
On-Premise AIOps Infrastructure for a Software Editor SME: An
Experience Report

Anes Bendimerad

Infologic R&D

26500 Bourg-Lès-Valence, France

abe@infologic.fr

Youcef Remil

Infologic R&D

26500 Bourg-Lès-Valence, France

yre@infologic.fr

Romain Mathonat

Infologic R&D

26500 Bourg-Lès-Valence, France

rma@infologic.fr

Mehdi Kaytoue

Infologic R&D

26500 Bourg-Lès-Valence, France

mka@infologic.fr

ABSTRACT
Information Technology has become a critical component in various

industries, leading to an increased focus on software maintenance

and monitoring. With the complexities of modern software systems,

traditional maintenance approaches have become insufficient. The

concept of AIOps has emerged to enhance predictive maintenance

using Big Data and Machine Learning capabilities. However, ex-

ploiting AIOps requires addressing several challenges related to

the complexity of data and incident management. Commercial solu-

tions exist, but they may not be suitable for certain companies due

to high costs, data governance issues, and limitations in covering

private software. This paper investigates the feasibility of imple-

menting on-premise AIOps solutions by leveraging open-source

tools. We introduce a comprehensive AIOps infrastructure that we

have successfully deployed in our company, and we provide the

rationale behind different choices that we made to build its various

components. Particularly, we provide insights into our approach

and criteria for selecting a data management system and we ex-

plain its integration. Our experience can be beneficial for companies

seeking to internally manage their software maintenance processes

with a modern AIOps approach.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • Soft-
ware and its engineering→ Software performance.

KEYWORDS
AIOps, Predictive Maintenance, AI, Enterprise Resource Planning

1 INTRODUCTION
In today’s world, Information Technology (IT) has become a critical

element for automation of business process across many industries.

Specialized Information Systems and Enterprise Resource Planning

(ERP) solutions are widely used by organizations to manage their

internal operations, customer and supplier relationships, and Indus-

try 4.0 factories that rely heavily on monitoring and observability.

Infologic [20] is one of France’s leading providers of ERP solu-

tions for the agri-food, health nutrition, and cosmetic sectors. It has

established a significant reputation over its 40 years in the market

with a plethora of provided services and modules. Infologic also

offers its customers continuous consultation, and proactive mainte-

nance support. Its ERP system is currently deployed by hundreds

of food industries in France, each of which has at least one server

that is integral to their business and any disruption can result in

critical losses. Therefore, it is crucial to ensure high availability and

excellent maintenance for this ERP and its infrastructure.

Software maintenance and monitoring have garnered a notable

interest among companies, owing to their increased dependence

on software. Meanwhile, the maintenance of such systems is be-

coming increasingly complex as they always involve more interre-

lated software and business components, especially with the rise of

microservices and virtualization. It follows that traditional mainte-

nance approaches became obsolete and do not scale to today’s large

systems. These approaches focus on manually performing arduous

tasks such as manually logging into devices, executing scripts for

checking health status, resolving anomalies on a repetitive basis.

Such setting triggers the need for autonomic and self-managing

computing systems to address the key reasons for failures and to

improve the efficiency and quality of IT services [38, 45, 61].

In this context, the term AIOps has been introduced by Gart-

ner [58] in 2017 to address the ITOps (IT Operations) challenges

with a data-driven approach that exploits AI. AIOps platforms com-

bine big data and machine learning functionalities to intelligently

improve, strengthen and automate a wide range of IT operations,

from monitoring to incident management. However, building an

effective AIOps solution requires addressing several challenges.

Firstly, such solution must be able to handle large and diverse

amount of data generated by IT, including metrics, logs, and net-

work traffic. This involves continuously ingesting vast volumes of

data from different sources while efficiently storing them to limit

the cost of the infrastructure. The AIOps solution should also facili-

tate data access and efficient querying. Secondly, such solution must

enable the monitoring of numerous applications and components

while also being easily expandable to include new ones. Thirdly, it

needs to simplify the integration of ML techniques into the inci-

dent management system, such as applying an anomaly detection

technique [54], or an ML model for incident triage [41, 42, 60]. This

necessitates being equipped with comprehensive MLOps tools to

streamline data preparation, model training and testing, as well as

model deployment and monitoring. Lastly, it is important to ensure

that the solution is highly accessible and intuitive to facilitate the

transition of engineers from traditional approaches to AIOps. In

ar
X

iv
:2

30
8.

11
22

5v
1

 [
cs

.S
E

]
 2

2
A

ug
 2

02
3

Anes Bendimerad, Youcef Remil, Romain Mathonat, and Mehdi Kaytoue

Figure 1: A simplified overview of former maintenance Infologic system before introducing AIOps and Predictive Maintenance.

fact, experience confirms that shifting the mindset and work habits

within ITOps can pose a significant challenge [43].

Commercial solutions have been proposed to address these chal-

lenges by providing AIOps features such as automatic discovery,

flexible data visualization, intelligent alert generation and incident

diagnosis, automatic incident triage and resolution. Few examples

of popular platforms are Dynatrace [11], Splunk [36], Datadog [9],

New Relic [28], IBM Instana [21], and PagerDuty [31]. These plat-

forms have witnessed an impressive success, with many of them

already exceeding a billion dollars in annual revenue. While their

effectiveness is undeniable, their cost can be prohibitive depending

on the context, and their pricing structures often challenging to

manage. Particularly at Infologic, with over a thousand servers

hosting various applications, integrating a commercial solution can

prove to be very expensive. Their cost is determined by multiple

parameters, such as the number of monitored servers, the required

storage size, the number of stored event logs. For example, our esti-

mation of the cost for one of the aforementioned solutions ranges

between $500k and $1 million per year to fully integrate it as a mon-

itoring tool for Infologic. Additionally, while commercial AIOps

solutions can monitor a broad range of popular applications, they

do not cover private software such as Infologic’s ERP, particularly

its functional and business layer. Thus, integrating a commercial

AIOps solution in our context would still require significant devel-

opment efforts. Moreover, the use of such solutions may pose data

governance issues as it often involves delegating data control to

an external entity, which some of Infologic’s clients may not be

comfortable with, thus limiting our adoption of such tools.

Meanwhile, there has been a surge of open-source software so-

lutions. Among them, numerous projects help to deal with some

challenges related to AIOps, while not directly providing a com-

plete AIOps platform. For instance, several open-source agents,

such as Telegraf from InfluxData [37] and Beats from the ELK

stack [5], enable seamless collection of data from applications. Also,

open-source engines have been created to efficiently manage large

volumes of data. Some of these solutions focus on specific types,

such as metrics in the case of InfluxDB and TimescaleDB, while oth-

ers are more generic, like ClickHouse and Elasticsearch. Therefore,

it is becoming increasingly feasible for medium-size software com-

panies, like ours, to develop in-house and modern AIOps platforms

by combining and building on top of open-source components.

