
TraceDiag: Adaptive, Interpretable, and Efficient Root Cause
Analysis on Large-Scale Microservice Systems

Ruomeng Ding
Microsoft
China

Chaoyun Zhang,
Lu Wang, Yong Xu

Microsoft
China

Minghua Ma,
Xiaomin Wu

Microsoft
China

Meng Zhang,
Qingjun Chen
Microsoft 365

China

Xin Gao,
Xuedong Gao, Hao Fan

Microsoft 365
China

Saravan Rajmohan
Microsoft 365

USA

Qingwei Lin
Microsoft
China

Dongmei Zhang
Microsoft
China

ABSTRACT

Root Cause Analysis (RCA) is becoming increasingly crucial for en-
suring the reliability of microservice systems. However, performing
RCA on modern microservice systems can be challenging due to
their large scale, as they usually comprise hundreds of components,
leading significant human effort. This paper proposes TraceDiag,
an end-to-end RCA framework that addresses the challenges for
large-scale microservice systems. It leverages reinforcement learn-
ing to learn a pruning policy for the service dependency graph to
automatically eliminates redundant components, thereby signifi-
cantly improving the RCA efficiency. The learned pruning policy
is interpretable and fully adaptive to new RCA instances. With
the pruned graph, a causal-based method can be executed with
high accuracy and efficiency. The proposed TraceDiag framework
is evaluated on real data traces collected from the Microsoft Ex-
change system, and demonstrates superior performance compared
to state-of-the-art RCA approaches. Notably, TraceDiag has been
integrated as a critical component in the Microsoft M365 Exchange,
resulting in a significant improvement in the system’s reliability
and a considerable reduction in the human effort required for RCA.
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Figure 1: An example of trace in Microsoft Exchange system.
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1 INTRODUCTION

The microservices architecture has gained widespread popular-
ity in modern production systems that leverage cloud technolo-
gies [1]. This approach involves decomposing large systems into
smaller, self-contained components that communicate with each
other, thereby enabling agile development and deployment [2, 3].
For instance, Twitter has about 1,200 microservices on the server
side [4] and Microsoft Exchange employs hundreds of microser-
vices to enable email delivery, with each microservice interacting
with others based on complex dynamic dependencies [5]. In such
intricate systems, anomalous incidents may occur in individual
components, thereby impacting downstream components and re-
sulting in unexpected end-to-end latency and a high number of
delayed email deliveries [6]. These issues can significantly harm
the customer experience, leading to substantial financial losses [7],
and adversely affect the reputation of service providers.

To ensure the reliability of cloud services, on-call engineers rely
on a range of system data sources such as key performance indica-
tors [8], logs [9], and traces [5] to develop automated and intelligent
incident detection and root cause analysis (RCA) solutions [5, 10–
13]. The goal is to quickly mitigate incidents and minimize their
impact on business operations by analyzing anomaly propagation
chains to pinpoint the root causes. However, this is a challenging
task, particularly given the complex interactions and interdependen-
cies among the system components, which is further compounded
by the scale of modern cloud systems. Research shows that RCA
can take several hours on average without the use of automated
tools, making it a time-consuming and arduous process [6, 14]. In
large systems like Microsoft Exchange, where service performance
would be influenced by multiple factors including infrastructure
scale, automatic scaling, dynamic load balancing, system updates,
and security measures [15, 16], RCA becomes even more intricate.
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Traces serve as a crucial component of system observability, cap-
turing microservice invocation dependency and associated perfor-
mance metrics. Graph analysis techniques are commonly employed
in trace analysis to automatically localize faults by traversing ser-
vice dependency graphs and detecting anomalies based on service
quality metrics [16–19]. However, the scale of modern microservice
systems can lead to challenges in accurate anomaly detection and
efficient graph traversal, as they generate massive volumes of sys-
tem traces containing hundreds to thousands of components and
their dependencies. One contributing factor to the complexity of
RCA is the presence of redundant components that have no impact
on the incident and can be safely removed without compromising
the RCA performance [6, 20]. Fig. 1 illustrates an example trace,
depicting the latency evolution of each component. The root cause
component 𝐹 experiences a surge in latency, subsequently affecting
component 𝐶 and the frontend node. However, other components
that do not interact with 𝐹 maintain normal latency behavior and
do not contribute to the RCA process. These components can be
considered “redundant” and eliminating them from the trace can
reduce noise and enhance the efficiency of RCA.

Pruning redundant components from dependency graphs is a
widely adopted technique in the RCA process [6, 20]. However, de-
termining which components to prune poses a significant challenge.
Aggressive pruning, where toomany components are removed, runs
the risk of accidentally removing the root cause node, rendering
further RCA impossible. Conversely, a lenient pruning strategy
that preserves too many components can result in inefficient RCA
and generate noisy outcomes. Current pruning policies are often
impromptu, based on engineers’ expertise and tailored to specific in-
cidents, lacking interpretability and susceptible to system changes
over time. Consequently, significant human effort is required, and
a lack of standardized and unified rules persists. Therefore, there is
a pressing need for an adaptive service graph pruning policy that
can offer interpretability in the pruning process.

To address the aforementioned challenges, this paper introduces
TraceDiag, a novel framework for RCA in large-scale microser-
vice systems. TraceDiag leverages reinforcement learning (RL) to
acquire an automated, interpretable, and adaptable pruning policy
that effectively removes redundant components, enhancing the
efficiency and accuracy of the RCA process. The policy is based
on graph pruning rules derived from experienced engineers and
comprehensive trace analysis, ensuring domain knowledge and
industry best practices are incorporated. The pruned service graph
is then utilized for RCA using causal methods. The practicality
and effectiveness of TraceDiag have been demonstrated through
its deployment as a core RCA engine in a Microsoft microservice
system. In summary, the contributions of this paper include:

• We introduce TraceDiag, an end-to-end RCA framework for
large-scale microservice systems. The TraceDiag integrates
graph pruning to enhance RCA efficiency and a causal RCA
method that surpasses correlation-based approaches to provide
more accurate and robust results.

• We employ RL to automate the graph pruning by selecting from
a pre-defined pruning action pool designed through comprehen-
sive trace analysis. This ensures interpretability and adaptability
to new RCA instances.

• We evaluate our proposed framework on real data traces collected
from the Microsoft Exchange system, demonstrating superior
performance compared to state-of-the-art RCA approaches.

• The proposed framework has been integrated as a critical com-
ponent in the Microsoft M365 Exchange system, leading to 75.1%
higher RCA accuracy and reduce time for RCA by up to 96.5%.
This yields a significant improvement in the system’s reliability
and considerable reduction for the human effort for RCA.

To the best of our knowledge, our TraceDiag is the first to apply RL
as the trace pruning process for the RCA of microservice systems.

2 BACKGROUND AND MOTIVATION

This section provides an overview of the Microsoft Exchange Mi-
croservice System, which serves as the experiment and implemen-
tation of the TraceDiag approach. We also formulate the problem
of trace-based RCA in this section.

