
Triggering Modes in Spectrum-Based
Multi-location Fault Localization

Tung Dao
Cvent
USA

Na Meng
Virginia Tech

USA

ThanhVu Nguyen
George Mason University

USA

ABSTRACT
Spectrum-based fault localization (SBFL) techniques can aid in
debugging, but their practicality in industrial settings has been
limited due to the large number of tests needed to execute before
applying SBFL. Previous research has explored different trigger
modes for SBFL and found that applying it immediately after the
first test failure is also effective. However, this study only considered
single-location bugs, while multi-location bugs are prevalent in
real-world scenarios and especially at our company Cvent, which
is interested in integrating SBFL to its CI/CD workflow.

In this work, we investigate the effectiveness of SBFL on multi-
location bugs and propose a framework called Instant Fault Lo-
calization for Multi-location Bugs (IFLM). We compare and evalu-
ate four trigger modes of IFLM using open-source (Defects4J) and
close-source (Cvent) bug datasets. Our study showed that it is not
necessary to execute all test cases before applying SBFL. However,
we also found that that applying SBFL right after the first failed
test is less effective than applying it after executing all tests for
multi-location bugs, which is contrary to the single-location bug
study. We also observe differences in performance between real
and artificial bugs. Our contributions include the development of
IFLM and CVent bug datasets, analysis of SBFL effectiveness for
multi-location bugs, and practical implications for integrating SBFL
in industrial environments.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS
Spectrum-based Fault Localization, CI/CD, SBFL Triggering Modes,
Multi-Location Bugs, Industrial Study

ACM Reference Format:
Tung Dao, Na Meng, and ThanhVu Nguyen. 2023. Triggering Modes in
Spectrum-Based Multi-location Fault Localization. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’23), December 3–9,
2023, San Francisco, CA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3611643.3613884

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12…$15.00
https://doi.org/10.1145/3611643.3613884

1 INTRODUCTION
Debugging software is a well-known and challenging task that
consumes a significant amount of developers’ time. The process is
also expensive, and software defects alone cost the US economy
$1.56 trillion in 2020 [33]. To aid debugging, many automatic fault
localization techniques have been proposed. For example, the well-
known spectrum-based fault localization (SBFL) technique [12, 30]
instruments programs to (i) collect execution coverage of passed
and failed tests, and (ii) compute a suspiciousness score for each
program element such as classes, methods, and statements.

Despite its popularity, SBFL may not be practical for industry
deployment because it typically requires the execution of all or a
significant portion of test cases before it can analyze and rank buggy
locations. To further understand and address this limitation, in a
previous work [21], we studied the necessity of this requirement.
Specificallly, we explored various trigger modes, such as applying
SBFL after the first test failure or after a combination of initial fail-
ures along with additional failed or passed tests. We evaluated these
trigger modes using a variety of SBFL methods and found that the
application of SBFL immediately after the first test failure appears
to be equally effective or even better than other trigger modes,
including those that execute all tests. These findings are interesting
and promising for the prtical uses of SBFL in an industrial setting
with a large number of tests.

Recently, we attempted to integrate SBFL in the debugging pro-
cess of Cvent, a Northern Virginia-based company that offers meet-
ing and event management software solutions to clients including
event planners, attendees, and hosts. While the study in [21] plays
a crucial role in this decision, considering CI/CD pipeline of Cvent
consumes thousands of CPU hours to execute integration tests,
it has a major limitation in considering only single-location bugs,
whose root causes confined to individual lines of code (i.e., the bug
can be fixed by modifying a single line). However, bugs encountered
at CVent often have root causes that span multiple lines of code
(requiring the modification of multiple lines to fix). For instance,
we found that that around 72% of Cvent’s bugs committed and
fixed during the development stage were multi-location bugs. More
generally, previous studies, e.g., [42], found that it is not practical
to assume a program contains only single-location bugs.

Motivated by this challenge, in this work we assess the effective-
ness of SBFL for multi-location bugs. Specifically, we extend our
inital study to develop a framework called Instant Fault Localization
for Multi-location Bugs (IFLM) that triggers SBFL in four modes:
(i) IFLM1 invokes SBFL right after the first failed test; (ii) IFLM:

5

triggers SBFL after every :=1–5 test failures (IFLM1 is the special
case when : = 1); (iii) IFLM:

? activates SBFL after the first failed
test and subsequently, : additional passed tests (:=1 – 10); and (iv)
IFLM� triggers SBFL after executing all tests.

