
Incrementalizing Production CodeQL Analyses
Tamás Szabó

GitHub
Germany

ABSTRACT

Instead of repeatedly re-analyzing from scratch, an incremental
static analysis only analyzes a codebase once completely, and then
it updates the previous results based on the code changes. While
this sounds promising to achieve speed-ups, the reality is that so-
phisticated static analyses typically employ features that can ruin
incremental performance, such as inter-procedurality or context-
sensitivity. In this study, we set out to explore whether incremental-
ization can help to achieve speed-ups for production CodeQL anal-
yses that provide automated feedback on pull requests on GitHub.
We first empirically validate the idea by measuring the potential
for reuse on real-world codebases, and then we create a prototype
incremental solver for CodeQL that exploits incrementality. We
report on experimental results showing that we can indeed achieve
update times proportional to the size of the code change, and we
also discuss the limitations of our prototype.

CCS CONCEPTS

• Software and its engineering→ Automated static analysis.

KEYWORDS

Static Analysis, Incremental Computing, Datalog, CodeQL
ACM Reference Format:

Tamás Szabó. 2023. Incrementalizing Production CodeQL Analyses. In Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),
December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3611643.3613860

1 INTRODUCTION

Static analyses play a key role in modern software development
because they help catch potential runtime errors already at develop-
ment time. CodeQL [3] is a static analysis framework that has seen
widespread adoption in industry. CodeQL analyses are written in a
declarative language called QL, which compiles to Datalog under
the hood. The subject program (i.e. codebase to be analyzed) is
extracted into a relational database format, and the CodeQL solver
executes analyses as queries over the database. GitHub Code Scan-
ning comes with a suite of CodeQL analyses for various languages
that provide automated feedback about security vulnerabilities and
potential runtime issues at pull request (PR) review time.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3613860

Performance and precision are key requirements when it comes
to static analyses. On the one hand, the execution time is a key
factor for the adoption of static analyses. Prior research shows that
static analyses have at most a few minutes to compute their results
when they are used as part of a code review process in continuous-
integration (CI) environments [9, 17, 27]. Failing to meet this timing
constraint interrupts the development flow, which quickly leads
to disuse of the analyses. On the other hand, developers expect
that static analyses faithfully capture the program behavior, so that
they do not report errors that cannot actually occur at runtime.
Unfortunately, these two requirements are at odds with each other,
and static analysis designers must carefully strike a balance be-
tween them. CodeQL approaches this trade-off from the angle of
precision because CodeQL analyses are highly sophisticated by
design. CodeQL supports many popular programming languages,
and, for all these languages, the CodeQL analyses use features
and building blocks that are responsible for good precision; rang-
ing from inter-procedural reasoning through context-sensitivity
to field-sensitivity. This also means that the CodeQL solver has a
difficult task, which it addresses by using a range of optimizations
developed in the Datalog and database community [3, 14]. Still, for
large projects, even this is not enough, and the execution time can
grow well beyond the desired few minutes ballpark.

Researchers have long been investigating various techniques
that can help speed up static analyses. Examples include parallel ex-
ecution [16, 22], compositional analysis formulation [8, 11], partial
evaluation [18, 23], demand-driven execution [28, 30], or incremen-
talization [33]. When it comes to delivering updated analysis results
on a PR, incrementalization seems like an obvious choice. This is
because, instead of repeated re-analysis from scratch, an incremen-
tal analysis reuses the previously computed analysis results and
updates that based on the changed code parts. This aligns with the
life cycle of a PR because that includes multiple rounds of reviews
with small code changes in each iteration. If the computational
effort required to update the previous results is proportional to
the size of the code change (and not the size of the entire subject
program), then significant speed-ups can be achieved. Prior work
shows that this kind of speed-up is a reality for real-world static
analyses [13, 23, 28, 31], but CodeQL does not employ incremental-
ization yet. It is important to emphasize that it is not necessarily
the case that a small input change always leads to a small change in
the analysis result. All those features that make static analyses pre-
cise (e.g. inter-procedurality, context-sensitivity) directly go against
the potential benefits of incrementalization because even a small
program change can have far-reaching transitive effects requiring
re-analysis of a significant part of the subject program. There is
prior work on investigating the incrementalizability of analyses
implemented in Datalog [31, 35], but the results are inconclusive,
and they do not obviously generalize to CodeQL.

ar
X

iv
:2

30
8.

09
66

0v
1

 [
cs

.S
E

]
 1

8
A

ug
 2

02
3

https://doi.org/10.1145/3611643.3613860
https://doi.org/10.1145/3611643.3613860

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tamás Szabó

In this paper, we conduct a study to investigate if and how we
could use incrementalization to speed up production CodeQL anal-
yses. We start off by clearing our doubts about whether incremen-
talization can be effective at all for CodeQL analyses. Following the
idea of Szabó et al. [31], we conduct an impact benchmark using
real-world Ruby codebases with a sophisticated data flow analysis.
Our goal is to empirically reason about how much of the previously
computed analysis results can be reused on average throughout a
series of real-world commits, thereby measuring how much poten-
tial benefit we could get from an incremental analysis. We conduct
this experiment without an actual incremental solver, just by using
the existing CodeQL analysis pipeline. We find that there is a lot
of potential for reuse and, with that, for speed-ups in updating
previously computed results. This observation proves for us that it
indeed makes sense to experiment with prototyping an incremental
solver for CodeQL.

Given the complexity of the existing CodeQL solver, it is a daunt-
ing task to rewrite that to be incremental. Instead, for the purpose of
our study, we prototype an incremental solver termed iQL based on
an off-the-shelf incremental Datalog solver called Viatra Queries
(VQ) [5]. We chose VQ because it has been reported to deliver
good incremental performance and because it is already used as
the back end of an incremental static analysis framework called
IncA [32]. The challenge in our work is that while VQ has good
expressive power in terms of the kinds of operations it can in-
crementalize, it is still not sufficient when compared to the kinds
of analyses QL can express. We show how we transform the QL
representation of an analysis to the representation that VQ can
understand while bridging the abstraction gap between the two
systems. Given that CodeQL scales significantly better than VQ
in terms of raw performance, we also show how to execute parts
of an analysis non-incrementally with CodeQL in an otherwise
incremental evaluation governed by VQ. Ultimately, we end up
with a prototype incremental solver that can execute production
CodeQL analyses fully incrementally or in a hybrid setting where
the non-incremental and incremental modes are mixed.

We measure the performance of iQL on real-world Ruby projects
by running the above-mentioned CodeQL analysis incrementally on
their commit histories. We find that the fully-incremental analysis
takes maximum ~15 seconds to update analysis results for commits
affecting up to 1000 lines of code. However, it takes more than an
hour to perform the first from-scratch analysis, and the memory
use (due to caching) of the analysis can go as high as ~70 GB, which
is prohibitive. This is where the hybrid approach shines because
it presents an interesting trade-off opportunity. We find that by
executing all non-recursive parts of the analysis implementation
non-incrementally, we manage to reduce the initialization time
to ~15 minutes and the memory use to ~20 GB. In turn, the incre-
mental update time gets higher compared to the fully-incremental
approach, but it is still below a minute. In both cases, we find that
the incremental update time is actually proportional to the size
of the commit. These results are promising for CodeQL because
they show that incrementalization can deliver fast feedback, but we
also acknowledge that the high memory use requires further work
before incrementalization can make its way to production CodeQL.

This paper makes the following contributions:

Figure 1: A concrete security vulnerability identified by

CodeQL in a Go codebase.

• We identify the challenges that come with the incremental-
ization of production CodeQL analyses (Section 2).

• Wepresent our impact benchmarkwhich investigateswhether
incrementalization can be beneficial at all for production
CodeQL (Section 4).

• We develop iQL based on an existing incremental Datalog
solver called VQ. We discuss how we transform the QL anal-
ysis representation to VQ, and we also discuss the idea of
the hybrid solver (Section 5).

• We benchmark the performance of iQL and show that in-
crementalization can deliver fast enough feedback for PRs
(Section 6).

2 CHALLENGES AND HIGH-LEVEL SOLUTION

APPROACH

We present a motivating example that shows CodeQL in action.
Then we set the stage for our study to figure out whether incre-
mentalization can help at all to speed up CodeQL analyses.