2.1 Microsoft Exchange Microservice System

Microsoft Exchange is a cloud-based email delivery system that
offers an efficient and reliable message routing and delivery ser-
vice. Email delivery latency is a crucial performance metric that
constitutes the primary service level agreement provided to cus-
tomers. The message delivery process in the Microsoft Exchange
cloud system involves numerous components from various servers
and services, processing billions of emails daily. We illustrate the
system in the left of Fig. 1.

To analyze email delivery latency in Microsoft Exchange, an
email request generates a trace that captures its invocation depen-
dencies. The trace is represented as a directed tree structure, de-
noted as G, where nodes correspond to microservices or functions
invoked, and edges represent their interdependent relationships
[5]. Due to the interdependent nature of the edges in G, they can
depict the causal relationship between microservices, which goes
beyond simple correlation. The trace also records relevant infor-
mation, such as structural attributes, service metadata, call latency,
and temporal information, for subsequent analysis. The trace data,
coupled with the latency evolution of each microservice, constitute
multivariate time series [21–24] with a structural topology [25–27].
Note that in contrast to previous studies such as [28, 29], we have
access to and knowledge of the trace topology. As a result, there
is no need for the causal discovery [30–32] step to construct the
service dependency graph in this work.

Each email request incurs end-to-end latency that includes de-
lays from all the microservices in the trace. If the latency exceeds
the established service level agreement (SLA), it can result in slow
email deliveries, leading to customer dissatisfaction and escalation.
To detect anomalous latency surges, Microsoft Exchange employs
TraceArk [5], and subsequently performs RCA to localize prob-
lematic components that contribute to the anomaly. RCA plays a
critical role in identifying the cause of the issue, enabling prompt
mitigation actions, and minimizing the impact on business.

2.2 Root Cause Analysis on Trace

Incidents occurring in the microservice system frequently lead
to a considerable number of emails that fail to meet the latency
Service Level Agreement (SLA) or experience a noticeable increase
in end-to-end email delay, thereby negatively impacting the user
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experience. To capture the overall system’s end-to-end delay, we
introduce a frontend node denoted as 𝑋𝑓 , which encompasses the
time interval from when an email is sent to when it is received.
This particular latency metric is closely monitored by engineers, as
it serves as an indicator of the system’s reliability performance.

Once anomalous events are detected, specifically when the fron-
tend node𝑋𝑓 demonstrates high latency, the primary goal is to iden-
tify the microservices accountable for the anomaly and promptly
mitigate it [33]. The RCA process aims to identify the root cause
nodes within the trace G that are most likely to have a signifi-
cant impact on the end-to-end email delay. By minimizing the time
needed to pinpoint the root cause of an anomaly, RCA plays a
crucial role in ensuring the high reliability of microservice systems.

Let X = (𝑋1, 𝑋2, · · · , 𝑋𝑛) represent the set of components in the
service dependency graph G, where each component collects the
latency metric within a specific time window. The objective of the
RCA process is to identify the subset of nodes c ⊆ (1, · · · , 𝑛) that
are most likely to be the root cause of the incident. We define the
duration of the anomalous event as the alerting window, denoted
as𝑊𝑎 . Additionally, latency data collected from a base window
𝑊𝑏 , when the system is operating normally, will be utilized for
comparative analysis for the RCA, as shown in the right of Fig. 1.

3 EMPIRICAL STUDY ON TRACE DATA

In order to facilitate the comprehension of the RCA framework, it is
necessary to examine the trace data more closely and characterize
the latency behavior of the root cause service and healthy compo-
nents in the system during an incident. Insights gained from the
analysis can inform the design of the pruning policy and subsequent
RCA process. We conduct a brief empirical analysis of historical
incident instances in the Microsoft Exchange system, where one or
more services caused problems leading to incidents.

The empirical study utilizes a trace dataset obtained from the
Microsoft Exchange microservice system, specifically focusing on
12 instances of RCA referred to as incidents. In these incidents, a
subset of services within the system exhibits high latency, leading
to unexpected delays in end-to-end processing. Engineers have al-
ready identified the root causes for each of these RCA instances. The
dataset covers a duration of 345 days and includes trace data from
over 708 distinct microservices. These microservices are distributed
across 11 forests, resulting in a cumulative count of 8, 424 microser-
vices. The substantial size of the dataset facilitates a comprehensive
analysis of trace characteristics and the distinctive properties of
the root cause service.

Building upon the methodology outlined in [5], we calculate two
types of latency measurements for each component in the trace:
(i) Exclusive Latency (ExL), which indicates the running time of
the component itself, and (ii) Inclusive Latency (InL), which is the
difference between the component entry and exit time. The InL
metric is equal to the sum of the component’s exclusive latency
and the inclusive latency of its children. Both ExL and InL metrics
are frequently used in trace studies [34–36]. In addition, we define
a component as being “affected” by the root cause service only if
the root cause is a descendant of this node. This means that the
node directly or indirectly invokes the root cause service and is
thus affected. The remaining components that do not interact with
the root cause service are considered “redundant”.

Table 1: The statistics of trace data during incidents.

Metric Total Node Total Edge Root Cause Num. Affected Nodes

Mean 549 29,534 3 16
Median 561 31,271 1 9

3.1 Redundant Components for RCA

We begin by computing the statistics of the trace data and the root
cause components during incidents, as presented in Table 1. Metrics
are computed over all incident instance, similarly hereinafter. It is
noteworthy that the scale of the microservice system is immense,
with an average of over 500 components and approximately 30,000
invoked edges, making the RCA process highly complex. However,
despite the large number of services, only a few components are
responsible for causing the incidents, and only a small subset of
components is affected by the root cause node. This implies that a
significant number of components can be deemed redundant for
the RCA process and hence can be pruned.

Takeaways 1: A limited number of components are account-
able for causing the incidents, and the impact of the root cause
node is constrainted to a small subset of components, resulting
in redundancy in the RCA process.

3.2 Exclusive latency of Root Cause Services

Table 2: Exclusive latency statistics of root cause and non-

root cause components.

Service Metric ExL [s] Percentile

Root Cause Mean 50.798 P96
Median 1.543 P96

Non-root cause Mean 16.002 \
Median 0.053 \

Furthermore, we perform a comparison of the exclusive latency
between the root cause services and non-root cause components, as
shown in Table 2. The objective of this analysis is to determine if ExL
can effectively distinguish between these two types of components.
By using ExL instead of InL, we eliminate the contribution of latency
introduced by other services invoked by the target component [5].
Observe that the root cause components exhibit an average ExL
that is more than three times higher than that of non-root cause
components. Moreover, during an incident, the ExL of the root
cause components exceeds that of over 96% of all components on
average. This significant difference in ExL values establishes it as a
robust indicator for identifying the true root cause. We can then
utilize ExL to design additional pruning actions aimed at enhancing
the efficiency of the RCA process, as will be elaborated in Sec. 4.3.1.