Contributions. We have thoroughly explored this possibility and

investigated the different open source solutions and architectures

that we can exploit to deploy an On-Premise AIOps system. In

this paper, we share our experience by presenting our end-to-end

on-premise infrastructure, while explaining the methodologies that

we followed to make various decisions. Particularly, we provide

insights into our approach and criteria for selecting a data man-

agement system and we explain how we integrated it. Although

we have deployed this platform on our own servers, it can also be

implemented on an IaaS Cloud solution which provides physical

servers and manages them for its clients.

Outline. Sec 2 provides an overview of Infologic and its ERP

software called Copilote, along with an introduction to AIOps capa-

bilities. In Section 3, we delve into the maintenance and monitoring

challenges faced in our software, as well as the obstacles encoun-

tered when deploying an on-premise AIOps solution. To address

effectively these challenges, we establish a list of considered criteria

that are provided in Sec 4. Sec 5 introduces our proposed AIOps

infrastructure and elucidates the various choices we made. Finally,

we present discussions and conclusions in Sec 6.

2 BACKGROUND
2.1 Infologic and Copilote
Infologic is a leading provider of ERP solutions for the agri-food,

health nutrition, and cosmetic sectors in France. Its flagship prod-

uct, Copilote, is an enterprise resource planning software designed

to optimize and automate a large panel of business processes, in-

cluding sales tracking, supply chain management, and customer

relations. Infologic manages the complete Copilote implemen-

tation process, which includes integrating the software for the

client, providing training, and maintaining the ERP instances and

infrastructure in operation. This infrastructure comprises many

dependent components and applications such as a Tomcat server,

Oracle or Postgres databases, virtual machines, backup systems, and

more. Currently, this ERP system is deployed by hundreds of food

industries, ranging from small companies to large corporations. As

the proper functioning of these businesses depends heavily on the

reliable performance and accessibility of the ERP, it is crucial to

ensure high availability and excellent maintenance for Copilote.

Before 2019, Infologic’s service was mainly focused on system-

atic and corrective maintenance, that is, apply time-based checks

On-Premise AIOps Infrastructure for a Software Editor SME: An Experience Report

Figure 2: Main AIOps Features

and solving incident tickets that are created by clients. Fig 1 depicts

the former maintenance system before introducing AIOps. The

user can interact with the ERP through a web client, a Java client,

or a PDA (Personal Digital Assistant). During these interactions,

she may encounter some errors, outages, or difficulties of usage,

for which she would submit an incident or assistance ticket for

Infologic. OCEs (On-Call engineers) are the first to receive these

tickets. If feasible, they can address and resolve them directly, oth-

erwise, they route them manually to expert engineers. The scope of

predictive maintenance was constrained due to a notable absence

of tools and limited system observability. For instance, the lack of

centralized monitoring data necessitated connecting to servers to

access component-specific observations. Additionally, data reten-

tion was typically limited to one week in most cases, as storing

more data using traditional database systems could incur high costs

due to the high volume and velocity of the data.

Although this former approachmay have been sufficient a decade

ago, it no longer scales as the number of clients grows. In fact, the

size of the environment production fleet has exceeded a thousand

servers, each of them handling various applications. Infologic is

confronted with an important challenge of enhancing operational

efficiency, all while ensuring optimal customer satisfaction levels

are upheld. Since 2019, Infologic has invested a lot on shifting

the approach and focusing more on Predictive Maintenance rather

than Corrective Maintenance. This can be achieved by following a

data-driven philosophy where data is at the heart of any operation,

starting from observability to automated recovery.

2.2 AIOps
The challenges encountered by Infologic have sparked our inter-

est toward replacing manual maintenance routines with a unified

and intelligent approach to conduct maintenance incidents from

creation through diagnosis to resolution. The ultimate objective is

to automate as many of the associated tasks as feasible, with a view

to optimize the so called MTTD (Mean Time To Detect) and MTTR

(Mean Time To Resolve). This approach is referred to as AIOps,

which stands for AI for Operating Systems. AIOps leverages big

data and machine learning to intelligently automate a wide range

of IT and maintenance operations, and to accelerate the identifica-

tion and resolution of IT issues and outages [43, 58]. According to

research [58, 63, 65], a prototypical AIOps system ought to encom-

pass six fundamental abilities that cover diverse tasks, as shown in

Figure 2 and detailed below.

Perception. It corresponds to the capacity of gathering heteroge-

neous data types, including logs, metrics, and incident tickets, from

multiple sources. The ingestion process needs to accommodate

both real-time streaming and historical data analysis. Additionally,

powerful data visualization and querying are necessary to ensure

optimal response times when accessing the data.

Prevention. This process involves anticipating potential failure

scenarios and forecasting high-severity outages before they occur

in the system, utilizing simple alert rules, statistical models and

predictive machine learning algorithms.

Detection. If errors or performance issues occur, the system must

detect related anomalies. This involves analyzing extensive histori-

cal data to spot abnormal occurrences, while reducing false alarms

and redundant events.

Location. The objective of this process is to identify and analyze

potential root causes responsible for errors. This involves conduct-

ing a causality and correlation study, as well as providing tools that

well characterize the context of those errors.

Action. Once the root cause of a problem is identified, the next step

is to act to solve it. The AIOps platform must provide simplified

actions based on the current context and past solutions outlined in

the prescriptive maintenance protocol. Some actions can even be

triggered automatically once a corresponding incident is detected.

Interaction. AIOps solutions should enable interactive analysis

between the intelligence provided by integrated models and the ex-

pertise of users. This includes facilitating communication between

different maintenance teams or customers, promoting efficient in-

formation sharing and problem resolution. This is achieved through

various means, such as automatic incident documentation and sum-

marization, or chatbot agents utilizing NLP techniques.

3 CHALLENGES
While adopting an AIOps solution can deliver significant benefits to

our organization, it comes with numerous challenges that need to

be carefully considered during the implementation of such solution.

Human challenge. One of the main challenges is the difficulty of

shifting the mindset of IT professionals to adopt new ways of work-

ing [43]. A notable effort needs to be invested to simplify this tran-

sition. Thus, it is important to ensure interpretability and explain-

ability of AIOps solutions to build trust in these approaches [52].

Novelty ofAIOps.AIOps is still a recent and unstructured field [55].
Given its novelty and cross-disciplinary nature, AIOps contribu-

tions and methods are widely dispersed, lacking standardized taxo-

nomic conventions for data management, as well as clear capabili-

ties and implementation details. As such, discovering and compar-

ing these methods can be a challenging endeavor. Therefore, one

should determine the class of methods and tools that are needed

given the defined goals, and establish a clear and objective proce-

dure for comparing and selecting the right ones.

Handling large volumes of data. Data plays a crucial role in

different aspects of AIOps. Ensuring high observability and real-

time analysis requires efficient and continuous integration of large

volumes of data from multiple sources. However, this integration

poses several challenges. Foremost, data collection routines must

not negatively impact the performance of the monitored applica-

tions, such as overwhelming their memory or network resources.

