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ABSTRACT
The Cancer Registry of Norway (CRN) collects, curates, and man-
ages data related to cancer patients in Norway, supported by an
interactive, human-in-the-loop, socio-technical decision support
software system. Automated software testing of this software sys-
tem is inevitable; however, currently, it is limited in CRN’s practice.
To this end, we present an industrial case study to evaluate an
AI-based system-level testing tool, i.e., EvoMaster , in terms of its ef-
fectiveness in testing CRN’s software system. In particular, we focus
on GURI , CRN’s medical rule engine, which is a key component at
the CRN. We test GURI with EvoMaster’s black-box and white-box
tools and study their test effectiveness regarding code coverage,
errors found, and domain-specific rule coverage. The results show
that all EvoMaster tools achieve a similar code coverage; i.e., around
19% line, 13% branch, and 20% method; and find a similar number of
errors; i.e., 1 in GURI ’s code. Concerning domain-specific coverage,
EvoMaster’s black-box tool is the most effective in generating tests
that lead to applied rules; i.e., 100% of the aggregation rules and
between 12.86% and 25.81% of the validation rules; and to diverse
rule execution results; i.e., 86.84% to 89.95% of the aggregation rules
and 0.93% to 1.72% of the validation rules pass, and 1.70% to 3.12% of
the aggregation rules and 1.58% to 3.74% of the validation rules fail.
We further observe that the results are consistent across 10 versions
of the rules. Based on these results, we recommend using EvoMas-
ter’s black-box tool to test GURI since it provides good results and
advances the current state of practice at the CRN. Nonetheless,
EvoMaster needs to be extended to employ domain-specific opti-
mization objectives to improve test effectiveness further. Finally,
we conclude with lessons learned and potential research directions,
which we believe are applicable in a general context.
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1 INTRODUCTION
Cancer is a leading cause of death worldwide, with nearly 10 mil-
lion deaths in 2020 [20]. Consequently, most countries systemat-
ically collect data about cancer patients in specialized registries
for the ultimate purpose of improving patient care, by supporting
decision-making and conducting research. These registries main-
tain specialized software systems to collect, curate, and analyze
cancer data. However, engineering such software systems poses
many challenges, such as (1) collecting data for patients throughout
their lives from diverse sources, e.g., hospitals, laboratories, and
other registries; (2) dealing with continuous evolution, e.g., due to
software updates, new requirements, updated regulations, and new
medical research; and (3) increased incorporation of machine learn-
ing algorithms for decision support and production of statistics for
relevant stakeholders including patients and policymakers.

Our context is the Cancer Registry of Norway (CRN), which
has developed a Cancer Registration Support System (CaReSS) to
support collecting, processing, and managing cancer-related data
from various medical entities such as Norwegian hospitals and
laboratories. Based on the processing, the CRN generates statistics
that are consumed by external entities, including policymakers,
hospitals, and patients. It further provides data for researchers
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to conduct research. Naturally, the quality of statistics and data
depends on how correct and reliable CaReSS is. To this end, testing
is one method to ensure the dependability of CaReSS to a certain
extent.

This paper reports on a case study in the real-world context of
the CRN, focusing on testing one of the key components of CaReSS,
called GURI– a rule engine responsible for checking medical rules
for various purposes such as data validation and aggregation. Cur-
rently, GURI ’s testing is primarily manual, as also reported by Haas
et al. [25] that manual testing is a common practice in industry. Our
study takes a popular open-source, AI-based system-level testing
tool called EvoMaster [6], which has been shown to be superior to
9 other representational state transfer (REST) application program-
ming interface (API) testing tools [28], and performs automated
testing of GURI to assess its effectiveness in testing GURI from
various perspectives.

We apply EvoMaster’s four tools, i.e., black-box and white-box
tools with three evolutionary algorithms (EAs), to test GURI ’s ten
versions. In particular, we assess EvoMaster’s capability to achieve
source code coverage, errors found, and domain-specific rule cover-
age. The results of our experiments show that all four tools’ effec-
tiveness is similar in terms of code coverage and errors found across
all GURI versions. However, we observe that EvoMaster’s black-
box tool is more effective for domain-specific coverage. We further
compare the results with GURI in production, and the results of the
black-box tool were closer to the production system.

Based on our results, we recommend using EvoMaster’s black-
box tool as the starting point to automate the testing of GURI and
CaReSS. However, this study also shows that EvoMaster must be
customized for CRN’s context by explicitly incorporating domain-
specific coverage elements (e.g., coverage of different types of can-
cers and treatments) in the search process, e.g., encoding as new
fitness functions, as also argued by Böhme et al. [11]. Finally, we
provide detailed discussions and lessons from our industrial case
study regarding its generalization to other contexts and point out
key research areas that deserve attention from the software engi-
neering community.

2 BACKGROUND AND CONTEXT
In this section, we first discuss the CRN context, GURI and the
medical rules that GURI relies on, followed by background on Evo-
Master .

2.1 Application Context
The CRN regularly collects cancer patients’ data (e.g., diagnostic,
treatment), based on which cancer research and statistics can be
conducted. To ensure the quality of the collected data, the CRN’s
CaReSS has introduced several preventive efforts to discover and
amend inaccurate or missing data. Patient data is submitted to the
CRN as cancer messages, from which cancer cases are derived via
a coding and aggregation process, representing a timeline of a pa-
tient’s diagnoses, treatments, and follow-ups. The coding process
relies on standard classification systems and depends on hundreds
of medical rules for validating cancer messages and aggregating
cancer cases. Consequently, these rules are of two categories: val-
idation rules and aggregation rules, which are defined by medical

experts and implemented in GURI for automated validation and
aggregation of cancer messages and cases. These rules constantly
evolve, e.g., due to updated medical knowledge and procedures.