Takeaways 2: The service responsible for the root cause of an
incident typically shows a high exclusive latency, exceeding
that of non-root-cause components.

3.3 Root Cause vs. Anomaly

Next, we analyze the correlation between the anomalous compo-
nents and the root cause service when incidents occur. However, it
is important to note that an anomalous component does not nec-
essarily imply that it is the root cause of the incident, as it may
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Table 3: Percentiles of anomaly indicators and identification

ratio by TraceArk of root causes and affected components.

Service Metric NormalizeCount RankScore OverHead

Anomaly

Ratio

Root Cause Mean P85 P97 P94 90.48%Median P83 P99 P99

Affected Mean P91 P92 P93 37.49%Median P90 P99 P99

have been impacted by another service that it calls [16]. To iden-
tify anomalies within the microservice system at the service level,
we employ a state-of-the-art anomaly detector called TraceArk
[5]. This detector has been integrated into Microsoft Exchange
and serves as a prerequisite for the functioning of our TraceDiag.
TraceArk provides three intermediate metrics as indicators of
anomaly, namely: (i) NormalizeCount, quantifying the number
of occurrences of a component normalized by the total number of
traces; (ii) OverHead, referring to the increment in terms of the
total latency of the alerting window with respect to the base win-
dow for comparison; and (iii) RankScore, indicating the degree of
anomaly in the temporal dimension based on the continually in the
anomaly and numerical changes derived from k-sigma threshold
[37]. Higher values of these metrics indicate a greater likelihood
that the component is anomalous. Additionally, TraceArk provides
a direct label to predict whether a component is anomalous based
on the aforementioned metrics.

Table 3 shows the percentile statistics ofNormalizeCount, RankScore,
and OverHead, and the anomaly identification ratio by TraceArk,
for both the root cause service and the affected components. Per-
centiles are computed among all components for individual inci-
dents. Notably, both the root cause and affected services exhibit
high percentile values in terms of the three anomaly indicators. This
implies that these services are very likely to be identified as anom-
alies. The high anomaly identification ratio by TraceArk further
supports this observation, with over 90% of root cause nodes being
identified as anomalies, while this ratio is much lower for affected
services. This is reasonable, as other services may be impacted to
different degrees, and some may not exhibit strong anomaly behav-
iors. Based on these insights, we leverage these anomaly indicators
to prune irrelevant components, as detailed in Sec.4.3.2.

Takeaways 3: The anomaly indicators in TraceArk show
that the root cause and other services impacted by it are highly
likely to have high values that indicate to anomaly. The root
cause service has a higher probability of being identified as an
anomaly compared to other affected components.

3.4 Latency Correlation Analysis

Finally, we conducted an analysis of the latency similarity between
the end-to-end delay observed at the frontend node and the root
cause service, as well as the services affected by calculating their
mutual Pearson correlation coefficients. This analysis aimed to
determine whether the root cause and affected services exhibited
similar latency patterns in comparison to the end-to-end delay.

The statistical results are presented in Table 4. It can be observed
that, on average, both the root cause service and the affected ser-
vices displayed Pearson correlation coefficients of over 0.5 with

Table 4: The Pearson correlation coefficient statistics between

InL of the fontend node and root cause/affected services.

Service Metrics Pearson Coefficient Percentile

Root Cause Mean 0.598 P83
Median 0.626 P92

Affected Mean 0.526 P81
Median 0.519 P88
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Figure 2: The overall framework of TraceDiag.

the frontend node, indicating a strong similarity in latency pat-
terns. Additionally, we noted that the coefficients of the root cause
services, on average, exceeded those of approximately 83% of the
components in the entire system. While this percentile was slightly
lower for the affected services (81%), the Pearson correlation coeffi-
cients of both the root cause and affected services ranked highly
among all components. This valuable insight serves as the basis for
designing an additional pruning action that considers the latency
similarity with the end-to-end delay, as described in Sec. 4.3.3.

Furthermore, we observed only 7.1% of the components with the
highest Pearson correlation coefficient with the end-to-end delay,
as monitored at the frontend node, were indeed the root cause of the
incident. This finding highlights the fact that a high correlation does
not necessarily indicate causation. Consequently, we are motivated
to adopt a causal approach [38], as opposed to correlation-based
methods, for the subsequent RCA phase. This shift in approach aims
to achieve a more robust and accurate RCA process. We provide a
detailed explanation of this approach in Sec. 4.5.

Takeaways 4: The inclusive latency of both the root cause
service and other affected services typically show high corre-
lations with the overall end-to-end delay. However, the com-
ponent with the highest latency correlation with the frontend
node may not necessarily be the root cause of the incident.

4 THE DESIGN OF TRACEDIAG

We overview the architecture of TraceDiag in Sec. 4.1, and delve
into the details of its components in the subsequent sections.

4.1 TraceDiag in a Nutshell

Fig. 2 illustrates the overall framework of TraceDiag for the RCA
process applied to trace data. The Microsoft Exchange system col-
lects a large volume of single trace data, each containing the invoca-
tion sequence and latency information of services involved in email
delivery. These traces are preprocessed and aggregated to construct
a dependency graph comprising hundreds of components.
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Table 5: The list of pruning action pool employed in Trace-

Diag, and their thresholds.

Pruning Action Type Threshold

𝐴𝑣𝑔𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝐿𝑒𝑛𝑡𝑒𝑛𝑐𝑦 Latency 𝑃80, 𝑃85, 𝑃90, 𝑃95, 𝑃99
𝑀𝑎𝑥𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝐿𝑒𝑛𝑡𝑒𝑛𝑐𝑦 Latency 0.01𝑠 , 0.05𝑠 , 0.1𝑠 , 0.5𝑠 , 1𝑠
𝐴𝑣𝑔𝐼𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒𝐿𝑒𝑛𝑡𝑒𝑛𝑐𝑦 Latency 𝑃80, 𝑃85, 𝑃90, 𝑃95, 𝑃99
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐶𝑜𝑢𝑛𝑡 Anomaly 𝑃50, 𝑃65, 𝑃70, 𝑃80, 𝑃90

𝑂𝑣𝑒𝑟𝐻𝑒𝑎𝑑 Anomaly 𝑃80, 𝑃85, 𝑃90, 𝑃95, 𝑃99
𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒 Anomaly 𝑃80, 𝑃85, 𝑃90, 𝑃95, 𝑃99

𝑅𝑜𝑜𝑡𝑇𝑎𝑟𝑔𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 Correlation 0.1, 0.3, 0.5, 0.7, 0.9
𝐹𝑖𝑙𝑡𝑒𝑟𝑂𝑢𝑡 − −

The next stage involves pruning redundant components from
the dependency graph to enhance the efficiency of the subsequent
RCA process. We define a library of pruning actions based on the
analysis presented in Sec. 3 and employ RL to automatically learn
an interpretable and adaptive pruning policy from historical inci-
dents. This learned policy is then applied to the complete service
dependency graph, resulting in a simplified structure with signifi-
cantly fewer components. It is important to ensure that the parent
and child nodes of a pruned node are automatically connected to
maintain a coherent topology structure. In Figure 1, component 𝐸
is pruned by the filtering tree, resulting in its parent 𝐵 and child
𝐹 being connected in the pruned graph. Further details about the
pruning process can be found in Sec. 4.3 and 4.4.