2.1 Motivating Example

CodeQL analyses are widely used in production to identify security
vulnerabilities in GitHub repositories. Figure 1 shows an example
where CodeQL reported a vulnerability in a Go codebase as part of
a PR review. This vulnerability is a clear-text logging of sensitive
information, and it is also categorized in the Common Weakness
Enumeration (CWE) database.1 Based on this feedback, developers
can fix the vulnerability before the code gets merged into the main
branch and then shipped to production. Even though this vulnera-
bility is about a specific analysis and language, CodeQL supports
many programming languages and frameworks,2 and it comes with
a rich set of analyses covering many important vulnerabilities.3

The standard analysis suite for Go contains, among others, the
above-mentioned clear-text logging analysis and takes around 6
minutes to run on this particular codebase comprising 10 KLoC.
While the feedback comes as part of a PR review in Figure 1, the
size of the code change in the PR does not actually matter for the
analysis: It executes from scratch on the whole codebase every
time the PR is updated. For larger projects, the run time can get
significantly higher, and it needs to be paid repeatedly. Research
shows that developers are willing to wait at most a few minutes for
automated feedback on a PR, afterwards they switch context, and
the usefulness of the feedback quickly degrades [9, 17]. Our goal
is to make the analysis time proportional to the size of the code

1https://cwe.mitre.org/
2https://codeql.github.com/docs/codeql-overview/supported-languages-and-
frameworks/
3https://codeql.github.com/codeql-query-help/full-cwe/

https://cwe.mitre.org/
https://codeql.github.com/docs/codeql-overview/supported-languages-and-frameworks/
https://codeql.github.com/docs/codeql-overview/supported-languages-and-frameworks/
https://codeql.github.com/codeql-query-help/full-cwe/

Incrementalizing Production CodeQL Analyses ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

change. To this end we conduct a study where we experiment with
incrementality to deliver fast updates for PRs.

2.2 Prior Work on the Incrementalizability of

Static Analyses

Static analyses often use inter-procedurality or context-sensitivity
to deliver good precision. However, these are exactly the features
that make an analysis computationally expensive. They are also the
reasons why it is not straightforward to answer whether incremen-
tality can help to achieve speed-up for such analyses. For example,
if an analysis reasons about the subject program inter-procedurally,
then it is not necessarily true that a small program change always
leads to a small change in the analysis result because the change
may have far-reaching effects across transitively reachable func-
tions in the call graph. Inter-procedurality is essential to almost
all production CodeQL analyses because vulnerabilities are rarely
local to a single function but instead manifest across a series of
function calls. Thus, it is a question if incrementality can help at
all to speed up CodeQL analyses.

Prior research has already investigated the incrementalizability
of inter-procedural analyses implemented in Datalog. For example,
Szabó et al. used inter-procedural points-to, interval, and constant
propagation analyses on Java codebases from the Qualitas cor-
pus [31, 34]. They measured performance on synthesized IDE-style
program changes to simulate the kind of changes that developers
typically make in an IDE, modifying only individual expressions
or statements. This is in contrast to larger program changes, as
one might see in a commit. The kinds of program changes they
introduced are tailored to trigger the worst-case behavior of the
analyses in the sense that, e.g., changing an allocation site will
affect the result of a points-to analysis with high probability, so that
the analysis will definitely have work to do to update the analysis
result. They reason about the impact of program changes. They
introduce the notion of impact based on how the analysis result
is represented in Datalog, which is about storing both the subject
program and the analysis result as sets of relations in databases.
They measure impact as the size of the diff between two database
snapshots (representing two analyses results) in terms of the overall
number of tuples that get inserted or deleted in any relation. They
find that the majority of the program changes have small impact,
which is a necessary condition for incrementalizability.

Zhao et al. also investigate this topic with an inter-procedural
points-to analysis adapted fromDoop running on a Java codebase [7,
35]. They also synthesize program changes: They randomly select
a subset of the tuples (up to 1000) from the database that represents
just the subject program (without the analysis result), and they
delete and then re-insert those tuples while measuring the impact
as explained before. They find large variability in impacts and
argue that incrementalization does not necessarily always help.
They create an incremental solver that does not actually always
perform an incremental update, but, based on heuristics, restarts
the analysis from scratch if the impact of a change is deemed too
high. It is not clear if these two pieces of related work contradict
each other because they use different analyses and code changes,
but they are indicators that more exploration is needed to figure
out if CodeQL analyses can benefit from incrementalization with
commit-style changes. This leads us to our first challenge:

Figure 2: High-level architecture of the CodeQL analysis

pipeline. Rectangles are individual analysis components.

Rounded rectangles are the inputs to CodeQL: the subject pro-

gram and the analysis. Ovals are output artifacts. Language-

specific components are shaded.

Incrementalizability (C1): Does incrementalization have po-
tential for speeding up production CodeQL analyses? Can we an-
swer this without actually implementing an incremental solver?

Solution approach We also conduct an impact measurement.
We use real-world Ruby codebases with their commit histories and
a sophisticated CodeQL data flow analysis and show that incre-
mentalization indeed has potential to speed up CodeQL analyses
(Section 4).

2.3 Challenges of Incrementalizing CodeQL

Assuming that the impact measurement yields promising results,
we now want to investigate what it would take to actually incre-
mentalize the CodeQL analysis pipeline and the challenges that
come with that. We must first briefly review the main components
of CodeQL.

Figure 2 shows the high-level architecture of CodeQL. The sub-
ject program is given to CodeQL as text, i.e., the code that is stored
in a GitHub repository. The trap extractor is a language-specific
component that creates so called trap files. Trap files encode various
information about the subject program that CodeQL analyses later
could require, such as an abstract syntax tree (AST) representation
of the program, represented in a relational format. Each supported
language has its own database schema defining the available rela-
tions. For dynamically-typed languages, such as Ruby or Python,
the trap extractor only extracts information from the AST. For other
languages, the trap extractor may require compilation and build
tasks, so that it can also extract derived information about the pro-
gram, i.e. type hierarchy or macro expansions. The trap importer is
language-independent, and it builds the extensional database (EDB)
from a set of trap files. The EDB represents the subject program in
relational form.

The CodeQL compiler and solver takes the EDB and the QL anal-
ysis definition as input to first compile the analysis and then com-
pute the analysis result which is also called the intensional database

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tamás Szabó

(IDB). The QL analysis is defined with the declarative QL language,
and the CodeQL solver completely hides the execution details. It
is important to emphasize that CodeQL does not usually store the
entire IDB explicitly but only populates that on demand. Using the
analysis result, we can then provide feedback to developers on the
GitHub UI.

Incrementalization of the CodeQL analysis pipeline requires that
every component of the pipeline is either truly incremental or fast
enough that it does not become a bottleneck for performance. This
leads us to two more challenges:

Front end (C2): Can we make the CodeQL front end (trap
extractor and importer) incremental?
Back end (C3): Can we create an incremental solver that sup-
ports production CodeQL analyses?

Finally, we also want to get empirical evidence about performance,
which leads us to the following challenges:

Update time (C4.1): Can we achieve incremental update times
that are (i) below aminute on average per commit and (ii) propor-
tional to the size of the analyzed commit? The minute threshold
is reasonable for PR-style feedback based on prior studies in this
area [9, 17].
Init time (C4.2): Does our incrementalization approach come
with an acceptable initialization time?
Memory use (C4.3): Is the extra memory use induced by in-
crementalization acceptable? CodeQL analyses are typically
executed on standard GitHub Actions runners with 7 GB of
memory,4so we ideally want to stay below that threshold.

Solution approach When it comes to the front end of CodeQL,
it turns out that non-incremental parsers are already able to parse
source files in milliseconds which is fast enough to enable their
use even in an incremental analysis pipeline [33, Chapter 7]. We
acknowledge though that for compiled languages CodeQL requires
more than just parsing, so this is not a full solution in general, but
it is still sufficient for our study given that we target Ruby. To this
end, we focus on the construction and incremental maintenance of
the EDB. We show that the current CodeQL front end is not com-
patible with incrementalization because it is unable to reuse parts
of the EDB that belong to unchanged code parts which degrades
incremental performance later in the analysis phase. The root cause
of this issue lies in the way how ids are generated for program
elements in the EDB. We fix this problem by using an alternative
id generation approach which ensures that unchanged program
elements get the same ids assigned across commits (Section 4). Next,
we create an incremental solver called iQL for QL analyses based
on an off-the-shelf incremental Datalog solver called VQ (Section 5).
Finally, we benchmark the performance of iQL on real-world Ruby
projects (Section 6).

3 BACKGROUND ON CODEQL AND VQ

Before we delve into the details of our approach, we first present
some background material on CodeQL and VQ.

4https://gh.io/AAjpnuo

Figure 3: An example Ruby code snippet and a fragment of

its AST. Each AST node has an associated label.

3.1 CodeQL

QL language features While the surface syntax of QL looks quite
unlike Datalog, it actually gets compiled down to a fairly standard
Datalog dialect called DIL. Recursion is central to QL, and it is
implemented using least fixpoint semantics. Since QL also supports
negation and non-monotonic aggregates, restrictions have to be put
into place to ensure a well-defined semantics. Other Datalog dialects
generally insist on strict stratification whereby recursion through
negation is not allowed [14]. QL relaxes this requirement and allows
parity-stratified negation which means that recursive calls under an
even number of negations are allowed, though recursion through
other non-monotonic operators is still forbidden.5

QL also defines a number of built-ins that are awkward or im-
possible to express in standard Datalog to provide operations that
are frequently used in static analyses, such as computation of dom-
inator trees or shortest paths. Built-ins have implementations in
Java, which CodeQL invokes during the evaluation process. QL
also supports user-defined algebraic data types (ADTs), which are
used heavily in the standard analysis suite. This is a big jump in
expressive power considering that standard Datalog does not al-
low the construction of any kind of new value. Virtually every
QL analysis uses ADTs. At runtime, ADTs also require the gen-
eration of fresh ids in order to distinguish between the various
instances [21]. Finally, QL supports complex recursive aggregations
(including non-monotonic ones) which are challenging even in a
non-incremental setting [10].
Front end We already discussed that both the subject program and
the analysis result are represented in relations. The trap extractor
emits instructions in trap files that will determine what kind of
tuples get inserted into the EDB during trap import. As an example,
consider the code snippet on the left in Figure 3 and a fragment
of its AST on the right. A fragment of the trap file associated with
this code snippet looks as follows.