Below is a validation rule, which states that for all the cancer
messages of type H, if the surgery value is equal to 96, then the
basis value must be greater than 32.

∀𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑇𝑦𝑝𝑒 = 𝐻 =⇒ (𝑠𝑢𝑟𝑔𝑒𝑟𝑦 = 96 =⇒ 𝑏𝑎𝑠𝑖𝑠 > 32)
The aggregation rule below determines the state of Morpholog-

ically verified, based on a given Basis value of cancer messages:

if Basis ∈ [’22’, ’32’, ’33’, ’34’, ’35’, ’36’, ’37’, ’38’, ’39’, ’57’, ’60’, ’70’, ’72’,
’74’, ’75’, ’76’, ’79’] then

Morphologically verified = ’Yes’
else if Basis ∈ [’00’, ’10’, ’20’, ’23’, ’29’, ’30’, ’31’, ’40’, ’45’, ’46’, ’47’, ’90’,
’98’] then

Morphologically verified = ’No’
else

Morphologically verified = null
end if

These rules are stored in GURI ’s internal database. New rules
and updates to the rules are done through graphical user interface
(GUI), which is available for medical personnel.

2.2 EvoMaster
EvoMaster [6] is an open-source, automated and search-based soft-
ware testing framework. EA are employed to optimize search objec-
tives involving coverage criteria such as line, branch, and method
coverages. EvoMaster can be used with different programming lan-
guages, such as Java and Python. The black-box testing tool of
EvoMaster [7] relies on random testing with multi-objective search
to maximize black-box metrics (e.g., endpoint coverage and status
code coverage) and fault detection capability (500 status code). Evo-
Master also defines a series of white box testing tools [36, 47], com-
bined with different multi-objective EAs (e.g., Many Independent
Objective (MIO)), for achieving various test generation purposes
by providing a comprehensive list of coverage criteria, including
lines, branches, and faults.

3 EXPERIMENTAL STUDY
We perform a laboratory experiment [41] of automated test gen-
eration techniques for REST APIs at the CRN to understand their
effectiveness of covering source code, revealing errors, and execut-
ing domain-specific elements, i.e., medical rules. Our experiment
comprises a real-world study subject, i.e., CRN’s medical rule engine
GURI , and four REST API test generation tools.

3.1 Research Questions
Our study investigates the following four research questions (RQs)
to assess the effectiveness of the test generation tools:

RQ 1 How much code coverage do the tools achieve?
RQ 2 How many errors do the tools trigger?
RQ 3 How many rules can the tools execute?
RQ 4 Which results do the rule executions yield, and how do

these compare to production GURI rule execution results?
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Table 1: GURI Meta Data

Metric Value

Rules Validation 71
Aggregation 43

REST Endpoints Rule Handling 2
Total 32

Versions Selected 10
Total 28

RQ 1 and RQ 2 are “traditionally” investigated research ques-
tions for evaluating test generation tools in terms of effectiveness,
including REST API test generation [28]. RQ 3 and RQ 4 are domain-
specific RQs and evaluate the test generation tools’ effectiveness in
testing GURI ’s main functionality, i.e., validating and aggregating
cancer messages and cancer cases. RQ 3 studies the test generation
tools’ capability to execute the medical rules with the ultimate goal
of testing them. The goal of RQ 4 is to investigate which results
the executed rules yield with test generation tools and how these
results compare to the results from the production system.

3.2 Study Subject — GURI
GURI is implemented as a Java web application with Spring Boot,
which exposes REST API endpoints to CRN’s internal systems and
provides a web interface for medical coders. Table 1 shows an
overview of GURI . Although GURI has 32 REST endpoints, we only
focus on 2 in this experiment, as these are the ones handling the
rules, i.e., one for validating cancer messages with validation rules
and one for aggregating cancer messages into cancer cases with
aggregation rules. GURI ’s most recent version consists of 71 vali-
dation rules and 43 aggregation rules. Since GURI was introduced,
its source code has hardly changed; however, its rules have been
subject to evolution due to updated medical knowledge, such as
rule additions, deletions, and modifications. Consequently, based
on these changes, we form ten rule sets as ten versions in this ex-
periment. Specifically, out of 28 unique points in time where the
rules were changed in GURI , we select 10 dates where the changes
are most severe (the most rule additions and deletions occurred).
Table 2 depicts this rule evolution.

3.3 Test Generation Tools
The automated REST API test generation tools form the indepen-
dent variable of our experimental study. We select EvoMaster in
version v1.5.01 with multiple parameterizations as the tools [6].
EvoMaster was recently shown to be the most effective tool, in
terms of source code coverage and triggered errors, among ten
different tools [28]. A tool, in the context of our study, is a specific
EvoMaster parameterization, consisting of the testing approach and
the employed EA.

In terms of testing approach, our experiments use both black-box
and white-box testing. EvoMaster-BB relies on a random-testing
approach to generate the REST requests [7]. On the other hand,
EvoMaster-WB uses an EA to generate tests based on randomly

1https://github.com/EMResearch/EvoMaster/releases/tag/v1.5.0

Table 2: Rule Evolution

Version Date Rules

Validation Aggregation

v1 12.12.2017 30 32
v2 30.05.2018 31 33
v3 06.02.2019 48 35
v4 27.08.2019 49 35
v5 11.11.2019 53 37
v6 25.09.2020 56 37
v7 24.11.2020 66 38
v8 20.04.2021 69 43
v9 13.01.2022 69 43
v10 21.01.2022 70 43

generated (initial) REST requests, coverage feedback, and muta-
tion [6]. EvoMaster supports three EAs: (1) MIO [5], which is a
many-objective evolutionary algorithm (MaOEA) focusing on scal-
ability in the presence of many testing targets, that was specifically
designed for REST API test generation and is EvoMaster’s default;
(2) Many-Objective Sorting Algorithm (MOSA) [39], which is the
first MaOEA that was designed for unit test generation with Evo-
Suite [21]; and (3) Whole Test Suite (WTS) [22], which is a single
objective genetic algorithm (GA) that was designed for unit test gen-
eration and is the original EA of EvoSuite. Our experiment investi-
gates all four EvoMaster tool parameterizations: (1) EvoMaster-BB:
EvoMaster black-box; (2) EvoMaster-WB-MIO: EvoMaster white-
box with MIO; (3) EvoMaster-WB-MOSA: EvoMaster white-box
with MOSA; and (4) EvoMaster-WB-WTS: EvoMaster white-box
withWTS. Beyond the testing approach and the EA, our experiment
uses the default parameters of EvoMaster , similar to Kim et al. [28].

