developer Interactions: A Gitter Chat
Study. In Proceedings of the 31st ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE °23), December 3-9, 2023, San Francisco, CA, USA. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3611643.3613084

1 INTRODUCTION

Emotions can greatly influence teamwork and collaborative ac-
tivities such as software development. Specific tasks have been
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found to be significantly impacted by developer emotions, e.g., bug
fixing [13, 28], and build success of continuous integration [35]. Re-
searchers have extensively studied how developer emotions affect
software development, created approaches for automatically detect-
ing emotions [4, 10, 21, 22] and, in cases, provided recommendations
for the developers [7, 14, 17]. More recently, researchers have stud-
ied complex, emotionally charged psychological concepts such as
toxicity in issue reports [16, 26], and confusion in code reviews [14].
Likewise affective trust between developers of a project was inves-
tigated in pull requests and commit comments [3, 11, 31, 32].

A significant amount of research has been conducted on ana-
lyzing the emotions of developers in various software artifacts,
such as issues, and pull requests [3, 20, 27]. However, surprisingly,
there is a lack of studies on understanding emotions on chat plat-
forms, despite their widespread use among software developers.
Other aspects of developer chats have been previously studied and
it was shown that chats are generally interactive and often used
for informal communications [6, 34] which intuitively makes these
communication platforms a suitable place to express emotions.
Chatterjee et al. noticed that expression of developer emotions is
prevalent in chat communications on platforms such as Slack, IRC,
and Discord [8, 37]. Kuutila et al. investigated Slack and Hipchat
to analyze developers’ sentiments and their impact on productiv-
ity [23]. However, none of these studies systematically analyze
developer emotions in textual chat messages.

In this paper we investigate different types of emotions expressed
in developers’ chat communications. We first select a subset of 400
developer chat messages from the Gittercom dataset [30], and then
manually annotate it with emotion categories (e.g., Anger, Joy) us-
ing Imran et al’s extended emotion taxonomy [20]. Additionally, we
leveraged Pan et al.’s taxonomy to determine the type of information
shared (e.g., programming problems, task progress) in these mes-
sages. Next, we qualitatively analyze the dataset of 400 messages
to understand the relationship between the type of information
conveyed and the type of emotion expressed in the messages. We
aim to answer the following research questions: (RQ1:) What types
of emotions are expressed in developer chats and how are they
associated with specific types of information or developer intent?;
(RQ2:) How do emotions expressed in chats differ from emotions
expressed in other forms of software communications? What are
the specific signals of emotions that are unique to chats?

Our findings show that, compared to the GitHub issue or pull
request comments, chat messages contain fewer instances of ex-
pressing Approval and Fear and more instances of expressing Cu-
riosity, which is expected since chat communications are informal
in nature and often follow a Q&A format. Chat communications
also consists of more emoticons, shorter sentences, and a generally
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more informal tone. These observations can improve the effective-
ness of automatic emotion detection tools by providing insights
into the modifications they require for adapting to chat platforms.