Finally, we perform RCA using a causal approach on the pruned
graph, taking into account the evolution of service latencies, to
identify the root cause of the incident and attribute its responsibility.
A detailed explanation of the RCA process is provided in Sec. 4.5.
In the subsequent subsection, we delve into the specifics of each
component within the TraceDiag framework.

4.2 Trace Preprocessing

The Microsoft Exchange system generates gigabytes of trace data
daily, which are collected and stored in a database for analysis. How-
ever, performing RCA on such a large amount of data is impractical
and unnecessary due to the huge computing resource required, and
the redundancy present in the full data. To mitigate these issues,
we first randomly sample 1% of the raw trace to maintain RCA
overhead without compromising RCA performance. Note that the
sampling is performed at the trace level, not at the component level.
Therefore, a component is unlikely to be eliminated from the topol-
ogy if it is frequently invoked. After trace sampling, we aggregate
the time series for each component using the average function,
normalized by the appearance of traces invokes that component at
the 15-minute level. This approach offers a good tradeoff between
processing overhead and RCA performance.

4.3 Service Dependency Graph Pruning

Building on the insights obtained in Sec.3.1, it is imperative to
eliminate redundant nodes from the complete trace data as most
of them are not affected by problematic services, to improve the
following RCA efficiency. To this end, we propose three sets of
interpretable pruning actions tailored to the trace data based on
findings from Sec. 3: (i) latency-based pruning, (ii) anomaly-based
pruning, and (iii) correlation-based pruning. We present the com-
plete set of pruning actions utilized in TraceDiag in Table 5, and
the subsequent subsections provide detailed explanations. These

pruning actions help to remove redundant nodes while minimizing
the risk of dropping true root cause and affected nodes from the
service dependency graph. By doing so, the RCA efficiency can be
significantly improved while maintaining high accuracy.

4.3.1 Latency-based Pruning. Based on the findings discussed in
Sec. 3.2, where it was observed that the root cause service tends to
exhibit high latency during an incident, we propose three sets of
pruning actions based on this observation, as follows: (i) AvgEx-
clusiveLatency, which represents the average exclusive latency of
a service; (ii) MaxExclusiveLatency, which denotes the maximum
exclusive latency of a service; and (iii) AvgInclusiveLatency, which
indicates the average inclusive latency of a service. We include it
as a pruning action for the sake of completeness. If the aforemen-
tioned metrics fall below a certain percentile or time threshold,
we remove the corresponding services from the service graph, as
they are unlikely to be the root cause service and are less likely to
contribute to the incident.

4.3.2 Anomaly-based Pruning. The second set of pruning actions
considered in TraceDiag is based on the insights gained from
Sec. 3.3, which demonstrate that both the root cause service and
affected services exhibit high percentile values of anomaly indi-
cators provided by TraceArk. We design three sets of pruning
actions accordingly: (i) NormalizedCount, (ii) RankScore, and (iii)
OverHead. These actions aim to filter out redundant components
with low anomaly indicator percentile values compared to other
components. Such components are unlikely to be the root cause or
affected services, and therefore pose a low risk of being mistakenly
removed. Consequently, they can be safely eliminated from the
service graph without compromising the RCA performance.

4.3.3 Correlation-based Pruning. Lastly, based on the insights ob-
tained from Sec. 3.4, we have observed that there is generally a
high correlation between the end-to-end delay and both the root
cause service and the affected services. This indicates that they
exhibit similar latency behaviors during an incident. To leverage
this observation, we introduce the last pruning action, namely
RootTargetCorrelation. This action involves evaluating the Pearson
correlation coefficient between the end-to-end delay and the InL of
a target node. If the correlation coefficient falls below a specified
threshold, we remove the target node from the service graph. This
action filters out components that demonstrate dissimilar latency
patterns from the frontend node, implying that they are unlikely to
be relevant to the incident.

Overall, based on the insights obtained from Sec. 3, we have
developed three distinct sets of 35 interpretable pruning actions
to eliminate redundant components from the service graph, con-
sidering various characteristics of the root cause in the trace data.
Additionally, we have introduced a general action, called 𝐹𝑖𝑙𝑡𝑒𝑟𝑂𝑢𝑡 ,
which is responsible for executing the pruning actions associated
with each filter in the filtering tree. The details of the pruning tree
construction is elaborated in the subsequent Sec. 4.4.

4.4 Learning Pruning Policy with RL

Once we have a comprehensive library of candidate pruning actions
in Table 5, the next step is to select appropriate actions from this
pool and determine their execution sequence to create a pruning
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Figure 3: An example of a filtering tree and its execution for

one-step pruning. C, D and E are pruned by Action 1.

policy. The objective is to maximize the effectiveness of the RCA
while minimizing the number of components in the service graph,
thereby improving the efficiency of the RCA process. However,
designing an optimal pruning policy is not a straightforward task.
Exploring all possible combinations of 𝑁 actions would require a
complexity of 𝑂 (2𝑁 ) trials. Additionally, determining the optimal
execution sequence of these actions further complicates the prob-
lem. Given the diverse nature of incidents and trace data, relying
solely on human expertise to design an adaptive graph pruning
policy that can generalize to unseen RCA instances is infeasible,
even with a candidate list of pruning actions at hand.

To overcome this challenge, we propose a solution that utilizes
a RL approach to automatically learn a pruning policy, known
as a filtering tree, from historical data. This learned filtering tree
can then be applied to new incidents without the need for human
intervention. The RL approach offers several distinct advantages:
• Automatic Learning: The RL approach can automatically to
learn the pruning policy without requiring human intervention.
This automation reduces the reliance on manual expertise and
allows for efficient policy learning.

• Effective Searching: The RL approach naturally handles de-
layed rewards by employing T-D learning, enabling efficient
RCA performance. Furthermore, by balancing exploration and
exploitation, RL effectively explores the complex action space,
resulting in significantly improved efficiency compared to ex-
haustive search methods.

• Adaptability:While the RL policy is represented via a parametric
model, the learned filtering tree is adaptive and can be applied
to new incidents without the need for further refinement by
humans. This adaptability enhances the generalizability of the
pruning policy to unseen scenarios.

We begin by introducing the concept of the filtering tree and sub-
sequently provide a detailed description of our RL approaches in
the following subsections.