3.4 Evaluation Metrics
To evaluate the effectiveness of the tools and answer the RQs, we
rely on the following evaluation metrics, which are the dependent
variables of our study.

RQ 1 - code coverage. We rely on line, branch, and method
coverage extracted with JaCoCo2, similar to Kim et al. [28].

RQ 2 - errors.We use three types of 500 errors triggered by the
tools, as defined by Kim et al. [28]: (1) Unique Errors are the num-
ber of errors grouped by their complete stack traces; (2) Unique
Failure Points are the number of occurrences of the same error,
i.e., the first line of a stack trace; and (3) Unique Library Fail-
ure Points are the number of errors that are unique failure points
occurring in the library code.

RQ 3 - rule execution status. The first domain-specific metric
is the number of executed rules during a tool’s execution. We distin-
guish three types: (1)Applied is a rule that is fully executed at least
once on an input, irrespective of the result (pass, fail, or warning);
(2) Not Applied is a rule that is partially executed against an input,
which only applies to validation rules of the form 𝑎𝑝𝑝𝑙𝑦 =⇒ 𝑟𝑢𝑙𝑒 ,

2version 0.8.8 available at https://www.jacoco.org/jacoco
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where 𝑎𝑝𝑝𝑙𝑦 is the condition on which 𝑟𝑢𝑙𝑒 is applied; (3) Not
Executed is a rule that is never executed on any input.

RQ 4 - rule execution results. The second domain-specific
metric are the execution results of rules that have been applied (see
RQ 3). We distinguish three types: (1) Pass results from a successful
rule execution, i.e., the cancer message with all its data is valid, or
the cancer case was successfully aggregated with a previous cancer
case and a number of cancer messages; (2) Fail results from an
unsuccessful rule execution, i.e., the cancer message is invalid, or
the cancer case fails to be aggregated; (3) Warning is the result
where the rule execution is successful; however, the data appears to
be dubious (e.g., a patient’s age is 120 years, which is theoretically
valid but highly unlikely).

To answer RQ 4, we compare the results of the tools, based
on these three categories, to the results of the production GURI ,
deployed at the CRN to determine if their similarity.

3.5 Experiment Setup
The experiment setup is concerned with the experiment execution
settings and execution environment.

To deal with the stochastic nature of the EAs underlying Evo-
Master , each tool is executed repeatedly for 30 repetitions [8]. The
analyses then rely on the arithmetic mean across all the repetitions.
Each tool is executed for 1 hour for each repetition and version by
following the practice of Kim et al. [28]. They also observed that for
complex and constrained input parameters, source code coverage
and thrown errors hardly increase after 10 minutes, which is also
our case. Beyond these settings, the experiments consider the tool
parameterizations from Section 3.3. The experiment further ran-
domizes the order of the tools and versions in each repetition, with
randomized multiple interleaved trials (RMIT) [1], reducing poten-
tial confounding factors that stem from the execution environment
or the execution order.

We executed the experiments on the Experimental Infrastructure
for Exploration of Exascale Computing (eX3) high-performance
computing (HPC) cluster3 hosted at the first author’s institution,
which uses Slurm 20.02.7 as its cluster management software. The
experiments were scheduled on nodes of the same type (using the
slowq partition of eX3), with the whole node exclusively reserved.
The nodes have 8 Intel(R) Xeon(R) Silver 4112 central processing
units (CPUs) @ 2.60GHz each with 4 cores, run Ubuntu 18.04.1,
and have 40GB total memory. The experiments were conducted in
the first half of 2023. The Java tools were exclusively built and ran
with OpenJDK 11.0.18 built by Adoptium4.

3.6 Threats to Validity
We classify threats into construct, internal, and external validity.

The biggest threat to the construct validity concerns the choice
of the metrics for evaluating the tools’ effectiveness. We rely on
metrics widely used in the API test generation research, in par-
ticular, adapted by a recent publication [28], to answer RQ 1 and
RQ 2. For RQ 3 and RQ 4, we employ two sets of domain-specific
metrics, i.e., executed rules in RQ 3 and rule execution results in
RQ 4, which are of specific interest to the CRN. Nevertheless, it is

3https://www.ex3.simula.no
4https://adoptium.net

unclear whether these domain-specific metrics are correlated with
“good” test cases for the domain experts or sufficiently targeted to
assess test generation tools for the CRN. Further investigation via
dedicated empirical studies is required to answer this question.

In terms of internal validity, a crucial threat is that EvoMas-
terwhite-box requires manually creating a subject under test (SUT)
driver. Failure to do so concerning how EvoMaster expects the dri-
ver to be implemented and GURI requires to be controlled could
threaten the EvoMaster-WB results. Similarly, an incorrect injection
of the JaCoCo code coverage agent, implementation of the analyses
scripts, and adaptation of GURI to retrieve rule executions could
alter the study’s results and implications. We thoroughly tested
our implementations to validate the correct behavior to mitigate
this threat. Further internal validity threats relate to the experi-
ment design include: (1) the number of repetitions (30 in our study),
(2) the time budget for test generation (1 hour), and (3) the tool
parameters (see Section 3.3). These design decisions are based on
previous research [8, 28]; however, different experiment design
decisions might lead to different results. Finally, EvoMaster relies
on OpenAPI5 schema definitions to generate tests. An incorrect
schema definition potentially leads to sub-optimal tests, which
could impact the reported results. Our experiment uses the schema
definitions generated by springdoc-openapi6, which GURI already
employs. Considering many parameters to configure, we try to
build the base of our empirical study on the knowledge built by the
existing literature to mitigate these internal threats.