2 METHODOLOGY

Emotion Categories and Detection Tool. Shaver’s taxonomy,
widely used in various software engineering studies [5, 20, 27],
is a hierarchical, tree-structured emotion representation model,
consisting of three levels. The top level comprises six basic emotions:
Anger, Love, Fear, Joy, Sadness, and Surprise. For each basic emotion,
there exist secondary and tertiary-level emotions that provide more
refined granularity for the preceding level. For instance, Optimism
and Hope are the secondary and tertiary level emotions, respectively,
for Joy. In a recent work, Imran et al. noticed that certain emotions
commonly expressed in developer communications were absent
from Shaver’s framework [20]. Therefore, they extended Shaver’s
categories with select emotions from GoEmotions [12]. In this study,
we use Imran et al’s extended taxonomy (Table 1).
Data Selection. For this study, we use GitterCom, a dataset, consist-
ing of 10,000 messages collected from 10 Gitter communities [30].
In order to obtain a goldset, we selected a subset of 400 messages
to be manually annotated with corresponding emotion labels. In
order to obtain a statistically significant sample with confidence of
95%+5%, we sampled 400 messages distributing the samples equally
across 4 different communities [2]. As a measure to avoid the inclu-
sion of text that does not exhibit any emotion, we have decided to
limit our sampling to the instances that contain either a positive
or negative sentiment, since intuitively messages with a stronger
sentiment have a higher potential for expressing emotion. To pre-
process the data, we removed stopwords, urls, and user mentions
from the messages. We also converted the text to lower-case, and
tokenized the words. NLTK VADER [19] was used to automatically
assign a value between -1 and 1 to each message, representing its
sentiment. The authors then randomly selected 200 instances from
the messages with sentiment scores in the first quartile of the value
distribution (strongly positive) and 200 instances from the messages
with sentiment values in the last quartile of the value distribution
(strongly negative). These 400 messages contain 100 chat messages
from each of the four GitterCom projects with the highest number
of users (i.e., scikit-learn, Marionette, jHipster, and Ulkit).
Dataset Annotation. Two human judges with (3+ years) expe-
rience in programming and familiarity with the Gitter platform
annotated the 400 selected messages. The annotators were given
instructions, similar to ones presented in Imran et al’s study [20],
containing details on emotion categories, subcategories, definitions
and examples. The judges were asked to determine whether each
message expresses any of the six basic emotions along with their
secondary and tertiary subcategories. Since chat messages in the
GitterCom dataset are, in many cases, not a single sentence, one
can often extract the context for each message exhibiting an emo-
tion. The annotations, therefore, relied on the emotion expressed
through the entire chat message rather than single sentences.
Next, we adopted Pan et al’s taxonomy to determine the types
of information available in the 400 messages [29]. This taxonomy
categorizes developers’ chat communications into the following
categories: (1) Problem Report: Conversation regarding unexpected
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Table 1: Extended Taxonomy of Shaver’s Tree-structured
Emotion Categories [20]

Basic Emo- | Secondary Emo- | Tertiary Emotion
tion tion
Irritation Annoyance, Agitation, Grumpiness, Aggravation,
Grouchiness
Exasperation Frustration
Rage Anger, Fury, Hate, Dislike, Resentment, Outrage, Wrath,
Hostility, Bitterness, Ferocity, Loathing, Scorn, Spite,
Vengefulness
Anger Envy Jealousy
Disgust Revulsion, Contempt, Loathing
Torment -
Disapproval
Affection Liking, Caring, Compassion, Fondness, Affection, Love,
Attraction, Tenderness, Sentimentality, Adoration
Love Lust Desire, Passion, Infatuation
Longing -
Horror Alarm, Fright, Panic, Terror, Fear, Hysteria, Shock, Morti-
fication
Fear Nervousness Anxiety, Distress, Worry, Uneasiness, Tenseness, Appre-
hension, Dread
Cheerfulness Happiness, Amusement, Satisfaction, Bliss, Gaiety, Glee,
Jolliness, Joviality, Joy, Delight, Enjoyment, Gladness, Ju-
bilation, Elation, Ecstasy, Euphoria
Zest Enthusiasm, Excitement, Thrill, Zeal, Exhilaration
Contentment Pleasure
Optimism Eagerness, Hope
Joy Pride Triumph
Enthrallment Enthrallment, Rapture
Relief -
Approval
‘Admiration
Suffering Hurt, Anguish, Agony
Sadness Depression, Sorrow, Despair, Gloom, Hopelessness, Glum-
ness, Unhappiness, Grief, Woe, Misery, Melancholy
Disappoint Displeasure, Dismay
Sadness Shame Guilt, Regret, Remorse
Neglect Embarrassment, Insecurity, Insult, Rejection, Alienation,
Isolation, Loneliness, Homesickness, Defeat, Dejection,
Humiliation
Sympathy Pity
Surprise Amazement, Astonishment
Confusion -
Surprise Curiosity
Realization