#m = @"example.rb#search_array"

#w = *, #b = *, #c = *

ruby_method_def(#m, 'search_array(arr, target)')

ruby_while_def(#w, #b, #c)

The trap extractor uses keys to refer to program elements. Keys
will get turned into integer ids later by the trap importer, but
the actual values of integer ids do not matter at extraction time.
5It is important to note here that QL (and DIL) are not Horn-clause based, and rule
bodies can contain arbitrarily nested first-order logic formulas. In Horn clauses, of
course, calls always appear under at most one negation, so parity stratification does
not make sense.

https://gh.io/AAjpnuo

Incrementalizing Production CodeQL Analyses ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Global keys are represented with a string value, and multiple oc-
currences of the same global key will get the same id assigned
through string interning. For example, we assign the global key
@"example.rb#search_array" to label #m. Here, we prepend the
container file’s path before the name of the method because this
gives us a globally unique reference to the method. For the other
AST nodes, we use local keys (*), which simply prescribes for the
trap importer the generation of a fresh integer id without sharing
of the value. The trap importer uses a globally incremented counter,
and it rolls out ids sequentially. We access the local keys through the
other labels (#w, #b, #c) and then emit one tuple each in relations
ruby_method_def and ruby_while_def. The trap importer will
instantiate the real tuples later and insert them into the EDB.
Back end QL code first gets compiled to DIL, which, in turn, gets
compiled to a low-level relational algebra (RA) representation. The
CodeQL compiler performs numerous optimizations both on the
DIL and on the RA level, including constant folding, dead-code
elimination, and join ordering. Join ordering is particularly impor-
tant because real-world codebases typically produce relations with
millions of tuples, so a single inefficient join can make the evalua-
tion intractable. The evaluation of recursive analyses is challenging
in general in Datalog. CodeQL employs a well-known technique
called semi-naïve evaluation for this purpose. This means that a
recursive program gets evaluated with an iterative fixpoint compu-
tation where each iteration only considers newly computed results
from the previous iteration to improve performance [14]. At least
a conceptual level, semi-naïve evaluation operates with different
auxiliary predicates that compute e.g. the set of all tuples computed
in the previous iteration, the set of new tuples (i.e. not inferred
before) computed in the previous iteration, or the tuples computed
thus far in the current iteration. Typically, Datalog solvers perform
semi-naïve computation implicitly without requiring the auxiliary
predicates to be present in the input Datalog program. However,
CodeQL generates the helper predicates explicitly during compila-
tion, and the presence of the predicates is heavily woven into the
downstream compilation stages.

3.2 Viatra Queries

VQ is a model transformation framework primarily used for Eclipse
Modeling Framework (EMF) models. On the surface, it comes with
the Viatra Query Language (VQL) to formulate queries used to
retrieve information from modeling artifacts. A VQ query is essen-
tially the same as a Datalog predicate. VQL is similar to Datalog
both in expressive power and in terms of its language constructs.
VQ uses an incremental Datalog solver that can execute queries in-
crementally in response to changes in the input model. The model
representation and change notification mechanism of VQ is ab-
stracted away from EMF, so we can plug in any data representation
that adheres to the VQ APIs.

Under the hood, VQ uses a computation network for incremen-
talization. The input to the network is a set of relations. A VQ query
is broken down into relational algebra operations (e.g. join, filter,
union), each having an incremental implementation. Changes to
the input must be communicated to VQ in the form of tuple inser-
tions and deletions. Each node in the network caches its results.
In the face of incoming changes, the nodes incrementally update

their results and then propagate the delta (that is, the difference
between the old and the new result) on the outgoing edges. The
change propagation goes on until the result of each node stabilizes.
The fixpoint computation follows semi-naïve just like in CodeQL,
but VQ does not need any auxiliary predicate to be present.

In terms of absolute performance of from-scratch execution,
CodeQL scales better and to larger programs, but VQ trades off
initialization time and memory use for incremental update time.
For example, IncA [31] which is an incremental static analysis
framework based on VQ could achieve millisecond update times
for inter-procedural analyses. Compared to CodeQL, VQ does not
employ so many optimizations at compile time, but VQ is a highly
extensible framework, so optimizations or even new language fea-
tures are fairly easy to add. VQ only uses dynamic join ordering
based on simple heuristics.

4 INCREMENTALIZABILITY OF CODEQL

ANALYSES

This section investigates the potential for reuse when it comes to
production CodeQL analyses and real-world codebases, thereby
giving an estimate on how much we could gain with incrementality.
Measurement setup To measure the incrementalizability of
CodeQL analyses, we also perform impact measurements inspired
by prior work [31, 35]. We use real-world subject programs. The
repositories we selected are all trending projects on GitHub with
several thousand stars. Our benchmark analysis is based on a pro-
duction CodeQL analysis used to find SQL injection vulnerabilities.6
The original analysis is based on taint tracking across data flow
paths, and it employs many of the features that are responsible
for good precision, e.g. inter-procedurality, context-sensitivity, or
field-sensitivity. The analysis also has a lazy implementation, which
means that it stops with the propagation of data flow facts as early
as possible if it finds that there are infeasible data flow paths. Given
that our benchmark codebases do not necessarily have SQL injec-
tion vulnerabilities, we modified the original analysis by changing
what kind of data flow nodes should be considered as sources and
sinks by the analysis. We connect all formal parameters of the func-
tions with all actual arguments of function calls to eliminate the
laziness of the analysis, thereby making it computationally expen-
sive even in the absence of SQL injection vulnerabilities.We selected
altogether 6 Ruby projects for benchmarking. The complete list is
in Appendix A. We chose Ruby because the Ruby fact extractor
has the simplest implementation out of all the language front ends
in CodeQL. It only requires parsing the source code, without any
complex integration with a build system as for compiled languages.
Choosing Ruby only really simplifies the fact extraction, but other-
wise the analysis is representative in terms of its complexity across
the production CodeQL analyses.

For each project, we use the newest 1000 commits from the his-
tory. For each commit, we take the EDB, and we force CodeQL
to create an explicit representation of the entire IDB (which it
would not do otherwise due to optimizations). We measure the
size of each commit by summing up the number of lines of code
that get deleted or inserted. A line modification is represented as a

6https://cwe.mitre.org/data/definitions/89.html

https://cwe.mitre.org/data/definitions/89.html

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tamás Szabó

2

8

35

147

616

2582

10819

45333

189938

795813

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,5

0
0
0
]

(5
0
0
0
,1

0
0
0
0
]

(1
0
0
0
0
,2

6
5
6
5
]

Size of program change as number of ins/del lines

Im
p

a
c
t

o
n

 E
D

B
 d

if
f

(l
o

g
)

Impact on EDB ~ Number of lines changed

0

5

10

15

20

25

30

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,5

0
0
0
]

(5
0
0
0
,1

0
0
0
0
]

(1
0
0
0
0
,2

6
5
6
5
]

Size of program change as number of ins/del lines

C
h

a
n

g
e

 r
a

te
 o

f
p

re
v
io

u
s
 a

n
a

ly
s
is

 r
e

s
u

lt
 (

%
)

Change rate of IDB ~ Number of lines changed

0

20

40

60

80

100

120

140

160

180

200

220

240

0 5 1
0

1
5

2
0

2
5

Change rate of previous analysis result (%)

C
o

u
n

t
o

f
c
o

m
m

it
s

Distribution of commits ~ Change rate of IDB

Figure 4: Impact measurement results with optimized id generation on the spree project.

deletion-insertion pair. We diff consecutive EDB and IDB snapshots
to compute impacts. We emphasize that there is no incrementality
involved in these measurements. We simply would like to under-
stand first how impact relates to the commit size without an actual
incremental solver.
Using the production CodeQL pipeline First, we used produc-
tion CodeQL for the measurements. We report on the spree project,
which is an e-commerce platform comprising ∼ 73 KLoC Ruby code.
We find that throughout the commit history the average number of
tuples in the EDB is 2.76 million and the average number of tuples
in the IDB is 217.41 million. We find that irrespective of the commit
size, the average impact on the EDB throughout the commit history
is 4 million tuples. This number is actually higher than the size
of an individual EDB. This means that, even for small commits,
we essentially reconstruct a new EDB because we delete most of
the previous contents and then insert a large number of new tu-
ples. This is obviously not compatible with incrementalization. We
would expect that, at least for small commits, only a small fraction
of the EDB changes. Unfortunately, we have not even computed
the analysis result: This is just for the representation of the subject
program in the EDB! The average impact on the IDB is 209 million,
which is again bad for incrementality. For space reasons, we only
talk about one specific project here, but, for all other projects we
considered, we found similar high impacts.
Using stable ids We investigated in detail the root cause of the
high impacts, and we found that to be due to the lack of stable ids
for AST nodes and ADT values. Recall that the trap importer rolls
out ids sequentially based on a counter, so a small change to one file
may end up shifting ids for all the AST nodes later in the file and all
subsequently imported files. Similarly, the CodeQL solver assigns
ids to ADT instances sequentially, again offering no guarantee that
the same ADT instance will be given the same id across different
runs. This leads to a huge number of spurious changes. We mitigate
this problem in two steps.