Anes Bendimerad, Youcef Remil, Romain Mathonat, and Mehdi Kaytoue

Additionally, the data management system used must exhibit high

performance in terms of data ingestion, compression, and querying

capabilities across various data types to support this process.

Data quality.Without effective data quality control, AIOps data

may exhibit numerous defects. For example, network failures can

lead to missing data, which undermines both data observability

and representativeness. Message queues can help to address this

issue [47]. Moreover, data related to incident management is largely

sourced from human actions, such as incident tickets, corrective

actions, and labels, which may be prone to human errors. This can

lead to inaccuracies when using this data to train AIOps models.

Integrating MLmodels. AIOps presents challenges in integrating

ML solutions. For instance, anomaly detection is a key task in AIOps,

but data in this field is extremely imbalanced as anomalies are rare.

Moreover, lack of labeled data is a common issue, limiting the scope

of applications to unsupervised or semi-supervised methods. An-

other important fact is that AIOps data is prone to concept drift [51].

Software systems evolve for many reasons, such as the introduction

of new components or an increase in the number of users. Any of

these changes may impact significantly the characteristics of data.

Therefore, it is essential to leverage MLOps tools [49] to monitor

model quality in production, and update models accordingly.

Integrating expert knowledge. Although modern ML techniques

can derive valuable insights from data, this data may not contain

all the requisite knowledge to accurately perform the given task,

particularly in AIOps where there is a clear lack of ground truth.

Moreover, due to the evolving nature of a software system, cer-

tain knowledge and inferences may become obsolete, while new

knowledge and ways of dealing with problems emerge. Hence, an

AIOps platform should support an interactive process that enables

the integration of knowledge from expert engineers and help to

continuously improve the quality of algorithms’ results. Active

Learning [62, 64] can be especially beneficial in this context.

Security and Privacy. AIOps heavily relies on data, including

sensitive information that could pose potential security threats or

privacy concerns if not handled properly. An AIOps platform may

need to track user interactions with the monitored software, or

collect incident tickets containing confidential information about

clients. Thus, we must ensure a high standard of security and com-

ply with regulations such as the General Data Protection Regulation

(GDPR) [15]. Privacy is one of the concerns that prompt us to im-

plement an on-premise platform, to have full control over our data.

4 CRITERIA OF CHOICE
During the construction of our AIOps infrastructure, we had to

make multiple decisions regarding the selection and configuration

of architectural components, as well as choosing between using

existing external tools or developing custom solutions. These deci-

sions aimed at providing an AIOps solution that effectively address

the challenges we previously identified while ensuring optimal effi-

ciency. To make well-informed choices, we have established a list

of objective criteria that guided the implementation of this project.

These criteria were tailored to suit the varying circumstances and

specific requirements of each component within the architecture.

License. This aspect concerns external projects that can be inte-

grated into our infrastructure. A software solution is subject to a

license that defines the terms and conditions of its usage. Several

licenses are recognized as open-source, but some of them are more

permissive than others. In our context, we are mainly interested in

open-source solutions whose license permits both the usage and

commercialization of the software. It should be noted that some so-

lutions, such as Elasticsearch [12] and MongoDB [27], have licenses

that are copyleft. Although we prefer a fully permissive license,

such as Apache license or MIT license, we also consider solutions

whose open-source usage is limited to the default distribution.

Notoriety and popularity. This is a relevant indicator which sug-

gests that a project has been widely tested, validated, used, and

accepted by the community. Moreover, popular projects tend to

benefit from stability, continuous development, updates, and sup-

port. There exist metrics that can be used to estimate a project

popularity, such as the overall number of downloads and deploy-

ment, the number of GitHub stars and forks, the number of active

contributors. Some factors that are relatively subjective can also be

considered, such as recommendations of experts.

Cost of implementation. This includes human and material re-

sources that are required to implement a solution. When consider-

ing an external project that is already developed, the costs primarily

involve deployment and adaptation to our ERP system. On the other

hand, if we are developing a custom component from scratch, the

main factor influencing this criterion is the cost of development.

Operational cost. Since we aim for an on-premise solution, this

criterion involves the cost of infrastructure needed to operate the

software, alongside the cost of its administration and monitoring.

In contrast, in the case of a cloud-hosted solution, the primary

consideration lies in the pricing associated with utilizing the service.

Flexibility and Adaptability to internal context. This criterion
assesses the ease of integrating and adapting a tool to the existing

technology stack and adhering to our company’s standards. In our

specific context, this factor holds significant importance since the

AIOps infrastructure must seamlessly integrate with the existing

ERP, which possesses its own characteristics and utilizes internal

tools that can potentially be leveraged in the AIOps project. Further-

more, the monitoring of such a proprietary software necessarily

implies specific developments to cover all its scope from technical

to business layer.

Ease of usage. This is a crucial criterion as it heavily affects the

adoption rate of a tool, which in turn, impacts the success probabil-

ity of the project. For instance, when evaluating database systems,

one key factor that influences this criterion is the query language

used by the solution. Systems that use SQL such as ClickHouse and

TimescaleDB are generally easier to adopt than those that employ

specific query languages such as Elasticsearch and InfluxDB.

Security and privacy. Given that AIOps relies on critical data

sources and applications, we need to ensure that all the architec-

ture has strong security standards, especially when integrating

external projects. Evaluating this aspect when integrating open-

source tools into the project can be accomplished through various

criteria, including code reviews and audits, community engagement

on good practices, security features and their documentations, and

security track record.

Limiting the number of tools. It is important to keep in mind

that when the number of distinct tools employed in the infrastruc-

ture increases, so does the complexity and cost associated with its

On-Premise AIOps Infrastructure for a Software Editor SME: An Experience Report

Figure 3: On-premise AIOps Infrastructure: Overview and main used tools.

maintenance. In fact, each tool may require additional specific skills

and engender more complex dependencies within the architecture.

Performance and scalability. Performance concerns the effi-

ciency of a tool in executing its assigned task. It can be measured

by the resources required to accomplish these tasks, such as time,

memory, CPU, network resources. On the other hand, scalability

corresponds to the capacity of the solution to scale to larger work-

loads, and this refers to both vertical and horizontal scalability.

5 ON PREMISE AIOPS INFRASTRUCTURE
Fig 3 provides an overview of the infrastructure and highlights the

key tools used to implement different aspects of AIOps. Our moni-

tored infrastructure comprises over a thousand servers that host the

Copilote ERP and other applications that interact with it. To extract

monitoring data, a collection agent is installed on each server and

configured at scale using our new AIOps module, which is fully

integrated into Copilote. This module ingests data from collection

agents and transmit them to a Message Queue. Then, these data are

stored in a relational ACID DBMS or a Data LakeHouse [48, 68], de-

pending on the use case. Our AIOps module includes visualization

tools to explore these data and create dashboards that facilitate mon-

itoring. Moreover, a collaborative platform has been implemented

to enable data scientists to analyze and experiment with collected

data and develop AI algorithms. Effective algorithms can be then

deployed in the AI in Production infrastructure as a web-service

that serves REST queries on demand or a Python task that is or-

chestrated by the Copilote AIOps module. We have also introduced

an internal alerting engine that can generate alerts using simple

rules or advanced Machine Learning techniques, by interacting

with the AI services and tasks. This engine can be configured to

automatically create incident tickets that will be then handled by

the incident management and resolution node. It is also possible to

manually create an incident ticket. In what follows, we describe in

detail these main infrastructure components.