behaviors or bug reports, containing information about (a) Program-
ming problems, (b) Library Problems, or (c) Documentation problems;
(2) Information Retrieval: Conversations initiated and carried on
with the purpose of acquiring or providing information about a cer-
tain topic such as: (a) Programming information, (b) Library informa-
tion, (c) Documentation information, or (d) General information e.g.,
choice of technology; (3) Project Management: Discussion among
contributors and team members about the overall state of their
project and the future plans for their work, such as: (a) Technical
discussion or (b) Task progress e.g., release schedules.

Following the initial annotation phase, the inter-rater agreement
for each emotion category was calculated using Cohen’s Kappa.
The resulting values were substantial for Joy and Love (above 0.6)
and moderate for the remaining four emotions (ranging from 0.41
to 0.60) [36]. To ensure the best possible results, the annotators held
multiple discussions to resolve their disagreements and reevaluated
their annotations iteratively. This process continued until they
reached a Cohen’s Kappa value of 1 and resolved all disagreements.

3 PRELIMINARY RESULTS AND DISCUSSION

RQ1. What types of emotions are expressed in developer
chats and how are they associated with specific types of
information or developer intent?
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Table 2: Example Messages from GitterCom, GitHub Comments, and their Corresponding Annotated Emotions.

Emotion - Primary
(Secondary, Tertiary)

Chat Messages

GitHub Comments (Issues and Pull Requests)

Anger  (Exasperation,
Frustration)

I can be patient for first time but for each prod build it checks
again and thats annoying...

Too bad! Thank you anyway ... This issue is really driving
me nuts ...

Fear (Nervousness, Anx-
iety)

Talways get an error telling me my request can’t be processed
:worried:

I can’t check this locally because they fail with same error
for me even on master

Joy (Cheerfulness, Satis-
faction)

Yea, I'm continually impressed by the community and diver-
sity of the conversation, prs, issues, etc...

You are 100% on the money with this. Turns out the parsing
was incorrect

Sadness (Sadness, Un-
happiness)

@ogrisel what is your plan for the day? I didn’t have much
time on the weekend unfortunately :-/

I don’t think I can, since it is an implementing class. The
analyzer is unhappy with it.

Love (Affection, Fond-
ness)

Thank you and i really appreciate your time on this wonder-
ful framework, I love using it :)

PS: T am fan of yours, I love your content out there! :smiley:

Surprise  (Confusion, | it did? Ididn’t see that. haha I know the open tabs issue. Well | “true” feels like magic. Maybe it should be a default value
Amazement) the “linear" broke some cases of “fit” and “fit_transform” not | provided to the set or a symbol
doing the same thing. Maybe it broke other things, too.
cleeie]l
35 4 s oy EE Surprise - Anger as _
EEN Fear B Sadness s Love 1*
Contentment 13 Pleasure 13 I
-

SciKit-Learn

Jhipster UIKit Marionette)S

Figure 1: Project-wise Freq. of Messages Exhibiting Emotion.