First, we modified both the trap extractor and importer. In the
extractor, we implemented a new approach for constructing global
keys for every AST node based on paths in the AST. When we
traverse the AST to create the trap files, we recursively assemble

a node path that describes how we can get to a node across con-
tainment edges. For example, a path like 𝑟_1_3 gets associated with
a node which can be reached from the root if we take the first
child under the root, then the third child after that. If we prepend
the full file path of a source file before such node paths, we get
globally unique keys. We do not use an id counter anymore in the
trap importer. Instead, we calculate an integer hash from the global
key and use that in the actual tuples. This approach of course does
not help in all situations to ensure stability because e.g. it does
not survive a node shifting across commits, but it still significantly
helps in id reuse. This kind of id generation is a must if we want to
incrementalize the front end of CodeQL (cf. Front end (C2)).

Second, we employ a workaround to reuse ids for ADT instances.
CodeQL can dump the id assignment of ADT instances to disk.
As we proceed along commit pairs in the measurement, we dump
the id pool when we process the old commit, and we augment the
analysis run for the new commit to reuse the same id assignment
whenever possible based on the pool.

Using these two improvements, Figure 4 shows our new mea-
surements on the spree project. Appendix A presents the results for
several other projects. The first sub-figure shows the correlation
between the impact on EDB and the size of commit. The commits
are arranged into buckets in terms of how many lines of code they
affect. The impact on the EDB is proportional to the size of the
commit, and the impact maxes out at around 800,000 tuples which
is much smaller than the overall size of the EDB. We show change
rates for the IDB. The change rate tells us the ratio of overall num-
ber of tuples deleted or inserted (to get to the new IDB) to the size of
the old IDB. The lower the value the better. The middle sub-figure
shows that the change rate is also proportional to the commit size.
Up to 1000 changed lines in a commit, the change rate is at or be-
low 5 %, which is exactly the kind of number we look for because
it demonstrates that we can gain a lot with incrementality. The
right sub-figure shows the distribution of the commits. The x-axis
shows the change rate, and the y-axis shows how many commits
(out of the 1000) produce a certain change rate. The majority of
the commits produce a low change rate. The other codebases we
considered also produced similar results.

Incrementalizing Production CodeQL Analyses ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Regarding Incrementalizability (C1): Given that our bench-
mark analysis is representative in terms of its complexity when
it comes to production CodeQL analyses and based on the re-
sults of the impact measurements, we conclude that CodeQL
analyses are amenable to incrementalization.
Regarding Front end (C2): We found that the production
CodeQL front end is not compatible with incrementalization.
For an incremental analysis pipeline, it is crucial to employ
an id generation strategy that ensures stability as we process
code changes. Our approach based on node paths satisfies this
requirement.

The impacts measured here are solver-independent, and they give a
lower bound on the amount of work that any solver would need to
do to update the analysis result. Even though we used the CodeQL
solver in our setup, ultimately the analysis specification and the
schema of the database determine the impact values.

We also conducted some initial experiments with the Java front
end of CodeQL. The Java front end is much more involved in the
sense that it extracts information beyond the AST. It actually in-
vokes the build process of the given project (e.g. Gradle or maven
build) and dumps information about e.g. type hierarchy or generics,
as well. Due to these differences, it turned out to be technically
much more difficult to employ our node path-based id generation
strategy because that would have required changes to the Java com-
piler. Instead, we came up with a different strategy that ensures
that the same ids get rolled out for program elements originating
from unchanged source files considering a commit pair without any
kind of id alignment guarantee for program elements originating
from changed source files. Due to space reasons, we discuss this
strategy and present results only in Appendix A. In sum, we found
that the impact is proportional to the size of the code change in
case of Java codebases, as well.

5 IQL: INTEGRATING CODEQL WITH VQ

Asmentioned above, our prototype system iQLworks by translating
CodeQL queries to VQ queries, which are then run by the VQ solver.
To translate from QL to VQ, we first run the CodeQL compilation
and optimization pipeline to convert QL (through DIL) to CodeQL
RA and, from there, compile to VQ RA. This has two main benefits:
(i) RA is a much smaller language than QL (or DIL), with a lot of
syntactic sugar removed, and (ii) we can take advantage of the
optimizations that the CodeQL compiler performs. Table 1 shows
the main challenges of the translation and how we address them.
Challenges due to differences arising at runtime The first two
challenges have to do with the way the systems deal with recursion
and join ordering. As mentioned in Section 2.3, CodeQL implements
semi-naïve evaluation by explicit code generation, while VQ imple-
ments it natively in the solver. This discrepancy can be resolved
by turning off the pass of the CodeQL compiler that generates the
auxiliary predicates.7 Join ordering in CodeQL is done at compile
time, with the RA statically encoding the join order. VQ dynam-
ically reorders joins at runtime. We deal with this by extending
VQ to allow passing join-ordering hints taken from the CodeQL
compiler, which the VQ solver uses at runtime.
7Note that this means the resulting program is no longer runnable by CodeQL, but
this is not a problem for our study.

Challenges due to different expressive power The remaining
challenges have to do with missing or divergent features inVQ. Two
commonly-used key features of QLwithout a direct equivalent were
reimplemented from scratch. One is the so-called tuple numbering
operator, which assigns a unique integer to each tuple in a relation
and serves as the basis of CodeQL’s implementation of ADTs. VQ
does not have a direct equivalent and the CodeQL implementation
of this operation is too deeply tied to the internals of CodeQL to
port, so we instead rewrote it from scratch, using a simple global
cache keeping a mapping from all previously seen tuples to their
unique identifiers. This is not a plausible solution for real-world
usage since we can never know when we do not need a tuple
anymore and hence the cache grows without bound, but it suffices
for our study. The other key feature we reimplemented are QL’s
aggregation operations on strings that have no directVQ equivalent,
but were fairly straightforward to add.

CodeQL’s built-in operations are a bit more complicated. While
VQ offers similar operations in some cases (e.g. transitive closure),
we decided against adapting them or reimplementing missing built-
ins from scratch to avoid the risk of introducing subtle incompati-
bilities. Instead, we directly lifted the Java implementation of these
built-ins from the CodeQL engine, wrapped in a translation layer to
convert between the respective storage formats for CodeQL and VQ
relations. This ensures not only that the operations are semantically
equivalent, but also that they have the same performance. However,
the CodeQL built-ins are not incremental, and fitting them into
the otherwise incremental evaluation in VQ is somewhat involved.
There is a VQ computation node behind every built-in appearing in
the analysis. Whenever such a node gets notified about changes to
its input relations, it computes the updated input relations in full,
and feeds them to the wrapped CodeQL built-in (which can only
work on complete relations, not on deltas). The result of the built-in
is then diffed against the previous result, and the delta is propa-
gated to the dependent nodes. Given that VQ normally propagates
individual tuples without batching them, repeatedly re-evaluating
a built-in from scratch can easily become a performance bottleneck.
To avoid this situation, we modified the implementation of the
computation network in VQ to (i) batch the inputs of built-ins and
(ii) schedule the invocation of nodes evaluating built-ins only after
all their incoming updates have arrived.

The two most complicated features of QL that we had to deal
with are parity-stratified recursion and recursive aggregates. How-
ever, it turns out that in practice neither of these two features is
very widely used, and the code that does use them can be rewrit-
ten to avoid them, at some cost in readability. Since our aim is to
study the potential for incrementality in CodeQL, not to provide a
complete incremental CodeQL implementation, we decided to take
this approach.
Hybrid evaluation While the translation outlined before works
and produces correct VQ programs whose results can be updated
very efficiently, these programs are much bigger than what VQ has
been designed to handle. As we will see in Section 6, even on small
subject programs, the memory use of iQL can be prohibitive.

To address this problem, we study a hybrid evaluation strategy
where parts of the program are evaluated non-incrementally by

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tamás Szabó

Feature QL VQ Translation

semi-naïve evaluation explicit implicit turn off auxiliary predicate generation
join ordering compile-time runtime modify VQ to inherit the join order computed by CodeQL

tuple numbering supported not supported add support to VQ
aggregation operators many few add support for missing operators to VQ
built-ins many few add support to VQ by wrapping CodeQL implementation
parity stratification supported not supported eliminate by rewriting
recursive aggregates different semantics eliminate by rewriting

Table 1: Summary of how the translation from QL to VQ handles missing and divergent features

Figure 5: Transformation strategies from CodeQL to VQ: (A)

Example dependencies between QL predicates, (B) transfor-

mation strategywhich creates oneVQ query per QL predicate,

(C) chaining transformation strategy.