5.1 Collection agent
This is a lightweight application that is installed on monitored

servers, and that can interact with various server components to

gather their health status, performance metrics, logs, and more.

Notable components that we need to monitor include our ERP

software, related databases such as Oracle or PostgreSQL, operating

systems, virtual machines, and more. The most critical component

to monitor is the ERP software, including its technical, applicative,

functional, and business layers. There exist popular open-source

collection agents that can be considered in this study. For instance,

InfluxData offers Telegraf [37] which is able to connect with more

than 300 popular applications. The ELK stack provides the Beats

suit [5] to collect and send metrics to Elasticsearch. Fluentd [14]

is another agent that can collect events and send them to various

types of destinations such as files or DBMS.

These tools offer numerous advantages, being open-source with

substantial popularity indicated by at least 10k GitHub stars and

thousands of forks. Moreover, their deployment and configuration

is simple. However, they do not provide tools to gather specific

data related to our ERP since it is a proprietary software, which

represents a significant portion of our AIOps monitoring scope.

Additionally, leveraging these tools does not allow us to directly

utilize our internal data manipulation libraries, a factor that could

simplify our work and enhance maintainability. Therefore, we built

upon existing tools and libraries to implement our own collection

agent. This choice also enables us to tailor the agent to specific

network constraints that we have at Infologic.

For each installed agent, we can schedule a list of collection tasks

that are continuously executed. A task can be a shell script, a Java

Anes Bendimerad, Youcef Remil, Romain Mathonat, and Mehdi Kaytoue

Figure 4: Agent configuration tool: Example of configuration of a task that pings Copilote servers every 10 minutes.

or Python code snippets, an SQL query, or an HTTP Rest query. An

example of a simple shell task that is executed every 10 minutes

with the agent to get the total number of processes in the Operating

System is “ps -ef –no-headers | wc -l”. The result of a task is

then sent to our AIOps module that consolidates and stores the data.

To address potential network failures, our collection agent is able

to buffer the data collected for a certain duration and retry sending

later. This ensures that our AIOps monitoring remains reliable and

robust even in the face of potential network disruptions.

5.2 Agent configuration tool
We have introduced an agent configuration node within the AIOps

module of our ERP. This node is used to perform the installation and

configuration at scale of data collection agents on the monitored

servers. Such configuration tool is crucial since we are applying an

agent-based monitoring whereas collection agents need to be in-

stalled, configured, and continuously updated on a thousand servers.

This tool makes it possible to flexibly configure a data collection task

on a specific subset of servers. For example, to monitor database

tables, we need to configure the collection of their sizes and number

of rows on only DBMS servers. This is made possible thanks to the

agent configuration tool. In Fig 4, we show an example of a task that

is scheduled using our agent configuration tool. This task performs

a basic ping on all our servers to check whether they are alive. The

configuration tool offers buttons for task planning, unplanning, and

other related actions. In the "Planning" section, we can observe that

the task is scheduled to run every 10 minutes. Additionally, this tool

provides information and logs about the previous task executions,

facilitating monitoring and troubleshooting.

We developed our own configuration tool for the same reasons

that motivated us to create our own agent. Moreover, this configura-

tion tool was built by extending our ERP task management module,

which is widely used in Copilote to schedule tasks in various busi-

ness modules such as sales and supply chains. Utilizing this module

Figure 5: An example of class that can be used to perform ingestion of ping
data using Java internal APIs.

allowed us to leverage our strong internal expertise for its devel-

opment and ensured direct compatibility with our monitoring and

alerting system, which simplified its adoption. Here again, there

are open-source solutions that can be used in this context, such

as Ansible [1] from Red Hat. Some alternative tools provide an

agentless approach to collect data, which eliminates the need of

installing agents on monitored servers. Such approach generally

requires less effort to set up a generic monitoring, it is known to be

limited as it lacks the same level of interaction with applications

like agent-based monitoring. In [56], an in-depth comparison of

pros and cons of agent-based and agentless monitoring is detailed.

5.3 Data ingester
Our AIOps module provides a data ingester that receives monitor-

ing data from collection agents. The JSON format has been mainly

used to transmit data, as it is one of the simplest and standard data

On-Premise AIOps Infrastructure for a Software Editor SME: An Experience Report

format. Transmitted data are automatically compressed using the

popular GZIP algorithm. Thanks to this ingester, data transforma-

tion and augmentation can be performed before sending it to the

message queue. In Fig 5, we show the Java class and the method

onData(...) which can be used to ingest data that we receive

from collection agents. This method is executed when an agent

sends new data provided by the variable receivedData. At this
level, we can flexibly perform data transformation and then send

the result to a message queue using our internal EDI (Electronic

Data Interchange) API. Our framework also provides a generic data

ingester that simply receives the data and sends it to a specified

message queue without modifying it.

A notable open-source alternative to ingest data is Logstash [25].

While it has beenmainly developed to ingest data coming from beats

and going to Elasticsearch, it is now compliant with other databases

and agents like Telegraf. Since the implementation of our data

ingester had a limited and controlled cost, we opted for this solution

to achieve full integration with our software to avoid adding an

unnecessary dependency on an additional tool like Logstash.

5.4 Message queue system
A message queue system serves as an interface between the data

ingester and data consumers, offering several benefits. Firstly, it

ensures data durability, meaning data remains in the message queue

until consumed by all the consumers that require it. Additionally,

it simplifies the consumption of data by multiple destinations at

once, as certain data needs to be stored in several database systems.

Furthermore, asynchronous communication via the message queue

notably improves ingestion performance by allowing the ingester

to send data without waiting for it to be processed.

Our ERP already includes a built-in message queue module

founded on the EDI standard [59], which is extensively used across

various business modules of Copilote. Hence, we have leveraged

this fully integrated feature for our AIOps module. An example of

the EDI interface used for sending data to ClickHouse is illustrated

in Fig 6. In “Emissions list for this partner”, we define a list of “top-

ics” that are consumed by this interface and stored on ClickHouse.

These same topics can be consumed by other EDI interfaces as well,

allowing them to be sent to additional destinations when needed. In

this example, we have also attached a Java profile (displayed on the

right-hand side of the screen), which is a code snippet that enables

final data transformation specifically related to ClickHouse.