1774

https://doi.org/10.1145/3611643.3613884
https://doi.org/10.1145/3611643.3613884
https://doi.org/10.1145/3611643.3613884

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tung Dao, Na Meng, and ThanhVu Nguyen

Weconduct the IFLM study using twomulti-location bug datasets:
(i) the open-source Defect4J dataset [4], consisting of 174 real bugs
and 37 artificial bugs, and (ii) the close-source Cvent dataset, con-
sisting of 27 real bugs.

Similarly to our prior single-location study, we found that we
do not always need to run all test cases for SBFL to be effective for
multi-location bugs. This is promising for industrial environments
with a multitude of tests. Specifically, compared to IFLM� , IFLM1
just needs to run less than 50% of the tests to be almost as effective
as IFLM� , which requires running all tests.

We also found that IFLM1 performed worse over artificial bugs
compared to real bugs. Conversely, IFLM� performed better over
artificial bugs compared to real ones. We believe that artificial bugs
could potentially exhibit a bias that favors using IFLM� to evaluate
SBFL techniques.

In summary, our paper made the following contributions:

• We built IFLM, a tool that can trigger SBFL in four different
modes using 25 widely-used ranking formulae.

• We applied IFLM to Cvent close-sourced software projects
(27 real multi-location bugs) and five Defects4J open-sourced
projects (174 real and 37 artificial multi-location bugs).

• We found that IFLM1 performed almost as effectively as
IFLM� , while only needing to run less than half of the tests.

• We created and provided a dataset comprising 27 real bugs
from four programs currently used at Cvent.

We hope that this study can offer valuable insights into the inte-
gration of SBFL within existing software processes in an industry
environment. IFLM and all experimental data are available in a
Github repositiory at [5].

2 BACKGROUND
2.1 Spectrum-Based Fault Localization (SBFL)
SBFL aims to identify bug locations or entities (e.g., statement,
method, class) of a buggy program using coverage information
(spectra). Let the program under investigation % = {4 |4 = 4=C8C~}
be represented as a set of its entities. Let % ’s test set,) =)5 ∪)? ,
and =5 = |)5 |, =? = |)? |, where)5 and)? are the set of failed and
passed tests, respectively. For an entity 4 ∈ % , let 45 and 4? be the
numbers of distinct failed tests ∈)5 and passed tests ∈)? that
cover 4 , respectively. Then, 4’s spectrum is defined as 4spectrum =

(45 , 4? , =5 , =?). % ’s spectra, %spectra, is {4spectrum}, a set of all 4’s
spectrum for all 4 ∈ % .

SBFL uses four steps to identify and rank buggy locations:

(1) Instrumentation: % and) are instrumented by techniques
that modify the source code directly or indirectly via their
compiled code (e.g., Java byte code), so that %spectra can
be recorded and collected. Tools such as SonarQube [9],
Clover [2], Jacoco [6], Corbetura [3] are often used in in-
dustry for this purpose. We use Clover in this paper.

(2) Test Execution:) is run against the instrumented % us-
ing automated test runner or framewor, such as Maven [8],
TestNG [10], JUnit [7]. Once the test execution is finished,
%spectra is all recorded.

(3) Suspiciousness Score Calculation: For each entity 4 ∈ % ,
its buggy suspiciousness score, 4B2>A4 , is calculated using

1 private final long validDays = 7L;

2 - private final Predicate<LocaDate> expired = cachedAt ->

cachedAt.plusDays(validDays). isAfter (LocaDate.now());↩→

3 + private final Predicate<LocaDate> expired = cachedAt ->

cachedAt.plusDays(validDays). isBefore (LocaDate.now());↩→

Listing 1: Single-location Bug Example

1 Response<DatasetResolvedForTestUse> response =

2 - client.getDatasetForTestUse (datasetId, env) .execute();

3 + client.getDatasetForTestUse (datasetId, env, false) .execute();//

don't increment usage count↩→
4 //...