264 out of 400 messages (66%) contained at least one emotion, while
136 messages (34%) expressed no emotions. As indicated by Figure 1,
Joy is the most prevalent emotion expressed in our dataset. Within
the 264 messages that contain emotions, 117 (44.3%) exhibit Joy, 50
(18.9%) Surprise, 46 (17.4%) Sadness, 44 (16.6%) Anger, 43 (16.2%) Love,
and 26 (9.8%) Fear. Fig 1 illustrates the distribution of the emotions
in our dataset across the four Gitter projects. Joy is consistently the
most frequent emotion across all projects while Fear stays the least
expressed emotion in three of the projects. Overall Scikit-Learn,
Fhipster, and UIKit have rather similar distributions of emotions.
Marionette]S, however, tends to be different since it has a more even
distribution over the six emotions. In Figure 2 we show the results
of the annotations for the first, second, and third-level emotions.
Overall, Joy and Sadness stem from more diverse secondary and
tertiary categories compared to the other four basic emotions. Joy
is dominated by the second-level emotions of Cheerfulness and Zest,
which can be an indicator of a positive attitude and environment
in the communities we explored. Sadness, on the other hand, is
more evenly split across two of its second-level categories: Sadness,
which generally expresses a level of dissatisfaction towards the
topic, and Disappointment, which has often been directed towards
unexpected behaviors in software. Anger and Love, in contrast, are
more consistent across the emotion levels. Love, for example, almost
always is categorized as Affection and Fondness on the second and
third levels.

The annotations of the information categories show that the
four most common types of information available in the developers’

Figure 2: Distribution of the Base, Second, and Third-Level
Emotions (n >= 5).

chats are Technical progress, Programming information, Technical dis-
cussion, and Programming problem with 31, 30, 28, and 24 instances,
respectively. The categories related to Library and Documentation
were scarce, with less than 10 occurrences for each category. These
results highlight the prevalence of the exchange of information
regarding general project management, programming-related prob-
lem reports, and programming-related information retrieval in our
dataset. Furthermore, we observed a consistent trend of messages
discussing the technical progress of a project being accompanied by
positive emotions, such as Joy and Love. The messages containing
the Surprise emotion, are correlated with those inquiring informa-
tion about programming or those reporting programming-related
problems. We also noticed that chat conversations frequently in-
volve discussions about unexpected software behavior, which can
elicit Confusion, a sub-category of Surprise in our taxonomy.
RQ2. How do emotions expressed in chats differ from
emotions expressed in other forms of software commu-
nications? What are the specific signals of emotions that
are unique to chats?

To identify the unique characteristics of developers’ chat commu-
nications, we compare our emotion annotations on chat messages
with the emotions in Imran et al’s dataset of GitHub issues and pull
request comments with either positive or negative sentiment [20].
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Table 2 contains examples of chat messages (from our dataset), along
with examples of GitHub comments (from Imran et al’s dataset)
exhibiting the same emotions. In general, chat messages tend to
facilitate more informal conversations, in keeping with the nature
of the communication tool. As one would expect, the length of the
messages in chat communications are generally shorter. GitterCom
dataset messages are on average 5.87 words long (5.09 in our sam-
pled 400 instances), while the 2000 GitHub comments in Imran et
al’s dataset are on average 12.82 words, i.e., more than twice as long.
We also notice a pattern in the more frequent use of emoticons in
chat messages compared to GitHub comments. Emoticons are of-
ten indicators of implicit emotions, and understanding them could
potentially improve the performance of existing emotion detection
tools on software engineering-specific text [10].

We observe that a significant number of instances labeled as Joy
in the GitHub data (~18%) are exhibiting Approval on the second
level. In contrast, in our Gitter dataset only two instances out of the
117 chat messages that exhibit Joy express the writer’s approval.
This inconsistency is expected since GitHub communications of-
ten entail the evaluation of one’s contribution to the project. For
instance, the changes suggested through a pull request in many
repositories are required to be approved by at least one reviewer
prior to being merged. Therefore, approvals exhibiting positive
emotions such as Joy are more frequent in GitHub.

Developers’ chat communications predominantly follow Q&A
formats [9], which may explain the higher prevalence of instances
labeled as Curiosity in our dataset. Around 3.5% of the GitHub issue
and pull request comments presented in Imran et al.’s dataset exhibit
Curiosity, whereas 6.5% of the Gitter chat communications in our
dataset demonstrate some form of this emotion. GitHub comments
may elicit more negative emotions (e.g., Fear and by extension its
subcategories, Nervousness, Worry, and Stress), since they are often
used to discuss issues or bugs in the code and negative emotions
such as Fear are commonly associated with uncertainty and risk. In
line with these expectations, we observe that Fear was present in
9.9% of the GitHub comments and 6.5% of the chat messages. Imran
et al’s annotations also point to some instances of Fear containing
Horror, a 2nd level emotion absent in the our chat messages.