Had we not had the ready-to-use EDI module, we could have

utilized one of the open-source message queue platforms such as

Apache Kafka [3], RabbitMQ [34], or RocketMQ [35]. These sys-

tems vary in design and characteristics, suiting different project

requirements. A thorough comparison of popular message queu-

ing systems is provided in [47]. This paper highlights the distinct

features of each system and summarizes their best-suited cases.

5.5 Persistence layer
Consumers from the message queue send data to the persistence

layer for storage. Due to significant variations in data characteristics

and significance, we could not rely on a “one size fits all” database

in this context, as also supported by similar studies [65, 67]. For

instance, some data related to the general characteristics of servers

and their clients require strong consistency but are of limited size.

In this case, an ACID-compliant relational DBMS like Oracle is suit-

able. However, such a database system is not well-suited for storing

thousands of performance metrics collected from each server at

high frequency and retained for extended periods. For example,

to monitor CPU usage alone, we collect dozens of metrics from

a thousand servers at a frequency of 0.1 hertz. This data, stored

for two years, results in a table with six billion rows and multi-

ple columns. Log data presents an even greater challenge, with

every web service call generating multiple lines of logs, considering

over 100 million web service calls collected daily. We have devoted

significant effort to identifying the appropriate data management

tools for these wide variety and volume data sets. In the first ver-

sion of our AIOps module, we used InfluxDB for time series data

and Elasticsearch for textual data. However, we recently shifted to

ClickHouse, which is highly efficient in managing various types of

data, including metrics and text, and is easier to use than InfluxDB

and Elasticsearch, thanks to its SQL syntax. Recent studies have

shown the superiority of ClickHouse on online analytics [7, 53]

compared to competitors. Therefore, Several companies, such as

Contentsquare [8], eBay [30], Cloudflare [18], and Disney+ [10],

have migrated to ClickHouse from other solutions.

To verify that ClickHouse is suitable for our context, we con-

ducted a comparative study whose results led us to migrate our

Data LakeHouse to this solution. This choice also simplifies admin-

istration and reduces costs by consolidating to one tool instead of

two (InfluxDB and Elasticsearch). We have compared it with three

other popular open source solutions which are InfluxDB, Elastic-

search, and TimescaleDB. In what follows, we detail further the

position of each solution given specific criteria.

License. The four solutions we have considered all offer licenses

that at least allow unrestricted usage of their default distributions.

However, the extent of features included in these distributions

varies between the solutions. For instance, the open-source version

of InfluxDB lacks horizontal scalability, limiting its usage to a single

node, while the three other alternatives can be freely used in dis-

tributed settings. Among them, ClickHouse and TimescaleDB have

the most permissive licenses, being covered by Apache License 2.0.

Notoriety and popularity. All the four solutions have established
a strong popularity over the open-source community. To compare

their GitHub repositories’ activity, we provide interesting metrics

in Tab 1. The repository with the highest number of stars is Elastic-

search. Fig 7 illustrates the evolution of stars over time, showing

a notable increase for ClickHouse, which has recently surpassed

InfluxDB. Although all four repositories demonstrate considerable

activity across the other metrics listed in Tab 1, TimescaleDB has

relatively smaller values. In addition, ClickHouse stands out with a

significantly higher number of commits in the past year, indicating

a faster project evolution rate. These metrics provide insights into

the popularity of these projects, but they do not necessarily imply

that one project is universally more interesting than another.

Ease of usage and adaptability. This is an important factor that

greatly influences a project’s success. Our experience has shown

that it is extremely helpful when the used query language is SQL, as

it is widely popular. InfluxDB and Elasticsearch employ their own

specific languages for data querying, which has hindered their adop-

tion at Infologic. In contrast, ClickHouse, with its SQL-based query

Anes Bendimerad, Youcef Remil, Romain Mathonat, and Mehdi Kaytoue

Figure 6: An EDI interface used to persist data on ClickHouse. In this simplified example, it consumes only one topic related to machine performance data.

Table 1: Metrics comparing GitHub repositories of the four DBMS considered
in our study.

Solution Stars Forks Contributors Last year commits

ClickHouse 29k 5.7k 1.2k 26k

Elasticsearch 64k 23k 1.8k 4.5k

InfluxDB 27k 3.5k 454 4.3k

TimescaleDB 15k 793 83 700

Figure 7: Evolution of number of GitHub stars for Elasticsearch, ClickHouse,
InfluxDB, and TimescaleDB.

language, has witnessed a faster adoption within our company.

Another aspect for evaluating the ease of usage and adaptability of

a solution is the availability of libraries and tools that facilitate its

integration with other projects. For instance, integrating a database

source on a visualization tool like Grafana. All the four studied

solutions benefit from extensive library support that ease their

integration on different projects.

Performance. Numerous empirical studies have been performed

to compare DBMS solutions for online analytics on large volumes

of data. Mostafa et al. [53] provide a thorough study that evaluates

ClickHouse, InfluxDB, TimescaleDB, and PostgreSQL in handling

time series data. It compares their ingestion and storage capacity,

and their performance on executing different types of queries. This

study shows the superiority of ClickHouse on handling metrics

compared to other solutions. While it also indicates satisfactory

performance of InfluxDB, this study has not evaluated it on datasets

with high time series cardinality. In fact, it is known that the Achilles

heel of InfluxDB is when the number of time series exceeds a few

millions, whereas the performance of the open-source InfluxDB

version becomes poor. Furthermore, ClickBench [7] is a wide bench-

mark that showcases ClickHouse as one of the top performers in

online analytics compared to over thirty other solutions, including

Elasticsearch, TimescaleDB, and several paid cloud solutions. These

findings are reinforced by the experiences of various companies.

For example, Contentsquare [8] migrated its infrastructure from

Elasticsearch to ClickHouse, reducing infrastructure costs by eleven

times while storing six times more data and achieving a tenfold

improvement in query execution speed for 99% of queries. Simi-

larly, eBay [30] reduced its infrastructure footprint by 90% after

migrating from Druid to ClickHouse. Cloudflare [18] improved its

performance by migrating from CitusDB to ClickHouse, and Dis-

ney+ [10] chose ClickHouse over Elasticsearch, Apache Flink, and

Hadoop after thorough evaluation.

Scope of usage.ClickHouse and Elasticsearch are generic databases
capable of handling various types of data, including time series, text,

logs, and unstructured data in JSON format. In contrast, InfluxDB

and TimescaleDB are specifically designed for time series data.

Despite this specialization, our performance study did not demon-

strate superior performance of the specialized solutions. Therefore,

it is not advantageous for us to invest in a dedicated time series

database, which would increase the complexity of our system.

5.6 Data visualization and monitoring
Efficient data visualization tools are a critical component of a suc-

cessful AIOps project. These tools must offer a user-friendly inter-

face and provide a variety of visualization panels that are suitable

for monitoring, such as time series, gauges, dynamic topologies.