5 public Object getOrCreateDatasetMinimalBlocking(String datasetId,

String env, DatasetReusePolicy policy, List<DatasetDependency>

dependencies, BiFunction<ResolvedDependencyCollection,

DatasetHelper, List<Object> datasetCreationFunction) throws

IOException, InterruptedException {

↩→
↩→
↩→
↩→

6 Reponse<DatasetResolvedForTestUse> response =

7 - client.getDatasetForTestUse (datasetId, env) .execute();

8 + client.getDatasetForTestUse (datasetId, env, true) .execute();

// do increment usage count↩→
9 //...

10 }

Listing 2: Multi-location Bug Example

4B?42CAD< , (45 , 4? , =5 , =?). There are numerous spectrum-
based formulae proposed to compute 4score, such as, �824 =

2∗45
45 +4?+=5

,�>>3<0= =
2∗45 −=5 −4?
2∗45 +=5 +4? ,�0<0== =

45 +=?−4?−=5

45 +4?+=5 +=? ,
and �D2;83 =

√
45 + =? . In this paper we used 25 popular

formulae shown in Tab. 3, and described in detail in [21].
(4) Ranking: Entities in % are ranked based on their suspicious-

ness scores in decreasing order, where the most likely buggy
locations are on top. The ranked list of % ’s entities are the
final result of the bug localization process.

Multi-Location Bugs. Our study focuses on multi-location bugs.
A multi-location bug contains more than one buggy location, com-
pared with a single-location bug that has only one single line of
code responsible for the bug. Listings 1 and 2 use two simplified
real bug examples from Cvent to demonstrate single- and multi-
location bugs. Lines marked with minus (-) in red represent buggy
locations, and their corresponding fixes are marked with plus (+)
in green. Listing 1 is a single-location bug (incorrect predicate to
check cache expiry). Listing 2 shows a multi-location bug involving
in two buggy locations, i.e., lines 2 and 7 (faulty in tracking dataset
usage).

In theory, SBFL is designed towork for both cases, though finding
multi-location bugs is more challenging because SBFL needs to
find those locations equally well. In the example, the two buggy
locations should be ranked as first and second, in which case the
accuracy of SBFL is 100%. However, if SBFL ranks them as second
and fifth, then its accuracy would be reduced to 45% (see §4.2 for
definitions of accuracy metrics).

1775

Triggering Modes in Spectrum-Based Multi-location Fault Localization ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

2.2 Continuous Integration/ Continuous
Delivery (CI/CD)

Cvent uses a CI/CD build pipeline to manage its software devel-
opment and operations, including build, test, and deploy stages.
This reduces human effort and allows for easy and automated tasks
to handle changes, integration, implementation, and delivery of
software features. For example, when code changes are committed,
a CI/CD script is invoked to automate tasks including compiling,
running tests, packaging, and deploying.

Fig. 1 outlines the CI/CD workflow at Cvent. Without SBFL, test
failures require manual inspection to find bugs. However, with SBFL
integration, bugs are automatically localized using code coverage
profiling data.This accelerates the debugging process for developers
asmanually localizing bugs, especiallymulti-location ones, is highly
time-consuming and difficult. In short, at Cvent we believe that an
automatic fault localization approach such as SBFL is an important
component of our CI/CD workflow.

However, with thousands of CPU hours spent daily running
tests and an average failure rate of around 7%, waiting for all test
executions to finish before applying SBFL becomes impractical. In
this scenario, IFLM appears to be a more suitable alternative to
SBFL for scaling to our level of operations.

Collecting Code Coverage. The CI/CD build pipeline at Cvent
uses the open-source Clover tool [2] to collect profiling data. Fig. 2
illustrates how Clover collects code coverage from profiling data
of a Java-based micro-service application. Activities related to the
application (under investigation) are represented by green boxes: (1)
configuring the app’s pom.xml, (2) instrumenting application code
to enable code coverage tracking, (3) packaging the instrumented
application into a deployable and executable file, and (4) deploying
the application.

Activities related to testing are marked in red: (5) configuring the
test’s pom.xml file, (6) instrumenting the test code, (7) executing the
tests, (8) running the application in a cloud-based environment, (9)
shutting down the application JVM once tests are completed, (10)
merging coverage databases generated by the application and the
tests into a shared coverage data, and (11) finally, obtaining per-test
coverage profiling data for both of the tests and the application. Of
course, in the CI/CD build pipeline this is achieved automatically
with build scripts (using Groovy at Cvent).