CodeQL, and the results are integrated into the overall VQ pro-
gram similar to how built-ins are evaluated. The reason why this
is interesting is that the parts of the analysis that are evaluated
non-incrementally do not require intermediate caching but only
at the point where the final (partial) results appear. By choosing
which parts of the program to evaluate non-incrementally, we can
trade off CodeQL’s superior scalability for VQ’s incrementality.

As mentioned above, we have to turn off CodeQL’s semi-naïve
transformation to enable translation to VQ. This means that the
recursive predicates have to be evaluated by VQ. We still have
freedom in deciding how we evaluate the non-recursive predicates.
Consider the QL program shown schematically in Figure 5 A: It
consists of one EDB predicate p1, and seven IDB predicates p2
through p8. The arrows indicate dependencies, so, for example,
predicate p2 depends on p1, while p5 and p6 recursively depend on
each other. For the non-recursive predicates, a very simple approach
would be to wrap each of them individually in a VQ query that calls
out to CodeQL for evaluation, translating back and forth between
the respective storage formats similar to how built-ins are handled.
Figure 5 B shows this approach: each of p1, p2, p3, p4, p7, and p8
are wrapped in a VQ query, while p5 and p6 are translated into VQ
queries q5 and q6. This approach, however, makes things worse:
Not only are the wrapped predicates evaluated non-incrementally,
but the transformation happening at the VQ-CodeQL boundary
introduces significant overhead both in memory use and run time.

To address this, we use a refined translation strategy shown in
Figure 5 C. As before, EDB predicates are individually wrapped in
VQ queries. IDB predicates are grouped into chains, where a chain
is a maximal sequence of (non-recursive) IDB predicates that each
flow into at most one other predicate. In the example, we identify

one non-trivial chain p4, p7, p8, while the remaining predicates
form a single-element chain each. Note that while it may sound
like a good idea to group all the non-recursive predicates together,
we can’t actually do that because they may interact with recursive
predicates. Also, the requirement for at most one outgoing flow
is intentional because this way, if a predicate is a fork point (like
p2), then we will benefit from the caches (at p2) shared by the fork
endpoints (p3 and p4). In the following, when we use the term
hybrid solver, we refer to the approach based on chaining.

6 PERFORMANCE BENCHMARKING OF IQL

This section investigates all research challenges formulated in Sec-
tion 2 that are related to performance.
Measurement setup We benchmark the performance of iQL with
real-world Ruby projects and their commit histories using the same
benchmark analysis that we used for the impact measurements in
Section 4. Technically, the Ruby front end is implemented in Rust,
and iQL and VQ are implemented in Java. iQL is a closed-source
project because it integrates tightly with CodeQL, and CodeQL is a
closed-source project. Due to scalability issues in memory use, we
only use two smaller Ruby projects: pagy comprising 6 KLoC code
and errbit comprising 9 KLoC code. For each project, we use 200
commits from the history. Our Ruby front end makes use of the id
generation strategy described in Section 4, but the front end itself
is not incremental. Instead, we precompute the EDB differences:
Given every commit pair (𝑐𝑜𝑙𝑑 , 𝑐𝑛𝑒𝑤), we compute 𝐸𝐷𝐵𝑜𝑙𝑑 and
𝐸𝐷𝐵𝑛𝑒𝑤 and then diff them. We then perform a from-scratch anal-
ysis using 𝐸𝐷𝐵𝑜𝑙𝑑 to compute 𝐼𝐷𝐵𝑜𝑙𝑑 . We make use of both kinds
of incremental solvers in iQL: the fully-incremental one which only
executes the built-ins non-incrementally and the hybrid one which
makes use of production CodeQL for the execution of non-recursive
predicates, as well. We measure the wall-clock initialization time.
Then, we take the EDB delta between 𝐸𝐷𝐵𝑜𝑙𝑑 and 𝐸𝐷𝐵𝑛𝑒𝑤 and let
iQL perform an incremental update on 𝐼𝐷𝐵𝑜𝑙𝑑 to compute 𝐼𝐷𝐵𝑛𝑒𝑤 .
We measure the incremental update time and also the stationary
memory use (after explicit GC invocation) of iQL before and af-
ter the incremental update. We automated all of these steps and
executed the benchmarks on GitHub Actions.
Correctness To ensure that iQL performs correct incremental
updates, we have set up automated verification machinery. Before
and after an incremental update, we check that iQL computes the
exact same results as what production CodeQL would compute.
We diff all relations in the IDBs, and we make sure that those are
identical. The only difference we allow is the actual values of fresh
ids, but that is expected as the two systems use different strategies.

https://github.com/ddnexus/pagy
https://github.com/errbit/errbit

Incrementalizing Production CodeQL Analyses ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Figure 6: Results of the performance benchmarking: pagy on

the left and errbit on the right.

Results Figure 6 shows our benchmark results. The plots on the
top show the incremental update times relative to the size of the
code changes. The commits are grouped into change size buckets.
The dots represent the mean value in a given bucket. The gray areas
show the standard deviation of the values with 95 % confidence. The
lines are shown to provide visual guidance, and they are computed
as a linear regression fit onto the data points. We show the results
for both codebases using the two evaluator approaches. The plots at
the bottom show the ratio of the incremental update times relative
to the initialization time. We summarize the initialization time and
memory use below:

full hybrid

init (min) mem (GB) init (min) mem (GB)

pagy 66.10 70.68 14.40 21.52
errbit 67.10 72.61 14.72 22.51

In terms of the incremental performance, we see very promising
results. There is a linear correlation between the update time and
the commit size in all cases. The fully incremental approach is better
in terms of update times than the hybrid one, but this is expected, as
the latter one executes a large part of the analysis non-incrementally.
For all size buckets, the fully incremental approach delivers update
times in around 15 seconds or less, while the hybrid one is also
well within the one-minute ballpark. The ratio of update time to
initialization time is less than 1 % in case of the fully incremental
approach, which shows that iQL can indeed exploit the potential for
speed-ups as forecast in Section 4. While it is not a fair comparison,
it is worth pointing out that the production CodeQL solver requires
around a minute to execute the same analysis from scratch on these

codebases when all caches are turned off.8 This means that the fully
incremental approach is actually competitive in this regard against
a production system, even though it is only a prototype.

The initialization time is now a different story when it comes to
the fully incremental approach. We see run times of about an hour,
which is significantly slower than production CodeQL. However,
the hybrid approach presents an interesting trade-off opportunity,
as its initialization time is only around 15 minutes. Considering
that the incremental update times of the hybrid one were also less
than a minute, this option may present a good choice in general.
Interestingly, the initialization times do not change much between
the two codebases. It turns out that our benchmark analysis pro-
duces a very complex and large computation network in VQ, and
building that actually becomes a dominating factor in the run time.
These differences also make it clear that production CodeQL simply
scales significantly better than VQ. We argue though that even the
one-hour initialization time is acceptable, as we could precompute
the results for select “main” branches and compute the results for a
PR with incremental updates from those.

The biggest obstacle right now is the memory use. The several
tens of GB values for the fully incremental approach are prohibitive.
The hybrid approach helps to reduce these numbers significantly,
but even ~ 20 GB is too large for a regular GitHub Actions runner.
Even with these results, we believe that our study is useful because
it demonstrates the potential of incrementalization.

Regarding Update time (C4.1): The incremental update times
are within the 1 minute ballpark for both approaches, and the
incremental update time is proportional to the commit size.
Regarding Init time (C4.2): The fully-incremental approach
requires around 1 hour to perform a from-scratch run, while
the hybrid approach requires around 15 minutes. Both of these
values are acceptable given that they are not too high in absolute
terms, and we can precompute results.
RegardingMemory use (C4.3): The memory use of the fully-
incremental approach is very high, but the hybrid approach
comes with significantly better memory use. More work would
be needed to improve the memory use in a production incre-
mental solver.

7 RELATEDWORK

In Section 2.2, we already discussed prior work on the incremen-
talizability of Datalog-based static analyses. Here, we contrast our
work to other related areas.
Studies on the use of static analyses There are several studies in
the literature which investigate what developers expect from static
analyses. We highlight some key observations here. Christakis and
Bird point out that (i) developers in their study care a lot about
low false positive rate, (ii) 77 % of them would appreciate if an
analysis could be governed to only analyse a change as opposed to
the entire codebase, and (iii) long-running analyzers that exceed a
few minutes would not be considered by nearly three quarters of
developers in their study [9]. Johnson et al. explain that developers
expect static analyses to be properly integrated into their workflows,