These tools help IT professionals to monitor the infrastructure,

diagnose problems, identify component relationships, navigate to

root causes, and make informed decisions. Dashboards, which are

pre-configured sets of visualization panels that succinctly represent

data in a single view, are one of the primary uses of these tools.

Our AIOps module integrates two visualization tools. The first is

On-Premise AIOps Infrastructure for a Software Editor SME: An Experience Report

Figure 8: Example of a Grafana dashboard that visualizes data loaded from
both ClickHouse and Oracle.

Copilote infocenter, our BI tool, which is fully integrated into our

software and simplifies manipulation of data stored in the Oracle

database of the ERP using a drag-and-drop approach. However, this

tool currently cannot interact with external data sources such as

ClickHouse. To overcome this limitation, we also use Grafana [17],

an open-source tool that allows us to query data from different

sources including Oracle and ClickHouse. Fig 8 shows a Grafana

dashboard including data loaded from both ClickHouse and Oracle.

Another notable advantage of Grafana dashboards and panels is

their ability to be directly embedded in the web interface of our ERP.

Other open-source solutions that could have been used instead of

Grafana include SuperSet [4] and Metabase [26].

5.7 AI development and analysis
The application of AI in ITOps requires extensive exploration and

experimentation to identify effective methods for addressing related

challenges. As such, it is important to offer an efficient collaborative

framework and toolset for data-scientists. This starts with provid-

ing a Version Control System to manage and version all source

code related to experimental studies and development. Our team

exploits GitLab [16], an open-source git platform that can be used

for version control, CI/CD, automatic unit testing, and more. We use

Python as a programming language as it is the language of choice

for data science, but also, it is completely apt and well-equipped to

run in production. We host a Jupyter Hub [23] to facilitate collabo-

rative work around Python notebooks. Each data scientist can also

benefit from using Visual Studio as an IDE, which offers integrated

features such as auto-completion, git feature simplification, code

formatting, and error detection. To perfectly isolate between differ-

ent AI projects, a separate Python virtual environment is employed

for each project with Poetry [32] as a virtual environment manager.

5.8 AI in Production
Once effective algorithms have been developed and tested, they

can be transitioned into production. Our infrastructure supports

the deployment of both HTTP RESTful query-response services

and scheduled data transformation tasks. FastAPI [13] has emerged

as a popular choice for managing Python services in production

environments. By using Nginx [29] as a proxy, we can redirect

HTTP queries to the appropriate service, thereby facilitating the

deployment of multiple services. Docker containers can be used

to isolate services and streamline their deployment. Conversely,

certain Python routines, such as data transformations (ETL), are

more appropriately defined as tasks. These tasks are orchestrated

using a built-in job scheduler in our ERP system, a tool that is

also widely employed in several other modules of Copilote. Open-

source alternatives for orchestrating Python jobs includeAirflow [2]

and Prefect [33]. Python tasks can be scheduled based on specific

frequency or triggered by certain events. Orchestration tools also

allow for the management of dependent job executions, where the

execution of one job is contingent on the output of others.

5.9 Alert engine
Alerting is a core feature of predictive maintenance. It aims to

generate timely alerts when anomalies or other relevant issues

are detected (resp. predicted) in the current (resp. future) state

of the system. These alerts can be created through both simple

threshold-based rules and sophisticated ML techniques. To enable

a full integration with our AIOps module and internal incident

management tool, we have developed our own alert engine. This

engine can access ERP data via Copilote Infocenter and can inter-

act with external databases like ClickHouse. Additionally, it can

trigger alerts based on computations produced by an AI service.

This engine can be used to create, update, and fine-tune alerts. The

definition of an alert needs to be expressed with a simple rule such

as: if metric > threshold =⇒ generate alert with a
given severity level. This straightforward format is equally

effective for complex alerts based on ML methods. For example, the

metric used to trigger the alert could be a system anomaly score,

computed beforehand with an LSTM auto-encoder [54]. One of our

usage of ML methods is time series forecasting to predict the time

remained before saturation of resources such as storage, memory,

swap, and Oracle table space. We have employed a hybrid approach

by combining simple Linear regression and a Deep Neural network

approach called NHITS [40] which has shown its efficiency in long

horizon time series forecasting. These methods are used to predict

the number of remaining days before saturation, then, a simple

alert rule is configured when this metric is lower than a specific

threshold. Moreover, alert rules can be configured to initiate au-

tomatic actions, such as creating and assigning an incident ticket

or applying a corrective action. Several open-source solutions, like

Grafana [17] and Kibana [24], can also be used as alert engines.

While Grafana has the capability to define alerts on various data

sources, Kibana is limited only to Elasticsearch. It’s worth noting

that using such products involves the additional cost of interfacing

alerts with our own system.

5.10 Incident Management and resolution
After a problem has been detected, an incident ticket is created

to address this problem. This ticket can be created automatically

with the alert engine, or manually by a Copilote user. An incident

includes a title and description, as well as contextualized attributes

Anes Bendimerad, Youcef Remil, Romain Mathonat, and Mehdi Kaytoue

Figure 9: Example of an incident ticket.

to identify the concerned server, application, client, the time of in-

cident, etc., as shown in Fig 9. Managing incidents includes several

operations. It first starts by assigning the incident to the right team

or person, as maintenance staff are organized on several teams that

are specialized on different topics (database, application, infrastruc-

ture, etc.). This is called incident triage and it can be completely

automated with efficient MLmethods [41, 42, 60]. Additionally, inci-

dents of each team need to be ranked with respect to their criticality.

Then, for each incident, the assigned person starts by diagnosing

the problem in order to understand its origin. It is noteworthy that

in some urgent cases, the person starts by applying a palliative

action to unlock the problem. To make the diagnosis process effi-

cient, maintenance teams need to be equipped with effective tools

that enable them to contextualize incidents and perform root cause

analysis. Once the root cause is identified, corrective actions can be

applied. The incident ticket also contains a list of timestamped com-

ments that explain the operations that have been done to diagnose

and solve the problem, as illustrated in Fig 9. In our Copilote AIOps

module, we have implemented an incident management node that

covers all the aforementioned operations and automate as many

steps as possible. Alternatively, one could exploit iTop [22] which

is an open-source incident management system.

6 CONCLUSION
Setting up an on-premise AIOps architecture is a strategic choice

for medium-size software engineering companies when it comes to

keep costs under control but also data. In this article, we presented

our AIOps architecture and most importantly what led us there

according to a set of adaptable criteria to guide decision-making,

including data sovereignty, cost controls, ease of use, adaptability

and stability among others. We believe that our methodology can

be adapted to many companies, but also simply brings elements of

discussion in general. Shifting it towards the cloud is possible and

is, again, a strategic decision
1
.

We now run our approach in production. We drastically reduced

the number of fatal incidents of all the components we monitor. For

example, we almost eradicated Copilote service unavailability’s due

to disks/databases saturation, JVMmemory leaks, UNIX swap leaks,

and many more. Our infrastructure is stable: the only components

we changed since the first production launches (we proceeded iter-

atively and added new features each time) are the NoSQL databases.