3 STUDY APPROACH
Our goal is to evaluate SBFL on multi-location bugs at different
moments, e.g., after some or all tests were executed. Our Instant
Fault Localization for Multi-location Bugs (IFLM) framework uses
four “trigger modes” to represent these moments.

(1) First-Failure Triggering (IFLM1) invokes SBFL right after
the first test failure.This is the minimal requirement for SBFL
to work as it requires at least 1 failed test. While this mode
uses minimal time and computing resources, it also collect
fewer coverage (spectrum) information.

(2) Multi-Failure Triggering (IFLM:
5
) initiates SBFL after ev-

ery :Cℎ (k=1–5) test failures. As : increases, more spectrum
information was collected. However, this mode requires
more time and computing resources.

(3) Failure-Pass Triggering (IFLM:
?) activates SBFL after the

first test failure, and subsequently : extra passed tests (:
= 1–10). Compared to IFLM1, IFLM:

? spends more time and
resources to collect coverage data. Here we can study the
trade-off between gained accuracy and time and resources
required for executing more tests.

(4) Complete Execution Triggering (IFLM�) is the conven-
tional SBFL, which ranks bug locations after executing all
available tests. IFLM� is thus expensive and might not be
applicable in the real world, e.g., at Cvent with many tests.

Each triggering mode thus corresponds to a different approach
for selecting a subset of tests from the complete test set. Our goal
is to collect a partial set of spectrum data that is sufficient for SBFL
to function effectively. By experimenting with these different trig-
gering modes, we explore the trade-offs between effectiveness of
SBFL and its runtime cost. Note in our study that all tests were exe-
cuted sequentially in a fixed order, determined by the test executor
(Maven-Clover plugin).

This fixed ordering ensures deterministic results throughout
our study. In addition, all triggering modes use instrumented tests.
While instrumentation adds overhead, it is generally not a concern
in practice, as companies (e.g., Cvent) often run instrumented tests
to at least measure code coverage metrics, as part of code quality
control procedure.

4 EVALUATION
We use IFLM to investigate the two research questions: (RQ1) how
sensitive is IFLM to different triggering modes? and (RQ2) how
sensitive is IFLM to different SBFL formulae?

IFLM and all data in this study are available at [5].

4.1 Datasets
We used 238 multi-location bugs, of which 211 are from Defect4J
dataset [31] and 27 are mined from four close-source software prod-
ucts from Cvent. For the Defects4j bugs, we reused the spectrum
data published in [1] to save time.

Defects4J Bugs. Defects4J is a widely-used dataset of real bugs in
popular open-source software. Defects4J contains 835 bugs from 17
projects [31]. Out of these bugs, we found 174 multi-location bugs
from 6 projects that have spectra data [1].

We also used artificial bugs from [1] in our study.These bugswere
injected through mutation into the same open-source programs
in Defect4J, causing the logic or semantics of the program to fail.
Our objective is to compare the evaluation results between real
bugs and artificial bugs. If the results were consistent for both bug
sets, it would provide more confidence in using artificial bugs for
evaluating SBFL techniques when real bugs are limited. Noting that
while the [1] database contains numerous injected bugs, most of
them are single-location bugs. We were able to identify only 37
multi-location bugs, all of which were from the Common-Lang
project and used in our study.

Tab. 1 describes our Defects4J dataset. The first column shows
the project names. The next column shows the # of Bugs (R: real
bugs, I: inserted/artificial bugs).

1776

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tung Dao, Na Meng, and ThanhVu Nguyen

Legend

Deploy

Build

Test

Change

SBFL

Developers

CI/CD
Loop

SBFL-
based

Debugging
Loop

Ranked List of
buggy locations

Shared cloud-based
infrastructure

Code coverage
DB

Infrastructure

CI/CD
activity

CI/CD
loop

Code coverage
profiling DB

SBFL

SBFL
integration

Figure 1: CI/CD and SBFL Integration Outline. Figure 2: Collecting coverage profiling data with Clover.

Table 1: The Defect4J dataset: 174 real bugs and 37 artificial
bugs from 5 open-source projects.