8Turning off all caches does make sense because a realistic scenario is to use CodeQL
on GitHub Actions after a push to a branch in a new virtual machine, so caches would
not be readily available anyway.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tamás Szabó

whether that is the IDE or PR reviews [17]. Moreover, it is important
that feedback comes in a timely manner before developers switch
context because that makes the interpretation of the analysis output
more difficult. Sadowski et al. investigate the use of static analyses at
Google [27]. They find similar observations as the previous studies
in terms of expected run time and workflow integration. However,
they also provide the actual list of static analyses that they use at
scale. It turns out that all the analyzers perform some sort of linting
or dependency analysis. These are obviously helpful analyses, but
they are computationally not too expensive, and they immediately
“incrementalize” on a file-level granularity. In contrast, our goal is
to deliver fast update times for sophisticated data flow analyses
that are computationally much more expensive.
Incrementalizing individual static analyses Incrementaliza-
tion has received a lot of attention both as a means to speed up
specific static analyses or as a technique to power entire analysis
frameworks dealing with classes of analyses. For example, Lu et al.
devise an incremental points-to analysis by formulating it as a graph
reachability problem and then making use of well-known tech-
niques for incrementalizing graph reachability itself [20]. Saha and
Ramakrishnan design an incremental and demand-driven points-to
analysis formulated in Datalog [29]. Demand-driven means that
the analysis only computes points-to information that is relevant
to the client. They achieve this with the use of magic set transfor-
mation [4] which essentially introduces auxiliary predicates in the
Datalog program encoding the demand itself (e.g. fixing the pointer
variable to something specific). The incremental maintenance in
their solution is based on Delete and Rederive (DRed) [15] which
is a well-known algorithm for incrementalizing recursive Datalog
programs. While iQL is an analysis framework that does not make
assumptions about the kind of QL analysis it needs to incremental-
ize, there are definitely connections to these pieces of related work.
Magic set transformation is heavily used in the CodeQL compiler
to reduce work by inlining information about the input program,
so iQL benefits from that, too. DRed is also responsible for the
incrementalization in iQL because that is one of the incremental
solver algorithms used in VQ.
Incremental static analysis frameworks There are several
approaches that incrementalize set-based static analyses [12, 19, 26].
Set-based here refers to how the analyses operate: They propagate
sets of data-flow facts along the nodes in the control flow graph
using set union or intersection at merge points. Many practically
interesting static analyses can be formulated this way (such as
liveness or uninitialized read), but this expressive power is not
enough for production CodeQL analyses.

The Reviser framework incrementalizes IFDS/IDE analyses [2].
IFDS/IDE is a generic framework for formulating data flow analyses,
the former supporting only power set lattice values as data flow
facts, while the latter supporting custom lattice values. IFDS/IDE
boil down to graph reachability and summarization of the effects of
functions. While IFDS/IDE have been used to implement industry-
strength static analyses (e.g. Boomerang [30]), the challenge in
efficiently employing the technique is that summaries should en-
code function-local information only, and this is difficult to achieve
in practice [6]. It is challenging to compare the expressive power
to that of QL because of the different computational models.

Infer is a static analysis framework that is used at scale at Face-
book [8]. Infer supports analyses that reason aboutmanipulations of
the heap (e.g. null pointer dereference, finding resource leaks). The
theoretical foundation is separation logic which allows for efficient
summarization of effects of heap manipulations. This approach
lends itself to efficient incrementalization because summaries only
need to be re-computed for changed code parts, and then the overall
analysis result can be composed of the individual summaries.

IncA [31, 32] is an incremental static analysis framework that
also builds on VQ. IncA is unique among incremental Datalog-
based systems in that it supports user-defined lattices and recursive
aggregations over lattices which is an important building block for
static analyses. Similar to CodeQL, IncA also defines a higher-level
DSL for analysis specification which then gets compiled to the RA
format of VQ. Given that QL does not support custom lattices, we
also did not make use of this feature in VQ.
Compilation of other languages to Datalog There are sev-
eral pieces of related work that revolve around the idea that while
Datalog has many benefits when it comes to the execution aspect,
perhaps it does not have the best design when it comes to the
specification aspect. QL itself is a good example because it adds an
object-oriented flavor to Datalog with higher-order domain-specific
extensions. Pacak et al. design a DSL for defining type checking
rules and then compile the DSL code to Datalog to be executed
by IncA [25]. The challenge in their work is that Datalog solvers
expect the input relations to be finite, but, when it comes to type
checking, the typing relation itself can grow infinite. They make
heavy use of magic set transformations to get rid of the typing
context in the typing relation, thereby eliminating the problem of
infinite input. Pacak and Erdweg later go a step further by designing
Functional IncA which is still a limited but general-purpose func-
tional language that also compiles to IncA Datalog [24]. Datafun [1]
is not strictly speaking an example where the language itself gets
compiled to Datalog, but it is a language which marries functional
programming and Datalog concepts. Datafun comes with an ex-
plicit fixpoint operator that can be used to mark specific functions
where fixpoint computation shall happen. This is in contrast to
QL or Functional IncA where fixpoint computation is ultimately
determined by the dependencies between predicates/functions.

8 CONCLUSIONS

This study successfully showed that incrementalization has poten-
tial when it comes to speeding up production CodeQL analyses.
First, we showed this empirically with our impact measurements,
and then we also demonstrated this by creating our prototype in-
cremental solver. iQL delivers updated feedback in sub-minute run
time for commit-style changes. The price of the fast update time is
the high initialization time andmemory use.While the initialization
time is acceptable, the memory use requires further work before
incrementalization can make its way to production CodeQL.

ACKNOWLEDGEMENT

Thanks to André Pacak, Ian Wright, Gábor Bergmann, Matthias
Plappert, Max Schäfer, Nathan Corbyn, Oege de Moor, Rahul Pan-
dita, and themembers of the CodeQLCore team for helpful feedback
and discussions on this work.

Incrementalizing Production CodeQL Analyses ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

REFERENCES

[1] Michael Arntzenius and Neelakantan R. Krishnaswami. 2016. Datafun: A Func-
tional Datalog. SIGPLAN Not. 51, 9 (sep 2016), 214–227. https://doi.org/10.1145/
3022670.2951948

[2] Steven Arzt and Eric Bodden. 2014. Reviser: Efficiently Updating IDE-/IFDS-based
Data-flow Analyses in Response to Incremental Program Changes. In Proceedings
of the 36th International Conference on Software Engineering (Hyderabad, India)
(ICSE 2014). ACM, New York, NY, USA, 288–298. https://doi.org/10.1145/2568225.
2568243

[3] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. 2016.
QL: Object-oriented Queries on Relational Data. In 30th European Conference on
Object-Oriented Programming (ECOOP 2016) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner
(Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
2:1–2:25. https://doi.org/10.4230/LIPIcs.ECOOP.2016.2

[4] Catriel Beeri and Raghu Ramakrishnan. 1991. On the Power of Magic. J. Log.
Program. 10, 3–4 (mar 1991), 255–299. https://doi.org/10.1016/0743-1066(91)
90038-Q

[5] Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth, István Ráth, Zoltán
Ujhelyi, and Dániel Varró. 2015. Viatra 3: A Reactive Model Transformation
Platform. In Theory and Practice of Model Transformations, Dimitris Kolovos and
Manuel Wimmer (Eds.). Springer International Publishing, Cham, 101–110.

[6] Eric Bodden. 2018. The Secret Sauce in Efficient and Precise Static Analysis:
The Beauty of Distributive, Summary-Based Static Analyses (and How to Master
Them). In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops (Amster-
dam, Netherlands) (ISSTA ’18). Association for Computing Machinery, New York,
NY, USA, 85–93. https://doi.org/10.1145/3236454.3236500

[7] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specifica-
tion of Sophisticated Points-to Analyses. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications
(Orlando, Florida, USA) (OOPSLA ’09). Association for Computing Machinery,
New York, NY, USA, 243–262. https://doi.org/10.1145/1640089.1640108

[8] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2011.
Compositional Shape Analysis by Means of Bi-Abduction. J. ACM 58, 6, Article
26 (Dec. 2011), 66 pages. https://doi.org/10.1145/2049697.2049700

[9] Maria Christakis and Christian Bird. 2016. What Developers Want and Need from
Program Analysis: An Empirical Study. In Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering (Singapore, Singapore)
(ASE ’16). Association for Computing Machinery, New York, NY, USA, 332–343.
https://doi.org/10.1145/2970276.2970347

[10] Oege de Moor. 2013. Doing a Doaitse: Simple Recursive Aggregates in Datalog.
In Liber Amicorum for Doaitse Swierstra. 207–216. https://webspace.science.uu.
nl/~hage0101/liberdoaitseswierstra.pdf

[11] Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith,
and Emerson Murphy-Hill. 2017. Just-in-Time Static Analysis. In Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis
(Santa Barbara, CA, USA) (ISSTA 2017). Association for Computing Machinery,
New York, NY, USA, 307–317. https://doi.org/10.1145/3092703.3092705

[12] Michael Eichberg, Matthias Kahl, Diptikalyan Saha, Mira Mezini, and Klaus
Ostermann. 2007. Automatic Incrementalization of Prolog Based Static Analyses.
In Proceedings of the 9th International Conference on Practical Aspects of Declarative
Languages (Nice, France) (PADL’07). Springer-Verlag, Berlin, Heidelberg, 109–123.
https://doi.org/10.1007/978-3-540-69611-7_7

[13] Sebastian Erdweg, Oliver Bracevac, Edlira Kuci, Matthias Krebs, and Mira Mezini.
2015. A co-contextual formulation of type rules and its application to incremental
type checking. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, Jonathan
Aldrich and Patrick Eugster (Eds.). ACM, 880–897. https://doi.org/10.1145/
2814270.2814277

[14] Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao Zhou. 2013.
Datalog and Recursive Query Processing. Found. Trends databases 5, 2 (Nov.
2013), 105–195. https://doi.org/10.1561/1900000017

[15] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. 1993. Main-
taining Views Incrementally. In Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data (Washington, D.C., USA) (SIG-
MOD ’93). Association for Computing Machinery, New York, NY, USA, 157–166.
https://doi.org/10.1145/170035.170066

[16] Nicholas Hollingum and Bernhard Scholz. 2017. Cauliflower: a Solver Generator
for Context-Free Language Reachability. In LPAR-21. 21st International Conference
on Logic for Programming, Artificial Intelligence and Reasoning (EPiC Series in
Computing, Vol. 46), Thomas Eiter and David Sands (Eds.). EasyChair, 171–180.
https://doi.org/10.29007/tbm7

[17] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why Don’t Software Developers Use Static Analysis Tools to Find Bugs?.