The cost of handling our infrastructure notably decreased when we

moved from using two solutions (InfluxDB and Elasticsearch) for

our Data LakeHouse to only one (ClickHouse) and it came with a

better adoption as anyone knows SQL. It is also easy to set up new

data collections and alerts based on rules: anyone knowing either

SQL or the Copilote BI module can set up an alert. For predictive

and anomaly detection tasks, we still need dedicated studies and

programs, generally in Python using well-known libraries such that

scikit-learn [57] or specialized algorithms [40]. However, we are

actively researching more efficient tools to facilitate the integration

of ML/DM, including model and feature stores, as well as special-

ized tools for monitoring models in production (see e.g. MindsDB).

Our second main line of research is to explore the application of

Large Language Models [39, 44, 46, 50, 66] in various aspects of

maintenance. We can analyze historical incident tickets to automat-

ically diagnose new incidents, provide recommended corrections,

and generate summaries. Currently, ChatGPT [6], a model owned

by OpenAI, is remarkably more accurate than open-source alterna-

tives. However, we are witnessing rapid progress in open-source

LLMs [19] that can be trained and deployed on-premise, avoiding

the need to share private data to third parties.

REFERENCES
[1] 2023. Ansible. https://www.ansible.com/

[2] 2023. Apache Airflow. https://airflow.apache.org/

[3] 2023. Apache Kafka. https://kafka.apache.org/

[4] 2023. Apache Superset. https://superset.apache.org/

[5] 2023. Beats from the ELK stack. https://www.elastic.co/fr/beats/

[6] 2023. ChatGPT, the OpenAI chat bot. https://chat.openai.com/

[7] 2023. ClickBench: a Benchmark For Analytical Databases. https://github.com/

ClickHouse/ClickBench

[8] 2023. Contentsquare Migration from Elasticsearch to ClickHouse.

https://clickhouse.com/blog/contentsquare-migration-from-elasticsearch-to-

clickhouse

[9] 2023. Datadog. https://www.datadoghq.com/

[10] 2023. Disney+ClickHouse, Disney’s Flexible ELT Pipelines in Click-

House. https://clickhouse.com/blog/nyc-meetup-report-high-speed-content-

distribution-analytics-for-streaming-platforms

[11] 2023. Dynatrace. https://www.dynatrace.com/

[12] 2023. Elasticsearch. https://www.elastic.co/

[13] 2023. FastAPI. https://fastapi.tiangolo.com/

[14] 2023. Fluentd. https://www.fluentd.org/

[15] 2023. GDPR. https://gdpr.eu/

[16] 2023. GitLab. https://gitlab.com/gitlab-org/gitlab

[17] 2023. Grafana. https://grafana.com/

[18] 2023. HTTPAnalytics for 6M requests per second using ClickHouse. https://blog.

cloudflare.com/http-analytics-for-6m-requests-per-second-using-clickhouse/

[19] 2023. HuggingFace Open LLM Leaderboard. https://huggingface.co/spaces/

HuggingFaceH4/open_llm_leaderboard

[20] 2023. Infologic-Copilote. https://www.infologic-copilote.fr/

[21] 2023. Instana. https://www.instana.com/

[22] 2023. iTop. https://www.combodo.com/itop-193

[23] 2023. JupyterHub. https://jupyter.org/hub

1
See for example https://world.hey.com/dhh/why-we-re-leaving-the-cloud-654b47e0

https://www.ansible.com/
https://airflow.apache.org/
https://kafka.apache.org/
https://superset.apache.org/
https://www.elastic.co/fr/beats/
https://chat.openai.com/
https://github.com/ClickHouse/ClickBench
https://github.com/ClickHouse/ClickBench
https://clickhouse.com/blog/contentsquare-migration-from-elasticsearch-to-clickhouse
https://clickhouse.com/blog/contentsquare-migration-from-elasticsearch-to-clickhouse
https://www.datadoghq.com/
https://clickhouse.com/blog/nyc-meetup-report-high-speed-content-distribution-analytics-for-streaming-platforms
https://clickhouse.com/blog/nyc-meetup-report-high-speed-content-distribution-analytics-for-streaming-platforms
https://www.dynatrace.com/
https://www.elastic.co/
https://fastapi.tiangolo.com/
https://www.fluentd.org/
https://gdpr.eu/
https://gitlab.com/gitlab-org/gitlab
https://grafana.com/
https://blog.cloudflare.com/http-analytics-for-6m-requests-per-second-using-clickhouse/
https://blog.cloudflare.com/http-analytics-for-6m-requests-per-second-using-clickhouse/
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://www.infologic-copilote.fr/
https://www.instana.com/
https://www.combodo.com/itop-193
https://jupyter.org/hub
https://world.hey.com/dhh/why-we-re-leaving-the-cloud-654b47e0

On-Premise AIOps Infrastructure for a Software Editor SME: An Experience Report

[24] 2023. Kibana from the ELK stack. https://www.elastic.co/fr/kibana/

[25] 2023. Logstash. https://www.elastic.co/fr/logstash/

[26] 2023. Metabase. https://www.metabase.com/

[27] 2023. MongoDB. https://www.mongodb.com/

[28] 2023. New Relic. https://newrelic.com/fr

[29] 2023. Nginx. https://www.nginx.com/

[30] 2023. Our Online Analytical Processing Journey with ClickHouse on Kubernetes.

https://tech.ebayinc.com/engineering/ou-online-analytical-processing/

[31] 2023. PagerDuty. https://www.pagerduty.com/

[32] 2023. Poetry. https://python-poetry.org/

[33] 2023. Prefect. https://www.prefect.io/

[34] 2023. RabbitMQ. https://www.rabbitmq.com/

[35] 2023. RocketMQ. https://rocketmq.apache.org/

[36] 2023. Splunk. https://www.splunk.com/

[37] 2023. Telegraf from InfluxData. https://www.influxdata.com/time-series-

platform/telegraf/

[38] Jasmin Bogatinovski, Sasho Nedelkoski, Alexander Acker, Florian Schmidt,

Thorsten Wittkopp, Soeren Becker, Jorge Cardoso, and Odej Kao. 2021. Ar-

tificial Intelligence for IT Operations (AIOPS) Workshop White Paper. arXiv
preprint arXiv:2101.06054 (2021).

[39] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric

Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha

Nori, Hamid Palangi, Marco Túlio Ribeiro, and Yi Zhang. 2023. Sparks of Artificial

General Intelligence: Early experiments with GPT-4. CoRR abs/2303.12712 (2023).

[40] Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza Ramírez,

Max Mergenthaler Canseco, and Artur Dubrawski. 2023. NHITS: Neural Hi-

erarchical Interpolation for Time Series Forecasting. In Thirty-Seventh AAAI
Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on In-
novative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium
on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC,
USA, February 7-14, 2023, Brian Williams, Yiling Chen, and Jennifer Neville (Eds.).