Project # of Bugs LOC Exec # Tests 1st Failed IdxR I
Chart 13

0

25–7,057 1–428 1–248
Math 73 68–7,036 3–1,513 1–599
Mockito 26 931–4,252 25–1,111 9–273
Time 21 931–4,252 25–1,111 9–273
Lang 41 37 189–2,817 7–198 1–149
Total 174 37

Column LOC Executed shows the code sizes in terms of lines of
code (LOC) among buggy program versions that are covered by test
cases. Column # Tests shows the number of tests executed for each
buggy program. The last column, 1st Failed Idx, gives the index
of the first failed test among the tests. Note that values in these
columns are given in a range (e.g., 1-428) because each program
has multiple snapshots, each of which corresponds to an individual
bug.

Table 2: Distribution of number of failed tests in Defect4J.

of Failed Tests Real Bugs Artificial Bugs
% # %

1 101 58 (%) 18 49 (%)
2 41 24 (%) 7 19 (%)
3 5 3 (%) 11 30 (%)
4 8 5 (%) 0 0 (%)

≥ 5 19 11 (%) 1 3 (%)
Total 174 100 (%) 37 100 (%)

Tab. 2 provides additional information for failed tests. Approxi-
mately 50% of the bugs have more than 1 failing test. Among these
bugs, the majority of them have 2-3 failing tests. This justifies why
in the IFLM:

5
, we set :’s upper bound to 5 as bugs having more

than 5 failed tests are rare.

Cvent Bug Dataset. This dataset consists of 27 real multi-location
bugs in 4 close-source programs from Cvent. These bugs were
identified and fixed by developers within Cvent’s internal CI/CD

process. We collected the bugs by analyzing build logs, Git commits,
Jira tickets, and test reports. The ground truths for these bugs were
determined based on the fixes applied by developers. In cases where
it was difficult to distinguish between code modifications made for
bug fixing purposes and those made for refactoring, we excluded
those fixes to ensure the accuracy of the dataset.

The four subject programs are written in Java and have a medium
size, ranging from 10-20 kLOC. Among these programs, one is an
internal tool software developed for Cvent’s own developers, while
the other three are related to Cvent’s business domains, specifically
event management, account provisioning, and planners’ tools, used
by Cvent’s external clients. The test sizes for these programs range
from a few hundred to one thousand test cases, consisting of both
unit tests and integration tests. Due to legal constraints, we cannot
publish all the details of the dataset. However, we have made the
spectrum data available at [5].

4.2 Effectiveness Metrics
We adopt three widely used metrics to measure the effectiveness of
IFLM [39, 58].

Recall at Top N (Top-N). This measures the percentage of buggy
entities that are included in the top N ranked locations. For example,
if an entity is ranked third, its Top-1 recall rate would be 0% (as it
is not ranked first) and its Top-5 recall rate would be 100% (as it is
within the top five ranks). In general, a higher Top-N recall means
better performance.

Mean Average Precision (MAP). This measures the accuracy and
ranking quality of FL in identifying the (faulty) entities. Higher
MAP value is better. The Average Precision (AP) of an FL task is:

�% =

"∑
:=1

% (:) × ?>B (:)
number of positive instances

× 100% (1)

Suppose that FL ranked " statements and one of them is positive
(i.e., buggy), then the number of positive instances is equal to 1. For
each value of : , where : varies from 1 to " , % (:) is the percentage
of positive instances among the top : instances, and ?>B (:) is a

1777

Triggering Modes in Spectrum-Based Multi-location Fault Localization ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

binary indicator of whether or not the :Cℎ statement is positive.
Namely, ?>B (:) = 1 if the :Cℎ statement is positive, otherwise
?>B (:) = 0 . For example, if four statements are ranked, and the
3A3 and 4Cℎ are positive, then AP is (13 + 2

4)/2 × 100% = 42%. On
the other hand, if the 1BC and 2=3 of the ranked list are buggy, then
�% = (11 + 2

2)/2 × 100% = 100%.

Mean Reciprocal Rank (MRR). This measures precision in a dif-
ferent way. Given a set of fault localization tasks, it calculates the
mean of reciprocal rank values for all tasks. Overall, higher MRR
value indicates better the precision. The Reciprocal Rank (RR) of
a single task is defined as:

'' =
1

rankbest
× 100% (2)

where rankbest is the rank of the first actual bug located. For exam-
ple, for 4 ranked statements with the 3A3 and 4Cℎ being buggy, RR
is 1

3 × 100% = 33%.