The primary external validity threat is related to the gener-
alization is inherent to the study design: a case study on a single
study subject, i.e., CRN’s rule engineGURI . All results are only valid
in the context of our case study and are probably not transferable
to other case studies. Nevertheless, we provide implications and
“more general” conclusions in the discussion section. Moreover,
our results are tightly coupled with the test generation tool(s), i.e.,
EvoMaster in its four parameterizations (see Section 3.3), and do
not generalize to other REST API test generation tools. Finally,
we perform a laboratory experiment on the research HPC cluster
eX3 with a standalone version of GURI and not a field experiment
against the real-world GURI (or the testing environment) hosted at
the CRN. Consequently, our results might not generalize to the real
system. The extraction of the real-world GURI into a standalone
version for the empirical study, was, however, done by the CRN
developers, which should reduce this threat.

4 RESULTS
This section presents the results for each RQ.

4.1 RQ 1: Code Coverage
We study the code coverage achieved by the tools in terms of line,
branch, and method coverages. Table 3 depicts the coverage results.
Each coverage value consists of the arithmetic mean and standard
deviation across all the versions and repetitions. We refrain from
reporting coverages for each version, as the source code does not
change between versions; only the rules change (see Section 3.2).

5https://www.openapis.org
6https://springdoc.org
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Table 3: Source code coverage per tool across all the versions
and repetitions. The values are arithmetic means ± standard
deviations in percentages.

Tool Line Branch Method

EvoMaster-BB 19.74%±0.44 14.24%±0.63 20.03%±0.18
EvoMaster-WB-MIO 18.68%±1.67 12.97%±1.88 19.45%±1.23
EvoMaster-WB-MOSA 18.14%±1.54 12.37%±1.77 19.13%±1.03
EvoMaster-WB-WTS 19.25%±2.26 13.76%±2.31 19.68%±1.92

We observe that all tools perform similarly, i.e., approximately
20% line coverage, 14% branch coverage, and 20% method coverage.
Note that the relatively low (absolute) coverage values must be
considered with caution because we generated tests for (only) 2 of
32 REST endpoints (see Section 3.2), as only these two handle the
medical rules. However, the code coverage is still of interest as a
relative comparison among the tools. With regards to it, the tools
perform similarly, which is a different observation as obtained by
Kim et al. [28], where EvoMaster-WB-MIO achieves a higher code
coverage than EvoMaster-BB by 7.35 percentage points (pp) (line),
7.87 pp (branch), and 5.69 pp (method). In addition, Kim et al. [28]
report that the line and method coverages are similarly higher than
the branch coverage, which aligns with our findings.

A potential reason for the low coverage values is that EvoMaster
produces many invalid requests, as GURI expects specific JavaScript
Object Notation (JSON) input parameter values, i.e., medical vari-
ables contained in cancer messages and cases. In particular, Evo-
Master often fails to provide valid date strings. This behavior is also
observed by Kim et al. [28]. An alternative reason is that all the
tools reach the maximum code coverage achievable through the
two REST APIs used in our experiment. The remaining RQs will
shed more light on these hypotheses.

RQ 1 Summary: All tools achieve a similar line, branch, and
method coverage. In the context of the CRN, opting for a simpler
test generation tool, i.e., EvoMaster-BB, is preferred over a more
complex tool, i.e., any EvoMaster-WB, to cover more source code.

4.2 RQ 2: Errors
The second RQ studies the thrown errors by the tools in terms of
unique 500 errors, unique failure points, and unique library failure
points. Table 4 shows the results for each tool across all the versions
and repetitions. Similar to RQ 1, we refrain from reporting errors for
each version. For each error category, the table depicts four values:
(1) the total number of errors (“All”); (2) errors that are due to the
tools’ intervention, e.g., the attached Java agent (“Tool”); (3) input-
output (I/O) errors that occur during the test generation (“I/O”);
and (4) remaining errors that are not attributed to the Tool and I/O
categories but actually due to errors thrown by the application, i.e.,
GURI (“Remaining”).

Considering unique errors (i.e., errors with identical stack traces,
see Section 3.4), we observe that the different tools trigger between
3 and 6.46 errors (“All”); however, on a closer inspection, we notice

that the three EvoMaster-WB tools experience a high number of tool-
related errors, i.e., the coverage agent attached to the Java virtual
machine (JVM) throws a KillSwitch exception when concurrent
threads are running after the test generation has finished. This
scenario inflates the “All” errors. Moreover, we can see that all tools
suffer from a varying degree of I/O errors, most often due to broken
I/O pipe exceptions. Finally, the number of “Remaining” unique
errors is similar across all four tools, i.e., approximately 1. These
results align with the code coverage results from RQ 1, i.e., no tool
is superior over the others.

Regarding the unique failure points (i.e., errors where the top-
most line of the stack trace is identical, see Section 3.4), we observe a
similar trend: “All” errors are inflated by tool-related and I/O errors,
leaving approximately 1 “Remaining” unique failure point, which is,
again, consistent across all tools. In most cases, this 1 failure point
is caused by a date parsing exception, e.g., when the diagnosis date
of a cancer message is malformed. Although seldom, all four tools
trigger a unique library failure point (i.e., a unique failure point
where the cause is located in GURI ’s source code, see Section 3.4).
Upon closer inspection, we identify 1 GURI rule parsing error on
specific inputs.