In Proceedings of the 2013 International Conference on Software Engineering (San
Francisco, CA, USA) (ICSE ’13). IEEE Press, 672–681.

[18] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On Synthesis
of Program Analyzers. In Computer Aided Verification, Swarat Chaudhuri and
Azadeh Farzan (Eds.). Springer International Publishing, Cham, 422–430.

[19] Uday Khedker. 1995. A Generalised Theory of Bit Vector Data Flow Analysis. Ph. D.
Dissertation. Department of Computer Science and Engineering, IIT Bombay.

[20] Yi Lu, Lei Shang, Xinwei Xie, and Jingling Xue. 2013. An Incremental Points-
to Analysis with CFL-Reachability. In Compiler Construction (Lecture Notes in
Computer Science), Ranjit Jhala and Koen De Bosschere (Eds.). Springer, Berlin,
Heidelberg, 61–81. https://doi.org/10.1007/978-3-642-37051-9_4

[21] Pavel Avgustinov Max Schäfer and Oege de Moor. 2017. Algebraic Data Types
for Object-oriented Datalog. https://codeql.github.com/publications/algebraic-
data-types.pdf.

[22] Mario Méndez-Lojo, Augustine Mathew, and Keshav Pingali. 2010. Parallel
Inclusion-Based Points-to Analysis. SIGPLAN Not. 45, 10 (Oct. 2010), 428–443.
https://doi.org/10.1145/1932682.1869495

[23] Ralf Mitschke, Sebastian Erdweg, Mirko Köhler, Mira Mezini, and Guido Sal-
vaneschi. 2014. I3QL: Language-Integrated Live Data Views. In Proceedings of
the 2014 ACM International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA,
October 20-24, 2014. 417–432. https://doi.org/10.1145/2660193.2660242

[24] André Pacak and Sebastian Erdweg. 2022. Functional Programming with Data-
log. In 36th European Conference on Object-Oriented Programming (ECOOP 2022)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 222), Karim Ali and
Jan Vitek (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 7:1–7:28. https://doi.org/10.4230/LIPIcs.ECOOP.2022.7

[25] André Pacak, Sebastian Erdweg, and Tamás Szabó. 2020. A Systematic Approach
to Deriving Incremental Type Checkers. Proc. ACM Program. Lang. 4, OOPSLA,
Article 127 (nov 2020), 28 pages. https://doi.org/10.1145/3428195

[26] L. L. Pollock and M. L. Soffa. 1989. An Incremental Version of Iterative Data
Flow Analysis. IEEE Trans. Softw. Eng. 15, 12 (Dec. 1989), 1537–1549. https:
//doi.org/10.1109/32.58766

[27] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin
Winter. 2015. Tricorder: Building a Program Analysis Ecosystem. In Proceedings
of the 37th International Conference on Software Engineering - Volume 1 (Florence,
Italy) (ICSE ’15). IEEE Press, 598–608.

[28] Diptikalyan Saha and C. R. Ramakrishnan. 2005. Incremental and Demand-
driven Points-to Analysis Using Logic Programming. In Proceedings of the 7th
ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (Lisbon, Portugal) (PPDP ’05). ACM, New York, NY, USA, 117–128.
https://doi.org/10.1145/1069774.1069785

[29] Diptikalyan Saha and C. R. Ramakrishnan. 2005. Incremental and Demand-
Driven Points-to Analysis Using Logic Programming. In Proceedings of the 7th
ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (Lisbon, Portugal) (PPDP ’05). Association for Computing Machin-
ery, New York, NY, USA, 117–128. https://doi.org/10.1145/1069774.1069785

[30] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016.
Boomerang: Demand-Driven Flow- and Context-Sensitive Pointer Analysis for
Java. In 30th European Conference on Object-Oriented Programming (ECOOP 2016)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 56), Shriram Kr-
ishnamurthi and Benjamin S. Lerner (Eds.). Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 22:1–22:26. https://doi.org/10.4230/LIPIcs.
ECOOP.2016.22

[31] Tamás Szabó, Sebastian Erdweg, and Gábor Bergmann. 2021. Incremental Whole-
Program Analysis in Datalog with Lattices. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery,
New York, NY, USA, 1–15. https://doi.org/10.1145/3453483.3454026

[32] Tamás Szabó, Sebastian Erdweg, and Markus Voelter. 2016. IncA: A DSL for the
Definition of Incremental Program Analyses. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (Singapore, Singa-
pore) (ASE ’16). Association for Computing Machinery, New York, NY, USA,
320–331. https://doi.org/10.1145/2970276.2970298

[33] Tamás Szabó. 2021. Incrementalizing Static Analyses in Datalog. Ph. D. Dissertation.
Mainz. https://doi.org/10.25358/openscience-5613

[34] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,
Hayden Melton, and James Noble. 2010. The Qualitas Corpus: A Curated Collec-
tion of Java Code for Empirical Studies. In 2010 Asia Pacific Software Engineering
Conference. 336–345. https://doi.org/10.1109/APSEC.2010.46

[35] David Zhao, Pavle Subotic, Mukund Raghothaman, and Bernhard Scholz. 2021.
Towards Elastic Incrementalization for Datalog. In 23rd International Symposium
on Principles and Practice of Declarative Programming (Tallinn, Estonia) (PPDP
2021). Association for Computing Machinery, New York, NY, USA, Article 20,
16 pages. https://doi.org/10.1145/3479394.3479415

https://doi.org/10.1145/3022670.2951948
https://doi.org/10.1145/3022670.2951948
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.1145/2568225.2568243
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.1016/0743-1066(91)90038-Q
https://doi.org/10.1016/0743-1066(91)90038-Q
https://doi.org/10.1145/3236454.3236500
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2970276.2970347
https://webspace.science.uu.nl/~hage0101/liberdoaitseswierstra.pdf
https://webspace.science.uu.nl/~hage0101/liberdoaitseswierstra.pdf
https://doi.org/10.1145/3092703.3092705
https://doi.org/10.1007/978-3-540-69611-7_7
https://doi.org/10.1145/2814270.2814277
https://doi.org/10.1145/2814270.2814277
https://doi.org/10.1561/1900000017
https://doi.org/10.1145/170035.170066
https://doi.org/10.29007/tbm7
https://doi.org/10.1007/978-3-642-37051-9_4
https://doi.org/10.1145/1932682.1869495
https://doi.org/10.1145/2660193.2660242
https://doi.org/10.4230/LIPIcs.ECOOP.2022.7
https://doi.org/10.1145/3428195
https://doi.org/10.1109/32.58766
https://doi.org/10.1109/32.58766
https://doi.org/10.1145/1069774.1069785
https://doi.org/10.1145/1069774.1069785
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/3453483.3454026
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.25358/openscience-5613
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1145/3479394.3479415

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tamás Szabó

A FOLLOW-UP ON INCREMENTALIZABILITY

OF CODEQL ANALYSES

Impactmeasurements onRuby codebases In Section 4, we only
provided details about a single Ruby codebase called spree. Here we
share the results for several other projects. Table 2 summarizes the
projects and some analysis-specific metrics about them. For each
project, we used 1000 commits from the history.
Impact measurements on Java codebases In Section 4, we
briefly talked about our results on Java codebases. Here, we elab-
orate further on our approach and provide some detailed results.
As mentioned before, it was technically much more challenging
to implement the node path-based id generation strategy for Java
because the fact extractor also dumps derived information about
the subject programs which requires compilation and build tasks
to be executed. Instead, we implemented a simpler approach to
ensure id stability on the file level across the two sides of a commit
pair. We modified the trap extractor to emit a bump_id_counter

directive at the end of every trap file. When the trap importer sees
this directive, it increments the global id counter to the next million
value. The purpose of this is to ensure, with high probability, that
the id counters used in the two sides of a commit pair will “line
up” again even if a trap file belongs to a changed source file. We
have enough headroom for bumping to the next million because
CodeQL uses 64-bit integer ids, so the value range is large enough.
While this approach would not work in general because of potential
overflows, the Java projects we considered did not have that many
source files that they would have exhausted the value range. We
would have caught overflow issues anyway because the CodeQL
solver would throw a runtime error in that case.