4.3 RQ1: Comparing Triggering Modes
We evaluate the effectiveness of different triggering modes for
SBFL using Dice (see §2.1 for its definition) as the default ranking
formula for IFLM. This is because Dice generally outperformed
other formulae. Tab. 3 gives an overview of the performance of each
formula averaged across all bug and triggering mode combinations.
The ranking formulae are categorized into different groups based
on their performance: best (green), second (dark-gray), and the least
effective (orange).

4.3.1 Effectiveness of IFLM1and IFLM� . Tab. 4 shows the results
from IFLM1 and IFLM� on the 174 real bugs and 37 artificial bugs
from open-source projects in Defect4J dataset, and 27 real bugs
from Cvent’s close-source dataset. The five columns present the
performance metrics and test execution cost for real (R) and inject-
ed/artificial (I) bugs.

Contrary to the findings for single-location bugs, IFLM� outper-
formed IFLM1 on both real and artificial bugs. For the real open-
source bugs, IFLM� performed slightly better than IFLM1 with
metrics such as 12% versus 10% for Top-1, 30% versus 28% for Top-5,
17% versus 13% for MAP, and 22% versus 20% for MRR. Similarly,
we see the comparable performance of the two in the close-source
Cvent bugs. However, IFLM� required more than twice test exe-
cutions compared to IFLM1. Similarly, for Cvent bugs, in average,
IFLM1 takes only 327 seconds, while IFLM� consumes 885 seconds.
In other words, empirically, IFLM1 runs more than twice as fast as
IFLM� , as a result of running far more fewer tests.

For artificial bugs, IFLM� demonstrated significant improvement
compared to real bugs, achieving over 100% better performance
across all metrics: 27% versus 12% for Top-1, 62% versus 30% for
Top-5, 40% versus 17% for MAP, and 40% versus 22% for MRR. In
contrast, IFLM1 performed much worse for artificial bugs compared
to real bugs: 3% versus 10% for Top-1, 8% versus 28% for Top-5, 9%
versus 13% for MAP, and 9% versus 20% for MRR.

Overall, for artificial bugs, IFLM1 performed significantly worse
than IFLM� withmetrics such as 3% versus 27% for Top-1, 8% versus
62% for Top-5, and 9% versus 40% for both MAP and MRR. These
results highlight the differences in performance between IFLM1 and
IFLM� on artificial bugs compared to real bugs. Additionally, arti-
ficial bugs appear biased towards IFLM� and become challenging

for IFLM1. Thus, we do not advise using artificial bugs to evaluate
SBFL on multi-location bugs.

Finding 1: For real bugs, IFLM1 performs slightly worse than
IFLM� (≈ 2 percentage point difference, e.g., Top-1, Top-5, MRR),
but it offers a significant advantage in test execution reduction (≈
100% better than IFLM� , in terms of runtime and the number of
executed tests). However, for artificial bugs, IFLM� significantly
outperforms IFLM1, suggesting that artificial bugs might not be
suitable for evaluating SBFL for multi-location bugs.

4.3.2 Effectiveness of IFLM:
5
. We evaluated IFLM:

5
by triggering

SBFL at every :Cℎ occurrence of a test failure, where k= 1–5. Tab. 5
shows the average measurements. As can be seen, the effectiveness
measurements did not consistently improve with an increasing
number of failed tests, i.e., we do not need too many failed tests for
SBFL to work. For instance, for real bugs, the Top-1 measurement
remained at 10% for both : = 1 and : = 2, but decreased to 6% at
: = 3. The maximum value of Top-1, 11%, was achieved at : = 4, 5,
which only slightly differed from the value at: = 1 (10%). Increasing
the Top-1 measurement by 1 percent point required running 44%
of tests with : = 1 and 57% with : = 5 (by 13 percent points). We
observed similar results for artificial bugs.

For generality, we perform the same experiment for IFLM:
5
using

3 ranking formulae randomly selected in 3 corresponding represen-
tative groups in Tab. 3, namely Goodman, Hamann, and Euclid
(§2.1). Fig. 3 (a)(b) shows the results for real bugs for Defects4J
and Cvent, respectively. In Goodman and Hamann, Top-1, Top-5,
MAP, and MRR decreased when : go from 1 to 3. While in Euclid,
Top-1 stayed constant against : , for all other metrics, their values
decreased significantly when : reached 5.