Compared to Kim et al. [28], the tools reveal fewer errors, and
no tool is superior in the context of the CRN.

RQ 2 Summary: All the tools reveal the same number of er-
rors and failure points. Similar to RQ 1, this suggests employing
the most straightforward tool, i.e., EvoMaster-BB, for its error-
revealing capabilities.

4.3 RQ 3: Rule Execution Status
This domain-specific RQ evaluates the tools’ ability to execute
medical rules. Figure 1 shows the number of (distinct) rules (on
the y-axis) by each tool (on the x-axis) for each version of GURI .
The dashed line depicts the total number of rules in the particular
version. Each bar represents the arithmetic mean of applied, not
applied, or not executed rules (see Section 3.4), with the error bars
indicating the standard deviations. The first two rows depict the
validation rules, whereas the last two rows show the aggregation
rules.

We make three main observations: (1) there is a difference in
effectiveness depending on which tool is employed, which is differ-
ent from what we observe for RQ 1 and RQ 2; (2) the tools are not
equally effective for validation and aggregation rules; and (3) the
tool effectiveness does not change across the ten versions. We dis-
cuss these observations in detail below:

4.3.1 Observation 1: Tool Differences. EvoMaster-BB executes the
most validation and aggregation rules, as the not executed cate-
gory has near zero rules. EvoMaster-BB generate tests where all
the aggregation rules (between 32 and 43) are applied (in all ver-
sions) and between 7.00 (12.86%) and 9.67 (25.81%) validation rules,
depending on the version. Whereas EvoMaster-WB-MIO, the best-
performing white-box tool, only generates tests for which between
26.90 (63.57%) and 34.60 (93.33%) aggregation and between 6.13
(9.52%) and 7.47 (24.09%) validation rules are applied.
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Table 4: 500 errors per tool across all the versions and repetitions. The values are arithmetic means ± standard deviations.

Tool Unique Errors Unique Failure Points Unique Library Failure Points

All Tool I/O Remaining All Tool I/O Remaining

EvoMaster-BB 3±1.02 0±0 1.93±0.99 1.07±0.33 2.03±0.27 0±0 0.97±0.18 1.07±0.32 0.00±0.06
EvoMaster-WB-MIO 6.46±2.82 4.43±2.32 1.01±0.69 1.02±0.19 2.88±0.89 1.06±0.58 0.8±0.40 1.02±0.13 0.02±0.13
EvoMaster-WB-MOSA 4.16±2.39 2.92±2.12 0.2±0.48 1.04±0.31 2.17±0.82 0.97±0.57 0.17±0.38 1.03±0.21 0.02±0.15
EvoMaster-WB-WTS 6.04±1.75 4.78±1.53 0.18±0.38 1.08±0.52 2.5±0.65 1.29±0.47 0.18±0.38 1.03±0.20 0.03±0.16

Figure 1: Rule execution status for each rule per tool and version across all the repetitions. The bars are arithmetic means, the
error bars are standard deviations, and the dashed line depicts the number of total rules of a version.

This is a surprising result because EvoMaster-WB, compared to
EvoMaster-BB, is on par in our study (i.e., RQ 1 and RQ 2) and supe-
rior in a recent comparison of REST API test generation tools [28].
One reason is that the EA of EvoMaster-WB optimizes for “irrele-
vant” objectives. Once EvoMaster-WB finds better solutions for the
source code coverage, it steers itself into a situation where it does
not execute more (different) rules anymore. Conversely, EvoMaster-
BB, with its simpler approach (concerning covering source code),
exercises more diverse inputs (i.e., cancer messages and cases),
which leads to more executed rules. This is particularly evident
for aggregation rules, where EvoMaster-BB applies all the rules,

followed by EvoMaster-WB-MIO which applies between 63.57% and
93.33% of the rules, depending on the version.

Moreover, we notice that EvoMaster-BB has no variance in the
number of executed rules among identical repetitions, whereas all
the EvoMaster-WB experience a variance to a varying degree, as
indicated by the error bars in Fig. 1. This means that the EvoMaster-
WB tools cannot consistently execute the same rules for identical
repetitions.

4.3.2 Observation 2: Rule Type Differences. This leads to the second
observation, where the tools are not equally-effective in executing
validation rules as they are for aggregation rules. EvoMaster-BB
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executes all the aggregation rules but only achieves applying be-
tween 12.86% and 25.81% of the validation rules. It is worse for
the EvoMaster-WB tools. We conclude that EvoMaster struggles to
generate tests that cover considerably more validation rules. The
reason is inherent to many validation rules, which are only applied
if the left part of an implication is true (see Section 3.4). Kim et al.
[28] observe a similar situation, where the tools generate many
invalid requests (due to invalid parameter values) that are rejected
by the APIs; however, in our case, the requests are not rejected, as
they conform with the OpenAPI, but lead to rules that fall into the
not applied category.

We further observe that the EvoMaster-WB tools suffer to a
varying degree from rules not being executed, which is more pro-
nounced for EvoMaster-WB-MOSA and EvoMaster-WB-WTS than for
EvoMaster-WB-MIO. This means that the tests never reach a point
(in the source code) where the rules are considered for execution.
Arcuri [5] also finds that MOSA and WTS perform inferior to MIO
on most (but not all) problem types for the source code coverage,
which has the consequence that more rules are not executed.

4.3.3 Observation 3: Version Differences. Finally, we observe that,
with changing rule sets due to the addition, deletion, and modi-
fication of rules, the tools’ effectiveness is hardly impacted. For
EvoMaster-BB, the standard deviation of the relative number of
applied rules (with respect to the total number of rules) in each
version is 0% and 4.42% for aggregation and validation rules, re-
spectively. There is slightly more variation for EvoMaster-WB, i.e.,
up to 10.89% standard deviation, suggesting that the rule evolution
at the CRN is not a factor for choosing a particular tool over the
other.