4.4.1 Filtering Tree. A filtering tree is a hierarchical structure uti-
lized to eliminate redundant components in the service dependency
graph. It is structured as a binary tree, with each node representing
a pruning action selected from Table 5. If a node has children, it
divides the full component set in the dependency graph into subsets
based on whether they satisfy the action’s condition. Specifically, if
a component surpasses the pruning action’s threshold, it is directed
to the right child node; otherwise, it is directed to the left child
node. The FilterOut action is exclusively present in the leaf nodes
of the filtering tree, where it executes the pruning action on the
components traversing its branch.

In Fig. 2, we provide an example of a one-step pruning. The
original trace consists of 7 components, excluding the frontend
node. Components 𝐶 , 𝐷 , and 𝐸 are assigned to the left branch of

PPO
Training

Policy Generator

Transformer

Action 1

Action 3Action 2

Action 4

Policy Evaluator

AttributesStructure

CausalRCA

Reward

Filtering Tree

…A1 A3A2

Serialization

Action 4

Actor 
Head

Critic 
Head

Optimize

Value

…A1 A3 A4A2

BFS Seq

BFS Seq’

Deserialization

Figure 4: The RL-framework for the filtering tree training.

Action 1 and meet the FilterOut condition, leading to their removal.
The remaining components that meet the threshold of Action 1 are
directed to its right branch and subsequently evaluated by Action
2. By applying this filtering process to all service components in
the dependency graph, redundant nodes are eliminated, resulting
in a more efficient RCA procedure.
4.4.2 Model Overview. The overall RL-framework employed for
the construction of the filtering tree is illustrated in Fig. 4. This
framework consists of two main components: (i) a Policy Genera-

tor, responsible for learning a filtering tree that makes decisions
regarding the selection of pruning actions and the branches to fol-
low in order to create an effective filter; and (ii) a Policy Evaluator,
which uses the RCA system to evaluate the performance of the gen-
erated filtering tree. The output of the policy evaluator serves as
a reward signal, which is utilized to enhance the policy generator
using Proximal Policy Optimization (PPO) techniques. Following
the training process, the policy generator is capable of constructing
a filtering tree that achieves both high RCA accuracy and efficiency.

4.4.3 MDP Formulation. We start by formulating the generation
of the filtering tree as a finite-horizon Markov Decision Process
(MDP). The environment comprises an action spaceA, a state space
S, and a reward function 𝑅. The filtering tree 𝑓 can be serialized as
a sequence of nodes by visiting each node in a breadth-first manner,
denoted as 𝜏 . This serialization enables us to represent the filtering
tree as a vector and recover it through deserialization. Therefore,
we define the action search space as a discrete sequence of “nodes”
that correspond to pruning actions selected from Table 5.

At each time step 𝑡 , given the current state 𝑠𝑡 of the filtering
tree and the pruned trace structure, the policy generator 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 )
selects a pruning action 𝑎𝑡 to partition the set of components from
the dependency graph. This action is considered as adding a new
node to the filtering tree. Upon receiving a reward signal 𝑟𝑡 from
the policy evaluator at each step, the environment transitions to a
new state, resulting in a new filtering tree and pruned dependency
graph. The objective of the agent is to learn the optimal policy that
maximizes the expected cumulative reward by selecting the most
appropriate pruning action at each step. The different components
of the MDP are defined as follows:
• State 𝑠𝑡 ∈ S encompasses two components: the structure of the
filtering tree and the current structure, both serialized using the
breadth-first search (BFS) algorithm. The complexity of the trace,
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which includes the number of nodes, edges, and sparsity, is also
included as a metric in the state tensor.

• Action 𝑎𝑡 ∈ A corresponds to selecting a single action from the
set of actions defined in Table 5 to be added to the filtering tree.

• Reward Function 𝑅(𝑠𝑡 , 𝑎𝑡 ) = 𝛼 · 𝑟𝑐𝑜𝑚 + 𝛽 · 𝑟𝑟𝑐𝑎 comprises two
components. 𝑟𝑐𝑜𝑚 = −(|𝑁 | + |𝐸 | + |𝐸 |

|𝑁 |2 ), quantifies the current
complexity of the pruned trace structure. Here,𝛼 and 𝛽 denote the
weights assigned to the rewards. To be Specific, we set 𝛼 = 0.01
and 𝛽 = 1. |𝑁 | and |𝐸 | represent the number of nodes and edges,
respectively. 𝑟𝑟𝑐𝑎 = 𝑃𝑅@𝐴𝑣𝑔+𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒 , measures the accuracy
of the RCA based on the pruned trace structure. For a detailed
explanation of 𝑃𝑅@𝐴𝑣𝑔 and 𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒 , refer to Sec. 5.1.3.

The reward function incorporates two terms, aiming to maximize
RCA accuracy while minimizing graph complexity. This ensures
high RCA performance while achieving efficiency improvements.

4.4.4 Filtering Tree Generator. Given the current state 𝑠𝑡 of the
filtering tree and the pruned trace structure, the filtering tree gen-
erator 𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) learns to choose the next pruning action added to
the filtering tree. This action is selected from the Actor head of the
model in Fig. 4. Since the filtering tree is serialized as a sequence
vector, we leverage the Transformer [39] as the model of 𝜋𝜃 to map
the state 𝑠𝑡 into action 𝑎𝑡 .
Cascade Policy Structure: In order to effectively remove redun-
dant components from the trace, it is essential to prioritize the
FilterOut action. Otherwise, the resulting pruning tree would be-
come excessively large. To address this, we introduce a cascade
policy [40] that promotes the selection of FilterOut actions:

𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) =
{
𝜋𝜃 (𝑎𝐹𝑂𝑡 = 1|𝑠𝑡 ), 𝑎𝐹𝑂𝑡 = 1
𝜋𝜃 (𝑎𝐹𝑂𝑡 = 0|𝑠𝑡 ) · 𝜋𝜃 (𝑎𝐹𝐸𝑡 |𝑠𝑡 , 𝑎𝐹𝑂𝑡 = 0), 𝑎𝐹𝑂𝑡 = 0

(1)

where 𝑎𝐹𝑂𝑡 = 1 represents the decision of the policy generator to
take the FilterOut action, while 𝑎𝐹𝑂𝑡 = 0 implies the omission of this
action. On the other hand, 𝑎𝐹𝐸𝑡 denotes the policy generator’s selec-
tion of a non-FilterOut pruning action. It is important to note that
the FilterOut action leads to an early termination of the expansion
process for the filtering tree in that particular branch.

4.4.5 In Situ Constraints. By formulating the tree construction
problem as a sequential decision-making problem, we can effec-
tively incorporate domain knowledge by imposing constraints di-
rectly on the search space. This allows us to define a broad range
of in situ constraints, where we can determine which actions are
disallowed during the traversal. To achieve this, we simply assign
zero probability to any pruning action that would violate a con-
straint before selecting the action. This approach ensures that all
generated filtering trees adhere to the specified constraints during
the learning process, reducing complexity and eliminating the need
for post hoc rejection of samples.