AAAI Press, 6989–6997.

[41] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu, Hongyu Zhang, Dan Hao, Feng

Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. An empirical

investigation of incident triage for online service systems. In Proceedings of the
41st International Conference on Software Engineering: Software Engineering in
Practice, ICSE (SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019, Helen Sharp

and Mike Whalen (Eds.). IEEE / ACM, 111–120.

[42] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao,

Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. Continuous Incident

Triage for Large-Scale Online Service Systems. In 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA,
November 11-15, 2019. IEEE, 364–375.

[43] Yingnong Dang, Qingwei Lin, and Peng Huang. 2019. AIOps: real-world chal-

lenges and research innovations. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 4–5.

[44] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

In Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-

tional Linguistics, 4171–4186.

[45] Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, and John Grundy. 2018.

Metric selection and anomaly detection for cloud operations using log and

metric correlation analysis. Journal of Systems and Software 137 (2018), 531–549.
[46] Luciano Floridi and Massimo Chiriatti. 2020. GPT-3: Its Nature, Scope, Limits,

and Consequences. Minds Mach. 30, 4 (2020), 681–694.
[47] Guo Fu, Yanfeng Zhang, and Ge Yu. 2021. A Fair Comparison of Message Queuing

Systems. IEEE Access 9 (2021), 421–432.
[48] Ahmed A Harby and Farhana Zulkernine. 2022. From Data Warehouse to Lake-

house: A Comparative Review. In 2022 IEEE International Conference on Big Data
(Big Data). IEEE, 389–395.

[49] Dominik Kreuzberger, Niklas Kühl, and SebastianHirschl. 2023. Machine learning

operations (mlops): Overview, definition, and architecture. IEEE Access (2023).
[50] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman

Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:

Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,

Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, Dan
Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association

for Computational Linguistics, 7871–7880.

[51] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. 2018.

Learning under concept drift: A review. IEEE transactions on knowledge and data
engineering 31, 12 (2018), 2346–2363.

[52] Yingzhe Lyu, Gopi Krishnan Rajbahadur, Dayi Lin, Boyuan Chen, and Zhen Ming

Jiang. 2021. Towards a consistent interpretation of aiops models. ACM Transac-
tions on Software Engineering and Methodology (TOSEM) 31, 1 (2021), 1–38.

[53] Jalal Mostafa, Sara Wehbi, Suren Chilingaryan, and Andreas Kopmann. 2022.

SciTS: A Benchmark for Time-Series Databases in Scientific Experiments and

Industrial Internet of Things. In Proceedings of the 34th International Conference
on Scientific and Statistical Database Management. 1–11.

[54] Sasho Nedelkoski, Jorge Cardoso, and Odej Kao. 2019. Anomaly detection

from system tracing data using multimodal deep learning. In 2019 IEEE 12th
International Conference on Cloud Computing (CLOUD). IEEE, 179–186.

[55] Paolo Notaro, Jorge Cardoso, and Michael Gerndt. 2021. A systematic mapping

study in AIOps. In Service-Oriented Computing–ICSOC 2020 Workshops: AIOps,
CFTIC, STRAPS, AI-PA, AI-IOTS, and Satellite Events, Dubai, United Arab Emirates,
December 14–17, 2020, Proceedings. Springer, 110–123.

[56] Himanshu Pandey and Er Kushagra Mittal. 2020. Analogy between Agent Less

Monitoring and Agent Based Monitoring. Reliability: Theory & Applications 15,
3 (2020), 117–124.

[57] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[58] Pankaj Prasad and Charley Rich. 2018. Market Guide for AIOps Platforms.

Retrieved March 12 (2018), 2020.

[59] G. Prem Premkumar, Keshavamurthy Ramamurthy, and Sree Nilakanta. 1994.

Implementation of Electronic Data Interchange: An Innovation Diffusion Per-

spective. J. Manag. Inf. Syst. 11, 2 (1994), 157–186.
[60] Youcef Remil, Anes Bendimerad, Marc Plantevit, Céline Robardet, and Mehdi

Kaytoue. 2021. Interpretable Summaries of Black Box Incident Triaging with

Subgroup Discovery. In 8th IEEE International Conference on Data Science and
Advanced Analytics, DSAA 2021, Porto, Portugal, October 6-9, 2021. IEEE, 1–10.

[61] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou,

Tony Xing, Mao Yang, Jie Tong, and Qi Zhang. 2019. Time-series anomaly detec-

tion service at microsoft. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3009–3017.

[62] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B. Gupta,

Xiaojiang Chen, and Xin Wang. 2022. A Survey of Deep Active Learning. ACM
Comput. Surv. 54, 9 (2022), 180:1–180:40.

[63] Laxmi Rijal, Ricardo Colomo-Palacios, and Mary Sánchez-Gordón. 2022. Aiops: A

multivocal literature review. Artificial Intelligence for Cloud and Edge Computing
(2022), 31–50.

[64] Burr Settles. 2009. Active learning literature survey. (2009).

[65] Shijun Shen, Jiuling Zhang, Daochao Huang, and Jun Xiao. 2020. Evolving from

Traditional Systems to AIOps: Design, Implementation and Measurements. In

2020 IEEE International Conference on Advances in Electrical Engineering and
Computer Applications (AEECA). IEEE, 276–280.

[66] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.

Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 5998–

6008.

[67] Ajay Reddy Yeruva. 2023. Monitoring Data Center Site Infrastructure Using

AIOPS Architecture. Eduvest-Journal of Universal Studies 3, 1 (2023), 265–277.
[68] Matei Zaharia, Ali Ghodsi, Reynold Xin, and Michael Armbrust. 2021. Lakehouse:

A New Generation of Open Platforms that Unify Data Warehousing and Ad-

vanced Analytics. In 11th Conference on Innovative Data Systems Research, CIDR
2021, Virtual Event, January 11-15, 2021, Online Proceedings. www.cidrdb.org.

https://www.elastic.co/fr/kibana/
https://www.elastic.co/fr/logstash/
https://www.metabase.com/
https://www.mongodb.com/
https://newrelic.com/fr
https://www.nginx.com/
https://tech.ebayinc.com/engineering/ou-online-analytical-processing/
https://www.pagerduty.com/
https://python-poetry.org/
https://www.prefect.io/
https://www.rabbitmq.com/
https://rocketmq.apache.org/
https://www.splunk.com/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/

	Abstract
	1 Introduction
	2 Background
	2.1 Infologic and Copilote
	2.2 AIOps

	3 Challenges
	4 Criteria of choice
	5 On premise AIOps Infrastructure
	5.1 Collection agent
	5.2 Agent configuration tool
	5.3 Data ingester
	5.4 Message queue system
	5.5 Persistence layer
	5.6 Data visualization and monitoring
	5.7 AI development and analysis
	5.8 AI in Production
	5.9 Alert engine
	5.10 Incident Management and resolution

	6 Conclusion
	References