RQ 3 Summary: EvoMaster-BB is more effective in generating
tests that apply the rules. In particular, aggregation rules are con-
siderably easier to cover than validation rules. The EvoMaster-WB
tools are less effective than EvoMaster-BB, and EvoMaster-WB-MIO
performs the best among all the three white-box tools. All the
tools are similarly effective in generating tests that lead to rules
being applied across the rule set versions.

4.4 RQ 4: Rule Execution Results
This domain-specific RQ evaluates the tools’ capabilities to generate
tests that lead to the three rule execution results, i.e., pass, fail, and
warning (see Section 3.4). Figure 2 shows the rule execution results
for the applied rules relative to the total number of rules in a version
(on the y-axis) per tool (on the x-axis), version and rule type. For this
RQ, not applied and not executed rules are disregarded. Each bar
represents the arithmetic mean, and the error bars are the standard
deviations. The first two rows are for the validation rules, and the
last two rows are for the aggregation rules.

We make five observations: (1) there is a high degree of variance
among repetitions in terms of the execution results; (2) there is a
difference in the prevalence of the individual execution result for
aggregation and validation rules; (3) the tools follow the same ef-
fectiveness ranking as in RQ 3; (4) the tools are differently effective
(although minor) for different versions; and (5) the result distribu-
tion of the generated tests is different from production GURI .

4.4.1 Observation 1: Repetition Differences. The first observation
is that there is a high degree of variance for each execution result
among the repetitions, irrespective of the tool, version, and rule
type. This means that the generated tests yield different rule exe-
cution results in each repetition. This is caused by how EvoMaster
generates (new) variable values of cancer messages and cancer
cases: randomly. An effective test strategy should generate valid
instead of random variable values, which leads to more rules being
applied.

4.4.2 Observation 2: Tool Differences. EvoMaster-BB, again, is the
tool that achieves the highest number of passes for both rule types.
It reaches between 86.84% and 89.95% and between 0.93% and 1.72%
for aggregation and validation rules, respectively. The best per-
forming white-box tool overall is, again, EvoMaster-WB-MIO which
passes for 57.25% to 81.79% (aggregation) and 0.07% to 0.39% (vali-
dation) of the rules. Both EvoMaster-WB-MOSA and EvoMaster-WB-
WTS are inferior to EvoMaster-WB-MIO in terms of passes.

In terms of fails, the results are not as clear: EvoMaster-WB-
MIO generates tests that can fail more aggregation rules, i.e., be-
tween 1.98% and 3.75%, than EvoMaster-BB, which fails for 1.70% to
3.12%. However, EvoMaster-BB fails considerably more validation
rules (1.58% to 3.74%) than EvoMaster-WB-MIO (0.23% to 1.27%) and
EvoMaster-WB-MOSA (0.02% to 1.53%). EvoMaster-WB-MIO is better
than EvoMaster-WB-MOSA for some versions, whereas the opposite
is true for other versions.

In terms of warnings, EvoMaster-BB yields more than all the
EvoMaster-WB techniques with between 7.65% and 10.11% for ag-
gregation rules, again followed by EvoMaster-WB-MIO with 3.79%
to 7.80%. However, none of the techniques can execute warnings
for validation rules.

4.4.3 Observation 3: Rule Execution Result Differences. We observe
that depending on the rule type, the tests favor different execu-
tion results across all the tools and versions. For validation rules,
fails are more common than passes (not considering warnings, as
none are thrown). This is natural due to the random variable value
generation of EvoMaster , which is the same reason why there is a
high variance among identical repetitions. Nevertheless, the tools
can still generate tests that pass many of the applied rules. For
aggregation rules, we notice a different behavior, i.e., most of the
rules pass, followed by warnings and fails.

4.4.4 Observation 4: Version Differences. Similar to RQ 3, we do
not observe big differences across different versions for EvoMaster-
BB. The standard deviation of the rules that pass is 1.00 and 0.30,
fail is 0.41 and 0.66, and warning is 0.86 and 0 for aggregation and
validation rules, respectively. The EvoMaster-WB tools only exhibit
more variance across the different versions for aggregation rules
that pass and yield warnings. Nevertheless, this strengthens our
suggestion from RQ 3 that rule evolution is not a deciding factor
for choosing one tool over another.

4.4.5 Observation 5: Comparison to Production GURI. Finally, we
compare the rule execution results of the tools to those from pro-
duction GURI , i.e., to real-world statistics of rule execution results.
Table 5 depicts this for “Production” and compares it to all the four
tools. The values are arithmetic means and standard deviations
relative to the total number of rules. Note that we only consider
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Figure 2: Rule execution results relative to the total number of rule executions for each rule, tool, and version. The bars are
arithmetic means and the error bars are standard deviations.

Table 5: Rule execution results relative to the total number of rule executions for each rule and tool. The values are arithmetic
means ± standard deviations summarized on rule type level across all the individual rules. Production corresponds to the rule
executions from production GURI . The values for the test generation tools are for the latest version v10, averaged across all the
repetitions.

Rule Type Tool Rule Execution Result

Pass Fail Warning Not Applied Not Executed

Validation Production 26.19%±37.32 0.05%±0.15 6.55 × 10−6%±5.52 × 10−5 73.75%±37.38 0%±0
EvoMaster-BB 0.97%±3.92 1.61%±6.25 0%±0 97.42%±7.19 0%±0
EvoMaster-WB-MIO 0.30%±0.88 1.41%±3.38 0%±0 93.29%±6.31 5%±5.04
EvoMaster-WB-MOSA 0%±0 0%±0 0%±0 70.57%±20.14 29.43%±20.14
EvoMaster-WB-WTS 0%±0 0%±0 0%±0 100%±0 0%±0

Aggregation Production 99.88%±0.47 0.02%±0.08 0.10%±0.47 0%±0 0%±0
EvoMaster-BB 89.02%±20.24 2.38%±10.65 8.59%±18.24 0%±0 0%±0
EvoMaster-WB-MIO 64.47%±13.11 2.07%±7.63 6.02%±12.83 0%±0 27.44%±4.41
EvoMaster-WB-MOSA 2.77%±10.61 1.92%±8.59 0.66%±4.32 0%±0 94.65%±16.38
EvoMaster-WB-WTS 4.85%±18.59 3.86%±16.55 1.05%±6.89 0%±0 90.23%±29.40
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the tool results for the latest version, i.e., v10, as the production
results are only available for the current version.