To enhance the interpretability of the resulting filtering trees, we
impose several constraints: (i) We limit the length of each filtering
tree expression to a predefined range between a minimum and
maximum length, such as 2 to 30. (ii) We prohibit the placement of
the FilterOut action as the right child of any nodes. (iii)We disallow
a child node from being the same action as its parent to avoid

redundant execution. (iv) To prevent invalid policies, we ensure
that each expression includes at least one FilterOut action within the
latest five steps, with a probability of 0.8. This probability gradually
decays in subsequent learning episodes, following a decay rate of
0.8𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠+1. Furthermore, to promote diversity in the expression
of the filtering tree, we introduce randomness in the first 5 episodes
by randomly selecting actions with an equal probability.

4.4.6 Policy Evaluator. Once we obtain a sequence 𝜏 generated
by the Policy Generator, we deserialize the corresponding filtering
tree structure 𝑓 . This filtering tree is then directly applied as the
modular component for pruning the trace structure. To assess the
effectiveness of the policy, we execute it on multiple incident in-
stances and calculate the average episodic reward, which includes
both the RCA accuracy and the complexity of the pruned trace
structure. This computed reward serves as the signal for training
the Policy Generator using RL. The cumulative reward function of
the Policy Generator is defined as follows:

𝑅(𝜏) = 1
𝑁

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝛼 · 𝑟𝑐𝑜𝑚𝑡,𝑖 + 𝛽 · 𝑟𝑟𝑐𝑎𝑖 . (2)

4.4.7 Actor Critic Algorithm Training with PPO. The reward func-
tion derived from the Policy Evaluator is non-differentiable due
to its origin from a control environment and the combination of
multiple objectives. Therefore, we utilize RL to optimize the Policy
Generator. In such cases, auto-regressive models with black-box
reward functions often employ the Proximal Policy Optimization
(PPO) algorithm [41], which optimizes the objective given by:

𝐽 (𝜃 ) = 𝐸 (𝑠,𝑎)∼𝐷𝜋𝜃

[
𝜋𝜃 (𝑎 |𝑠)
𝜋𝑜𝑙𝑑 (𝑎 |𝑠)

𝑄𝜔 (𝑠, 𝑎)
]
− 𝜆𝐾𝐿 [𝜋𝑜𝑙𝑑 |𝜋𝜃 ] . (3)

Here, 𝜋old represents the policy model from previous training it-
erations, 𝑄𝜔 denotes the Critic, which is also represented by a
Transformer model with parameter 𝜔 . It is important to note that
the optimization of 𝐽 (𝜃 ) aims to maximize the expected reward
under the distribution.

The training process is fully automated and does not require
human intervention. After the training phase, we obtain a filtering
tree that effectively removes redundant components for RCA. The
trained filtering tree can generalize to unseen incidents, providing
efficient RCA capabilities without the need for manual intervention.

4.5 Causal Root Cause Analysis

After obtaining the pruned dependency graph, we utilize it as a
graphical causal model to perform RCA based on the changes in the
causal mechanism of each node in case of a failure in the pruned
dependency graph. This method, inspired by the research in [15], is
called CausalRCA. The reason we adopt a causal method instead
of correlation-based approaches is that a node that has the highest
correlation with the end-to-end delay may not necessarily be the
true root cause of the incident, as discussed in Sec. 3.4. This is
because a component’s latency is affected by the children services
or functions it invokes, which may act as confounding factors. The
causal method can minimize the impact of such effects and thus
deliver more robust and accurate RCA performance.

We model the pruned service dependency graph using a graphi-
cal causal model. Bayesian models are employed to represent the
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latency of individual components in both the base window (𝑊𝑏 )
and the alerting window (𝑊𝑎) [42]. The joint distributions of all
components are denoted as PbX and PaX. The Bayesian models factor-
ize into the product of marginal distributions for each component,
PX =

∏𝑛
𝑗=1 𝑃𝑋 𝑗 |𝑃𝐴𝑗

. Here, 𝑃𝑋 𝑗 |𝑃𝐴𝑖
represents the causal mecha-

nism between component 𝑋 𝑗 and its immediate parent variables
𝑃𝐴 𝑗 , which correspond to the services invoked by 𝑋 𝑗 [43].

Root cause nodes typically display a noticeable increase in la-
tency in the alerting window, which in turn affects their parent
services. This results in a shift in the causal mechanisms of these
root cause nodes. Upon the occurrence of an incident, the joint
distribution PaX transforms by replacing the original causal mecha-
nisms of the root cause subset c with new ones, i.e.,

PX =
∏
𝑗∉c

𝑃𝑎
𝑋 𝑗 |𝑃𝐴 𝑗

∏
𝑗∈c

𝑃𝑏
𝑋 𝑗 |𝑃𝐴𝑗

, (4)

where 𝑃𝑏
𝑋 𝑗 |𝑃𝐴 𝑗

is the new causal mechanism of node 𝑗 in the alerting

window. In practice, both 𝑃𝑎
𝑋 𝑗 |𝑃𝐴𝑗

and 𝑃𝑏
𝑋 𝑗 |𝑃𝐴𝑗

are approximated
with machine learning models from observational data available in
the base window and detection window, respectively.

To evaluate the influence of each component on the frontend
latency distribution 𝑃𝑋𝑓

, we use the Shapley value [44] to mea-
sure the change in 𝑃𝑋𝑓

when an evaluation function Φ is altered.
We compare the latency distributions of the frontend node in the
base window 𝑃𝑏

𝑋𝑓
and detection window 𝑃𝑎

𝑋𝑓
using the evaluation

function Φ, such that ΔΦ = Φ(𝑃𝑎
𝑋𝑓

) − Φ(𝑃𝑏
𝑋𝑓

). In this work, we
employ the median function as Φ to quantify the disparity between
the latency distributions of the frontend node in the two windows.
However, other suitable evaluation functions can be utilized.

5 EVALUATION

We present a thorough evaluation of TraceDiag, utilizing real
production data, and comparing its performance with several state-
of-the-art baselines. This section aims to address the following
research questions (RQs):
• RQ1: How effective is TraceDiag in diagnosing the root cause
of incidents occurring in large-scale microservice systems?

• RQ2: How does the RL-based pruning policy compare to other
pruning baselines in terms of performance?

• RQ3: How efficient is the TraceDiag in the production environ-
ment, and what is its execution time at each step?

We provide answers to these questions in the following subsections.

5.1 Experiment Setup

We conduct experiments using the PyTorch [45] and Dowhy [46, 47]
frameworks. The experiments are performed on a system running
Ubuntu 22.04.1, equipped with an Intel(R) Xeon(R) Gold 6338 CPU
consisting of 127 cores with a clock speed of 2.00GHz.