4 IMPLICATIONS

To the best of our knowledge, this study took the first step to-
ward systematically analyzing emotions in developer chat com-
munications. Our analysis of the Gitter dataset revealed a range
of emotions expressed by developers on chats, predominantly oy,
Surprise, and Sadness. We noticed that technical progress in soft-
ware development often evokes positive emotions such as Joy and
Love. In contrast, unexpected software behavior or bugs tends to
elicit negative emotions such as Sadness and Anger. These findings
emphasize the potential to develop automated interventions, such
as emotion-detection bots, that take into account users’ emotional
responses to unexpected events, and suggest potential solutions
in a timely manner [15, 18, 25]. In addition to the basic emotions,
the secondary and tertiary-level emotions enables us to further
analyze the messages and can shed light on the underlying causes
of the dominant emotions in informal developer conversations. For
instance, Amazement or Confusion, subcategories of Surprise, were
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exhibited in chat messages detailing the satisfactory or unexpected
performance of a newly adopted tool. The dominant presence of
Curiosity in chat communications compared to the GitHub com-
ments confirms the prevalence of the Q&A questions in chats. This
suggests that chats are better mining source to design Q&A-based
systems such as conversational search assistants [7, 34].

Limited availability of ground truth data has hindered the ex-
tensive evaluation of existing approaches for emotion detection in
software developers’ written text [24]. As a first step towards ad-
dressing this challenge, we present a dataset of 400 developer chat
messages annotated with Imran et al’s extended emotion taxon-
omy [20], originally based on Shaver’s taxonomy [33]. Our dataset
can be leveraged to analyze developer emotions across various chan-
nels (e.g., chats, pull requests) in a software project. Training tools
on different communication channels in a project, including chats,
offers the potential for building project-specific emotion detectors.

Overall, tools and applications that aim to improve software
development processes and team communication can benefit from
mining developer chats. Chats can provide rich contextual informa-
tion on how developers interact and collaborate in real-time, which
can help identify communication gaps and improve team dynamics.
Proactively identifying negative emotions expressed in chat conver-
sations can help detect potential conflicts, prevent burnout, and im-
prove team collaboration. By analyzing the emotions expressed by
developers towards specific aspects of a project, one can assess their
opinions on particular tools and technologies. Compared to other
artifacts such as issue comments, chats can offer a more informal
and nuanced perspective on developer emotions and interactions.
Chats are often more conversational and spontaneous, allowing for
a broader range of emotions and expressions (e.g., burnout) that
may not be captured in other types of communication.

5 CONCLUSION AND FUTURE WORK

The increasing reliance on chat platforms for virtual communica-
tion among OSS teams and developers in general highlights the
significance of studying these communications to gain a better
understanding of the development process. As a distinct type of
messaging tool, chat platforms provide a unique form of communi-
cation that allows developers to express themselves more sponta-
neously, including exhibiting emotions about specific aspects of a
project. We present a dataset of 400 messages from Gitter, manually
annotated to identify prevalent emotions in developer chats. Our
findings shed light on how emotions are expressed on chat plat-
forms and how they differ from emotions expressed in GitHub issue
and pull requests. We also explored how the emotions vary based
on developer intent and the type of information exchanged in the
chat messages. Our immediate next steps focus on expanding to
a larger dataset, manually annotated with the emotion categories.
This step will help us establish, with confidence, the areas in which
the current automatic emotion detection tools are lacking (e.g., cer-
tain emotions or emotion subcategories) and lay the foundation on
which we can further develop and improve these tools. We make
our annotated dataset publicly available for future research [1].
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