We observe that the distributions of the tools are considerably
different from production GURI . In production, most rules are not
applied (73.75%), and of the applied ones, the vast majority passes
(26.19%). Only a fraction fails, and even fewer yield a warning. The
situation is even more extreme for aggregation rules: 99.88% of the
rules pass, and only a negligible number fail or yield a warning. The
closest tool to production, in terms of effectiveness, is EvoMaster-BB.
However, none of the tools achieves a similar number of rules that
pass for both rule types.

Interestingly, the tools often achieve higher failure and warning
rates, as observed in production. In particular, EvoMaster-BB (1.61%)
and EvoMaster-WB-MIO (1.41%) can fail more validation rules, and
all four tools yield more failures and warnings for aggregation rules
(1.92% to 3.86%).

We conclude that in terms of passing rules, EvoMaster-BB per-
forms best, but there is much room for improvement to reach pro-
duction GURI levels. In terms of failing and executing warnings,
EvoMaster-BB performs best for validation and EvoMaster-WB-WTS
for aggregation rules.

RQ 4 Summary: EvoMaster-BB is the tool that yields the most
passes, fails, and warnings among all the tools, except for failing
aggregation rules where EvoMaster-WB-MIO is the preferred tool.
For all the tools, the validation rules are the easiest to fail, and
aggregation rules are the easiest to pass. Warnings can only be
triggered for aggregation rules. Compared to production GURI ,
no tool can pass a similar amount of rules, but all are good at
generating tests that lead to fails and warnings; EvoMaster-BB is
the closest to production.

5 DISCUSSION AND LESSONS LEARNED
This section discusses the results and outlines lessons learned,
which provide research opportunities.

5.1 Need for Domain-Specific Objectives,
Targets, and Evaluation Metrics

From RQ 1 and RQ 2, we see that there are not a lot of differences
among the tools; and from RQ 3 and RQ 4, we observe that the
tools can lead to some rules being applied and obtain rule execution
results: pass, fail, or warning. But, it is evident that the current
tools do not support testing domain-specific targets well, i.e., they
optimize for the “irrelevant” objectives, e.g., code coverage, and
there is much room for improvement. Going forward, test genera-
tion tools require to (1) encode domain-specific objectives in their
search, e.g., with added domain-specific search objectives (e.g., rule
(result) count or distance metrics to applying rules [2]), or adding
tests that reach unseen domain-specific targets to the archive (sim-
ilar to Padhye et al. [38]; (2) keep tests after the search that cover
each domain-specific target for regression testing scenarios; and
(3) evaluate test generation tools with domain-specific metrics (rule
execution status and rule execution results in our case) to show
their effectiveness when traditional metrics do not show differences
(also discussed by Böhme et al. [11]).

5.2 Oracle Problem for Rule Execution Results
The oracle problem is a well-known problem in software test-
ing [10], which extends also to domain-specific goals. While we
show that the current tools can apply rules with different results, it
is unclear if, for a randomly generated test input, a rule is expected
to pass, fail, yield a warning, or should not be applied. Current
research does not offer a solution; there simply is no implicit or-
acle [10] for rule executions. Going forward, this needs to be ad-
dressed, and we see three potential aspects: (1) using tests that lead
to a specific rule result (pass, fail, warning) and employ them in
a regression testing setting, e.g., if a test passes a rule in version
1, it should also pass in version 2; (2) applying differential testing
by comparing the outputs of the same random test input to a, e.g.,
reference implementation for the medical rules, as they should be
standardized; and (3) devising metamorphic relations on the rules
that are either semantics-preserving (similar to Lu et al. [35]) or
are known to lead to invalid rules and comparing the outputs to
the correct implementation.

5.3 Challenge of Generating Medical Data
Generating synthetic medical data is a challenge researchers from
many fields are trying to tackle [17, 24]. In software testing, gener-
ating synthetic and valid medical data is equally important. The cur-
rent test generation tools are good at generating syntax-compliant
data (e.g., according to an OpenAPI schema definition). However,
the individual variable values (i.e., medical variables) are randomly
generated. This leads to many invalid cancer messages and cases to
be checked by the rule engine. We identify four potential ways to
address this challenge in the context of test generation in the future:
(1) constrain the valid medical variables through, e.g., the OpenAPI
schema definition, either manually or derived from documenta-
tion;7 (2) use generative models such as generative adversarial
networks (GANs) or variational autoencoders (VAEs) trained on
real patient records to generate valid cancer messages and cases to
directly test GURI [26]; (3) use generated cancer messages and cases
in EvoMaster either as seeds or when new requests are sampled;
and (4) employ large language models (LLMs), possibly trained on
electronic health records (EHRs) or medical text [33, 40, 44, 45], to
generate variable values.