5.1.1 Dataset. For evaluating the performance of TraceDiag, we
employ a real dataset obtained from the Microsoft Exchange mi-
croservice system, as described in Sec. 3 of this paper. Due to the
unavailability of large-scale trace data specifically designed for RCA
in the public domain, we rely on this dataset. The dataset encom-
passes various incident cases, out of which we randomly select 3
cases for training the RL-based pruning policy. The remaining 9

cases are kept separate for the purpose of testing. It is important to
emphasize that all procedures involved in data collection strictly
adhered to relevant regulations, ensuring the preservation of com-
plete anonymity and desensitization of the datasets. Thesemeasures
effectively address any potential privacy concerns associated with
the utilization of the dataset in this study.

5.1.2 Baselines. We conducted a comparative analysis of theTrace-
Diag with a broad range of baselines. For the graph pruning phase,
exhausted search or grid search is not applicable due to the huge
action space. We chose two alternative methods for comparison:
random pruning and a heuristic pruning strategy designed by ex-
perienced engineers, outlined below:
• Random: This method randomly selects pruning actions from
the action pool in Table 5 to filter out components that do not
meet the requirement. The search continues until the number of
nodes in the pruned graph is below a threshold.

• Heuristic [6]: The Heuristic method is designed by engineers
who have years of experience in the field of RCA. We leverage
their expertise to design the heuristic pruning rules based on
their domain knowledge.
In terms of the RCA phase, we selected state-of-the-art trace-

based and monitoring-based RCA approaches, which leverage cor-
relations and graph theory, as listed below:
• BackTrace [28]: This method employs a backward BFS to evalu-
ate abnormality scores. It takes into account two key factors: the
strength of path correlation originating from the frontend ser-
vice and the Pearson correlation coefficient between individual
components and the frontend service.

• GrootRank [48]: It is a customized algorithm fromPageRank [49]
to calculate the root cause ranking. It incorporates access dis-
tances from the frontend to handle situations where tied results
may occur. In this ranking, higher priority is given to root causes
with shorter access distances (sum) and vice versa.

5.1.3 Performance Metrics. In order to evaluate the performance
of our method, we utilized two metrics to assess the precision of
the RCA results: PR@k[14] and RankScore[28]. PR@kmeasures
the number of correct root causes among the top-k predictions and
is calculated as follows:

PR@k =

∑𝑘
𝑖=1 RC

pred
𝑖

∈ RCtrue

min
(��RCtrue �� , 𝑘 ) , (5)

where RCtrue represents the ground-truth list of root causes and
RCpred is the set of predicted root causes. Additionally, we com-
pute the average of PR@k for 𝑘 = 1, 2, · · · , 5 as PR@Avg. An-
other metric used to assess the rankings of the RCA is RankScore,
defined as = 1

|RCtrue |
∑

𝑣∈RCtrue (1 − s (𝑣)). Here, s (𝑣) represents
rank(𝑣)

𝑁
when rank(𝑣) < the number of true root causes. Otherwise,

s (𝑣) is assigned as 1. In this context, 𝑁 denotes the length of the
predicted root cause list, and rank(𝑣) signifies the rank of 𝑣 . The
RankScore metric averages the rank performance for each ground-
truth root cause service. Furthermore, to assess the recall quality of
the pruned graph, we introduce theHitRootCausemetric, defined
as = |𝑅𝐶hit |

|𝑅𝐶 true | , where |𝑅𝐶hit | denotes the number of ground-truth
root causes appearing in the pruned graph, and |𝑅𝐶true | represents
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Table 6: Comparison of different RCA approaches.

RCA Method PR@1 PR@3 PR@5 PR@Avg RankScore

BackTrace 0.222 0.481 0.689 0.484 0.678

GrootRank 0.111 0.259 0.578 0.306 0.492

TraceDiag 0.667 0.852 0.956 0.834 0.818

the total number of ground-truth root causes. A lower value of Hit-
RootCause indicates that the root cause services are not preserved
in the pruned graph, rendering the subsequent RCA infeasible.

5.2 RCA Performance Comparison

Table 6 presents the comprehensive performance evaluation of our
proposed TraceDiag approach compared to other baselines us-
ing 9 testing cases. All evaluations are performed on the pruned
dependency graph obtained from our RL-based approach. Our
findings demonstrate the superiority of TraceDiag, which lever-
ages CausalRCA method. It consistently outperforms the other
baselines across all performance metrics. Specifically, TraceDiag
achieves a significant improvement of at least 72.3% in PR@Avg

and 20.6% in RankScore, indicating its enhanced ability to accu-
rately rank the true root cause higher. A closer examination of the
performance reveals that TraceDiag successfully identifies the true
root cause as the top-ranked recommendation in 66.7% of cases.
Furthermore, its top-5 recommendations encompass 95.6% of the
true root causes, which is a remarkable achievement.

These notable improvements highlight the superiority of the
CausalRCA approach, showcasing its robustness and accuracy in
RCA. In contrast, the correlation-based approach, such as Back-
Trace, falls short in capturing the complex relationship between
service latency and its root cause. Correlation alone is insufficient
to explain the latency patterns observed across different services.
The presence of confounding factors that contribute to high latency
in multiple services can lead to misleading conclusions when rely-
ing solely on correlation-based RCA methods. Hence, our findings
emphasize the reliability and effectiveness of causal approaches in
RCA, aligning with the insights gained from Sec. 3.4.

5.3 Dependency Graph Pruning Comparison

Table 7 provides a comparison of the impact and performance of
different graph pruning methods, namely Random, Heuristic, and
TraceDiag (RL-based), across 9 testing cases. The RL-based ap-
proach demonstrates remarkable convergence efficiency, converg-
ing in only 36 episodes despite being trained on only three incidents.
On average, TraceDiag retains only 11 components after pruning,
which is equivalent to the number of components retained by the
Heuristic approach designed by experienced engineers. This rep-
resents a significant reduction (98%) compared to the original full
dependency graph, which initially consists of over 500 components.

Despite the substantial reduction, the pruned graph retains 92.9%
of the root cause services (HitRootCause). This indicates that the
majority of pruned components are indeed redundant and do not
contribute to the RCA process. In contrast, the Heuristic method
retains only 83.3% of the root cause services in the final pruned
graph. Consequently, performing RCA on the remaining one-sixth
of incidents would not yield the root cause, as those components
have already been removed from the data.

Table 7: Comparison of different graph pruning approaches.

Method Node HitRootCause PR@5 PR@Avg RankScore

Random 20 0.500 0.289 0.300 0.355

Heuristic 11 0.833 0.756 0.660 0.613

TraceDiag 11 0.929 0.956 0.834 0.818

The impact of the pruning method is also reflected in the subse-
quent RCA performance. OurTraceDiag approach achieves a 26.5%
improvement in PR@5, a 26.3% improvement in PR@Avg, and a
33.4% improvement in RankScore compared to the Heuristic prun-
ing method. Notably, these improvements surpass those achieved
by the Random pruning method in an larger margin. These results
demonstrate the superior performance of the RL-based pruning
approach in accurately removing redundant components, leading
to significant enhancements in the efficiency and effectiveness of
the RCA process. Notably, an important advantage of TraceDiag
is its ability to generalize well to unseen cases, as it can be trained
on only three incidents and still achieve satisfactory performance
on the nine testing cases. Moreover, TraceDiag converges rapidly
in a small number of trials (episodes), making the pruning process
fully automated, efficient, and adaptable to the RCA task.