Using the id-bumping strategy, we present the results for two
further Java projects in Table 2. For the Java codebases, we used 500
commits and a CodeQL analysis that checks for improper validation
of array indices (CWE-129).9

9https://cwe.mitre.org/data/definitions/129.html

https://cwe.mitre.org/data/definitions/129.html

Incrementalizing Production CodeQL Analyses ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

name / plot short description size avg. EDB size avg. EDB impact avg. IDB size avg. IDB impact
(KLoC) all values are in million tuples

Ru
by

pagy / Figure 7 pagination library for
Ruby

6 0.18 0.01 13.07 0.85

errbit / Figure 8 a tool for collecting and
managing errors from
other applications

9 0.28 0.01 22.46 1.31

backup / Figure 9 a system utility that
makes it easy to perform
backup operations

24 0.43 0.02 31.97 1.63

diaspora / Figure 10 a privacy-aware, dis-
tributed, open-source
social network

52 1.67 0.15 129.62 12.82

spree / Figure 4 an e-commerce platform 73 2.76 0.05 217.41 9.68
fastlane / Figure 11 an automation tool for

building and releasing
iOS and Android apps

118 3.65 0.01 278.96 7.84

Ja
va

zuul / Figure 12 Netflix gateway service
implementation

25 0.69 0.08 37.68 4.95

opennlp / Figure 13 Natural language pro-
cessing library

79 1.52 0.15 59.7 2.36

Table 2: Summary of projects used in the impact measurements.

https://github.com/ddnexus/pagy
https://github.com/errbit/errbit
https://github.com/backup/backup
https://github.com/diaspora/diaspora
https://github.com/spree/spree
https://github.com/fastlane/fastlane
https://github.com/Netflix/zuul
https://github.com/apache/opennlp

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tamás Szabó

3

22

158

1095

7581

52449

362837

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,2

6
9
9
]

Size of program change as number of ins/del lines

Im
p

a
c
t

o
n

 E
D

B
 d

if
f

(l
o

g
)

Impact on EDB ~ Number of lines changed

0

20

40

60

80

100

120

140

160

180

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,2

6
9
9
]

Size of program change as number of ins/del lines

C
h

a
n

g
e

 r
a

te
 o

f
p

re
v
io

u
s
 a

n
a

ly
s
is

 r
e

s
u

lt
 (

%
)

Change rate of IDB ~ Number of lines changed

0

50

100

150

200

250

300

0 2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

Change rate of previous analysis result (%)

C
o

u
n

t
o

f
c
o

m
m

it
s

Distribution of commits ~ Change rate of IDB

Figure 7: Results of impact measurements on pagy.

2

7

28

108

408

1544

5840

22080

83480

315611

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,3

3
2
4
]

Size of program change as number of ins/del lines

Im
p

a
c
t

o
n

 E
D

B
 d

if
f

(l
o

g
)

Impact on EDB ~ Number of lines changed

0

10

20

30

40

50

60

70

80

90

100

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,3

3
2
4
]

Size of program change as number of ins/del lines

C
h

a
n

g
e

 r
a

te
 o

f
p

re
v
io

u
s
 a

n
a

ly
s
is

 r
e

s
u

lt
 (

%
)

Change rate of IDB ~ Number of lines changed

0

50

100

150

200

250

300

350

400

450

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Change rate of previous analysis result (%)

C
o

u
n

t
o

f
c
o

m
m

it
s

Distribution of commits ~ Change rate of IDB

Figure 8: Results of impact measurements on errbit.

5

41

337

2712

21828

175628

1413086

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,5

0
0
0
]

(1
0
0
0
0
,2

6
5
0
2
]

Size of program change as number of ins/del lines

Im
p

a
c
t

o
n

 E
D

B
 d

if
f

(l
o

g
)

Impact on EDB ~ Number of lines changed

0

20

40

60

80

100

120

140

160

180

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,5

0
0
0
]

(1
0
0
0
0
,2

6
5
0
2
]

Size of program change as number of ins/del lines

C
h

a
n

g
e

 r
a

te
 o

f
p

re
v
io

u
s
 a

n
a

ly
s
is

 r
e

s
u

lt
 (

%
)

Change rate of IDB ~ Number of lines changed

0

50

100

150

200

250

300

350

400

450

500

0 2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

Change rate of previous analysis result (%)

C
o

u
n

t
o

f
c
o

m
m

it
s

Distribution of commits ~ Change rate of IDB

Figure 9: Results of impact measurements on backup.

Incrementalizing Production CodeQL Analyses ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

2

8

36

155

664

2835

12105

51676

220605

941759

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,5

0
0
0
]

(5
0
0
0
,1

0
0
0
0
]

(1
0
0
0
0
,1

9
5
9
3
]

Size of program change as number of ins/del lines

Im
p

a
c
t

o
n

 E
D

B
 d

if
f

(l
o

g
)

Impact on EDB ~ Number of lines changed

0

5

10

15

20

25

30

35

40

45

50

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,5

0
0
0
]

(5
0
0
0
,1

0
0
0
0
]

(1
0
0
0
0
,1

9
5
9
3
]

Size of program change as number of ins/del lines

C
h

a
n

g
e

 r
a

te
 o

f
p

re
v
io

u
s
 a

n
a

ly
s
is

 r
e

s
u

lt
 (

%
)

Change rate of IDB ~ Number of lines changed

0

20

40

60

80

100

120

140

160

180

200

220

0 5 1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

Change rate of previous analysis result (%)

C
o

u
n

t
o

f
c
o

m
m

it
s

Distribution of commits ~ Change rate of IDB

Figure 10: Results of impact measurements on diaspora.

2

7

28

108

408

1543

5833

22048

83340

315017

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,5

0
0
0
]

(5
0
0
0
,6

8
0
6
]

Size of program change as number of ins/del lines

Im
p

a
c
t

o
n

 E
D

B
 d

if
f

(l
o

g
)

Impact on EDB ~ Number of lines changed

0

2

4

6

8

10

12

14

16

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,5

0
0
0
]

(5
0
0
0
,6

8
0
6
]

Size of program change as number of ins/del lines

C
h

a
n

g
e

 r
a

te
 o

f
p

re
v
io

u
s
 a

n
a

ly
s
is

 r
e

s
u

lt
 (

%
)

Change rate of IDB ~ Number of lines changed

0

50

100

150

200

250

0 2 4 6 8 1
0

1
2

1
4

1
6

Change rate of previous analysis result (%)

C
o

u
n

t
o

f
c
o

m
m

it
s

Distribution of commits ~ Change rate of IDB

Figure 11: Results of impact measurements on fastlane.

1043

2086

4170

8334

16658

33293

66541

132992

265803

531242

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,2

7
7
2
]

Size of program change as number of ins/del lines

Im
p

a
c
t

o
n

 E
D

B
 d

if
f

(l
o

g
)

Impact on EDB ~ Number of lines changed

0

10

20

30

40

50

60

70

80

90

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,2

7
7
2
]

Size of program change as number of ins/del lines

C
h

a
n

g
e

 r
a

te
 o

f
p

re
v
io

u
s
 a

n
a

ly
s
is

 r
e

s
u

lt
 (

%
)

Change rate of IDB ~ Number of lines changed

0

20

40

60

80

100

120

140

160

0 1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Change rate of previous analysis result (%)

C
o

u
n

t
o

f
c
o

m
m

it
s

Distribution of commits ~ Change rate of IDB

Figure 12: Results of impact measurements on zuul.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tamás Szabó

2347

4891

10190

21228

44225

92132

191935

399852

832994

1735342

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,5

0
0
0
]

(5
0
0
0
,6

5
4
8
]

Size of program change as number of ins/del lines

Im
p

a
c
t

o
n

 E
D

B
 d

if
f

(l
o

g
)

Impact on EDB ~ Number of lines changed

0

20

40

60

80

100

120

140

160

[1
,5

]

(5
,1

0
]

(1
0
,2

0
]

(2
0
,3

0
]

(3
0
,4

0
]

(4
0
,5

0
]

(5
0
,6

0
]

(6
0
,7

0
]

(7
0
,8

0
]

(8
0
,9

0
]

(9
0
,1

0
0
]

(1
0
0
,1

0
0
0
]

(1
0
0
0
,5

0
0
0
]

(5
0
0
0
,6

5
4
8
]

Size of program change as number of ins/del lines

C
h

a
n

g
e

 r
a

te
 o

f
p

re
v
io

u
s
 a

n
a

ly
s
is

 r
e

s
u

lt
 (

%
)

Change rate of IDB ~ Number of lines changed

0

20

40

60

80

100

120

140

160

180

200

220

240

0 2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

Change rate of previous analysis result (%)

C
o

u
n

t
o

f
c
o

m
m

it
s

Distribution of commits ~ Change rate of IDB

Figure 13: Results of impact measurements on opennlp.

	Abstract
	1 Introduction
	2 Challenges and High-level Solution Approach
	2.1 Motivating Example
	2.2 Prior Work on the Incrementalizability of Static Analyses
	2.3 Challenges of Incrementalizing CodeQL

	3 Background on CodeQL and VQ
	3.1 CodeQL
	3.2 Viatra Queries

	4 Incrementalizability of CodeQL Analyses
	5 iQL: Integrating CodeQL with VQ
	6 Performance Benchmarking of iQL
	7 Related Work
	8 Conclusions
	References
	A Follow-up on Incrementalizability of CodeQL Analyses