5.4 Generality of the Results
While the results are specific to the case study, i.e., GURI at the
CRN, the findings and lessons learned are likely applicable in other
contexts. (1) Other countries also have medical registries similar
to the CRN, which also deals with EHR. These can benefit from
the challenges and findings outlined in this paper to introduce au-
tomated test generation tools. (2) Rule-based systems, in general,
potentially face similar challenges. Once generated tests pass the
input validation and execute rules, they will also have to deal with,
e.g., domain-specific objectives, the oracle problem, and generat-
ing data that executes the rules. (3) Any system that dynamically
loads targets of interest will likely also be affected by the need for
domain-specific objectives and targets. (4) Researchers at a recent

7EvoMaster 1.5.0 does not support this; support was added in 1.6.0: https://github.
com/EMResearch/EvoMaster/pull/709

https://github.com/EMResearch/EvoMaster/pull/709
https://github.com/EMResearch/EvoMaster/pull/709
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Dagstuhl seminar8 discussed similar challenges, such as domain-
specific objectives and targets [13]; comparison to production [12];
domain-specific oracles such as reference implementations, differ-
ential and metamorphic testing [15]; and required evaluations that
go beyond code coverage and errors [14]. This shows that while
our results are specific to GURI , the challenges are important to the
research community. Consequently, our paper is a valuable case
study providing data for these challenges.

5.5 Call for Studies with Domain-Specific Goals
Based on our findings showing that code coverage and uncovered
errors are insufficient to evaluate automated test generation tools,
we conclude that there is a dire need for more industrial and public
sector case studies like ours. As also outlined by Böhme et al. [11],
code coverage is insufficient to validate test generation tools and
fuzzers. For example, which tool is better when code coverage is
equal, or no errors are found? Exactly this happens in the CRN’s
case. The research community needs to better understand domain-
specific needs for test generation, objectives, and targets to optimize
for, and evaluation metrics that are better aligned with stakeholders’
interests; and, as a next step, evolve current tools to support these
domain-specific needs better.

6 RELATEDWORK
6.1 Test Generation for REST APIs
Many industrial applications, especially those built with the mi-
croservice architecture expose REST APIs. As a result, there is an
increasing demand for automated testing of such REST APIs. Con-
sequently, we can see a significant rise in publications in recent
years [23]. Moreover, several open-source and industrial REST API
testing tools are available such as EvoMaster [4–7], RESTler [9],
RestTestGen [16], RESTest [37], Schemathesis [19], Dredd [18],
Tcases [29], bBOXRT [31, 32], and APIFuzzer [3]. Even though any
of these tools can be used in our context, we use EvoMaster , since it
is open-source and has been shown to be the most effective regard-
ing source code coverage and thrown errors among ten different
tools in a recent study [28].

Generally, REST API testing approaches are classified into black-
box (no source code access) and white-box (requires source code ac-
cess) [23]. The existing literature has developed testing techniques
from three main perspectives to evaluate testing effectiveness [23]:
(1) coverage criteria, e.g., code coverage (e.g., branch coverage) and
schema coverage (e.g., request input parameters); (2) fault detection,
e.g., service errors (i.e, Hypertext Transfer Protocol (HTTP) status
code 5XX) and REST API schema violations; and (3) performance
metrics, i.e., related to the response time of REST API requests. To
achieve these objectives, various algorithms have been developed
in the literature. For instance, EvoMaster has implemented several
EAs including random testing [5–7]. Various extensions have been
also proposed to EvoMaster, such as handling sequences of REST
API calls and their dependencies [49], handling database access
through structured query language (SQL) [46], and testing remote
procedure call (RPC)-based APIs [48]. In our case, we have access to
the source code of GURI ; therefore, we employ both the black-box
8https://www.dagstuhl.de/23131 (the report has not been published at the time of
writing)

and the white-box (parameterized with three EAs) tools of EvoMas-
ter . However, an extended investigation in the future may include
other tools.

Compared to the literature, our main contribution is applying an
open-source REST API testing tool in the real-world context of the
CRN. We assess the tool’s effectiveness in achieving code coverage,
errors found, and domain-specific metrics (e.g., related to medical
rules defined for validating and aggregating cancer messages and
cancer cases).

6.2 Development and Testing of Cancer
Registry Systems

In our recent paper with the CRN [30], we assess the current state of
practice and identify challenges (e.g., test automation, testing evo-
lution, and testing machine learning (ML) algorithms) when testing
CRN’s CaReSS. This paper is the first concrete step towards han-
dling those challenges, particularly assessing the effectiveness of an
existing testing tool in the CRN’s context. Two other recent works
build cyber-cyber physical twins for GURI [34] and incorporate ML
classifiers into EvoMaster to reduce testing cost [27].

In the past, we developed a model-based engineering framework
to support CaReSS at the CRN [42]. The framework aims to create
high-level and abstract models to capture various rules, their vali-
dation, selection, and aggregation. The framework is implemented
based on the Unified Modeling Language (UML) and Object Con-
straint Language (OCL), where the UML is used to capture domain
concepts and the OCL is used to specify medical rules. The imple-
mentation of the framework has been incorporated inside GURI ,
which is the subject of testing in this paper. As a follow-up, we
also developed an impact analysis approach focusing on capturing
changes in rules and assessing their impact to facilitate a systematic
evolution of rules [43]. Finally, we also developed a search-based ap-
proach to refactor such rules regarding their understandability and
maintainability [35]. Compared to the existing works, this paper
focuses on testingGURI as a first step toward building cost-effective
testing techniques at the CRN.

7 CONCLUSIONS
This paper reports on an empirical study evaluating the test effec-
tiveness of EvoMaster’s four testing tools on a real-world system,
the Cancer Registry of Norway (CRN)’s Cancer Registration Sup-
port System (CaReSS). CaReSS is a complex software system that
collects and processes cancer patients’ data in Norway and produces
statistics and data for its end users. Our results show that all the
studied testing tools preform similarly regarding code coverage and
errors reported across all the studied versions. However, in terms
of domain-specific metrics, EvoMaster’s black-box tool is more ef-
fective; hence, we recommend it for the CRN as a starting point.
We also provide lessons learned that are beneficial for researchers
and practitioners.
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