Finally, we conduct a detailed analysis of the filtering tree learned
by our TraceDiag to gain insights into the pruning policy acquired
through the RL approach. Fig. 5 illustrates the learned filtering
tree, which provides a clear interpretation of the pruning policy.
The average number of pruned components across all testing cases
for each FilterOut action is also show in the figure. The filtering
tree consists of a total of 11 pruning actions, with 5 of them being
FilterOut actions. It is evident that all FilterOut actions contribute
to the final pruning results by removing redundant components
from the dependency graph to varying extents. Furthermore, the
pruning actions in the filtering tree encompass all three types of
actions specified in the action library (Table 5), indicating their
relevance and interpretability in the pruning process. However, we
observe that the second FilterOut action, which combines the joint
filter actions of RankScore and Overhead derived from TraceArk,
removes a significant majority of components on average (81.8%).
This finding underscores the pivotal role of anomaly-based pruning,
emphasizing the importance of the insights gained in Sec. 3.3.

5.4 Efficiency Evaluation

Furthermore, TraceDiag exhibits high efficiency as an RCA frame-
work. Once the filtering tree is obtained through the RL approach,
the execution of the filtering tree on the original trace data has
an average runtime of only 1.43 seconds. Subsequently, the subse-
quent CausalRCA process requires an average of 38.24 seconds,
resulting in a total runtime of 39.67 seconds for TraceDiag. This in-
dicates that TraceDiag can achieve excellent RCA performance in
large-scale microservice systems with remarkable efficiency. Con-
sequently, it significantly reduces the efforts required by engineers
for conducting RCA tasks.

6 DEPLOYMENT & DISCUSSION

We present the production impact of TraceDiag and discuss rele-
vant threats to validity in this section.
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Figure 5: The filtering tree learned by our TraceDiag with

averaged pruned components by each FilterOut action.

Table 8: Performance of TraceDiag in real productions.

Framework PR@Avg

Diagnosis time reduction

Easy cases Hard cases
Heuristic 0.469 50% 96.5%TraceDiag 0.821

6.1 Production Impact

The proposed framework, TraceDiag has been integrated as a cru-
cial component within the Microsoft Exchange system to facilitate
the localization of root causes in service incidents. Whenever a
regression in the end-to-end latency SLA is detected, indicating
the occurrence of an incident, TraceDiag is activated and initiates
the workflow depicted in Fig. 2. To facilitate the extraction of con-
trastive patterns, we use one-day data from the incident and utilize
the preceding seven days’ data as the base window.

Table 8 presents the online performance of TraceDiag in a
production environment. Due to confidentiality policies within
the company, the specific number of incidents is not disclosed. In
comparison to the heuristic RCA approach employed online, the
new TraceDiag framework achieves a noteworthy improvement of
75.1% in PR@Avg. In incidents where the root cause is easily iden-
tifiable, TraceDiag significantly reduces the required RCA time by
50%. For incidents that pose challenges in diagnosing the root cause
and necessitate further investigation by engineers, TraceDiag still
attains remarkable RCA accuracy while drastically reducing the
diagnosis time by over 96.5% compared to manual efforts. These out-
comes underscore the exceptional performance of TraceDiag in a
production setting, leading to significantly enhanced RCA accuracy
and substantial reductions in the time to diagnosis.

6.2 Threats to Validity

Internal threat: The internal threat primarily relates to the accu-
racy of root cause labels and the implementation of TraceDiag.
The root cause labels in our datasets are assigned by experienced
domain experts based on incident reports, ensuring their reliability.
Moreover, our approach provides the top five candidate root causes,
aiding domain experts in decision-making. To mitigate implemen-
tation threats, we utilize mature RL frameworks [41], and the code
and configurations have been thoroughly reviewed by two authors.
External threat: Our study and experiments are conducted using
Microsoft Exchange traces. However, our approach can be easily
applied to other systems that have open telemetry traces. While

the incidents from the Exchange system may represent a limited
range of root causes, considering its extensive size and complexity,
we believe our findings are generalizable. In the future, we plan to
extend our analyses to encompass a broader range of cloud systems.

7 RELATEDWORK

RL for Structure Optimization Previous research has explored
the use of RL in discovering and refining neural network structures
and various graph scenarios. In the field of neural architecture
search (NAS), RL has been employed in AutoML studies [50–52]
to optimize neural network architectures. The RL agent aims to
maximize network performance in tasks like image classification or
language translation while minimizing computational costs. RL has
also gained popularity in graph structure optimization [53, 54]. In
social networks [55], RL has been utilized to optimize graph struc-
tures for information diffusion [56], community detection [57], and
influence maximization [58]. RL agents dynamically add or remove
edges between individuals to maximize objectives such as effective
information propagation and identification of cohesive communi-
ties. In contrast, our TraceDiag framework employs RL to learn
a pruning policy for trace data, focusing on service dependency
graphs for the purpose of RCA.
Root Cause Analysis with Trace Data Traces are essential in
diagnosing system failures in complex cloud systems [12, 35, 59], es-
pecially under the large-scale, modern microservice system. Trace-
based RCA primarily employs two methods to construct the depen-
dency graph: the topological graph and the causal graph [60]. A
topological graph represents the physical or logical service depen-
dency graph and can be either a static graph stored in a Configura-
tion Management Database or a dynamically constructed service
call graph [6]. On the other hand, causal graph-based approaches
use causal discovery algorithms, such as the PC algorithm [61], to
identify relationships among service components. Various inference
methods, such as random walk [62] or DFS [63], are then applied
to identify root causes. Interested readers may refer to a recent
survey [64] for further details. Our approach TraceDiag, which
is orthogonal to both topological graph and causal graph-related
approaches, focuses on the root cause filtering steps.

8 CONCLUSION

This paper introduces TraceDiag, an end-to-end RCA framework
for large-scale microservice systems based on trace data. We design
a library of pruning actions derived from an extensive analysis
of trace data and the behavior of root cause services, and then
leverages RL techniques to autonomously learn an interpretable
and adaptive filtering tree that eliminates redundant components
from the service dependency graph. This approach significantly
enhances RCA efficiency while maintaining RCA performance. The
framework further employs a CausalRCA approach, which ensures
accurate and robust root cause diagnosis for incidents. Experimen-
tal evaluations conducted on real trace datasets validate the efficacy
of TraceDiag, highlighting substantial improvements in RCA per-
formance. Notably, TraceDiag has been deployed as a core RCA
engine within the Microsoft Exchange microservice system, where
it consistently achieves over 75% higher RCA accuracy compared
to the legacy RCA framework, and effectively reduces the time
required for RCA by up to 96.5%.
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