Fig. 3 (c) shows the results for artificial bugs. For Goodman and
Hamann, Top-1, MAP, and MRR reached optimal values when :

was between 2 and 3, then decreased when : was between 3 and
5. Only Top-5 achieved optimal at : = 5. However, for Euclid, all
metrics got optimal values at : = 3, and then decreased when :

approached 5.

Finding 2: While increasing the number failed tests costs more to
execute and collecting profiling data, IFLM:

5
does not work better

with more failing tests.

4.3.3 Effectiveness of IFLM:
? . Tab. 6 shows our results for IFLM:

? ,
which applies SBFL at every occurrence of additional :Cℎ passed
tests after the first failed test (k = 1 – 10). For real bugs, IFLM:

? per-
formed slightly better with more additional passed tests. However,
the increased performance was insignificant. As shown in Tab. 6,
Top-1 stayed relatively consistent around 11%; all other metrics
slightly increased: 28–34% in Top-5, 14–17% in MAP, and 20–22%
in MRR, while the cost of running tests increased from 46–49%.

Finding 3: Given the execution data of extra passed tests after the
initial test failure, IFLM:

? did not outperform IFLM1 for real bugs.

For artificial bugs, performance gained were significant. When
k increases from 1 to 10, performances increased 3% to 19% in

1778

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tung Dao, Na Meng, and ThanhVu Nguyen

Table 3: Effectiveness of 25 ranking algorithms

Real Bugs Artificial Bugs
Ranking Algorithms # Instances Top-1 (%) Top-5 (%) MAP (%) MRR (%) Ranking Algorithms # Instances Top-1 (%) Top-5 (%) MAP (%) MRR (%)

DICE [19] 2040 11 30 15 21 DICE [19] 466 12 35 23 23
KULCZYNSKI1 [37] 2040 11 30 15 21 KULCZYNSKI1 KULCZYNSKI1 [37] 466 12 35 23 23
SORENSENDICE [11] 2040 11 30 15 21 SORENSENDICE [11] 466 12 35 23 23
GOODMAN [26] 2040 11 30 15 21 GOODMAN [26] 466 12 35 23 23
ANDERBERG [11] 2040 11 30 15 21 ANDERBERG [11] 466 12 35 23 23
JACCARD [14] 2040 11 30 15 21 JACCARD [14] 466 12 35 23 23
M2 [56] 2040 10 28 14 19 M2 [56] 466 12 35 23 23
RUSSELLRAO [19] 2040 10 28 14 19 RUSSELLRAO [19] 466 12 35 23 23
AMPLE [19] 2040 8 25 12 17 AMPLE [19] 466 12 35 23 23
WONG3 [22] 2040 6 15 7 10 WONG3 [22] 466 12 27 20 20
WONG2 [48] 2040 5 15 7 10 WONG2 [48] 466 12 27 20 20
SIMPLEMATCHING 2040 5 14 6 9 SIMPLEMATCHING 466 10 22 17 17
HAMANN [19] 2040 5 14 6 9 HAMANN [19] 466 10 22 17 17
SOKAL [19] 2040 5 14 6 9 SOKAL [19] 466 10 22 17 17
ROGERSTANIMOTO [19] 2040 5 14 6 9 ROGERSTANIMOTO [19] 466 10 22 17 17
M1 [56] 2040 5 14 6 9 M1 [56] 466 10 22 17 17
EUCLID [19] 2040 0 5 3 3 EUCLID [19] 466 0 0 2 2
WONG1 [48] 2040 0 5 3 3 WONG1 [48] 466 0 0 2 2
HAMMING [19] 2040 0 5 3 3 HAMMING [19] 466 0 0 2 2
OCHIAI2 [19] 2040 0 1 1 1 OCHIAI2 [19] 466 0 0 1 1
OCHIAI [14] 2040 0 1 1 1 OCHIAI [14] 466 0 0 1 1
TARANTULA [14] 2040 0 1 1 1 TARANTULA [14] 466 0 0 1 1
KULCZYNSKI2 [19] 2040 0 1 1 1 KULCZYNSKI2 [19] 466 0 0 1 1
ZOLTAR [13] 2040 0 1 1 1 ZOLTAR [13] 466 0 0 1 1
OVERLAP [21] 2040 0 0 0 0 OVERLAP [21] 466 0 0 0 0

Table 4: Comparing IFLM1 and IFLM� (R$ /I$ = Real/Artificial Defects4J bugs, R� = Real Cvent bugs).

Mode Top-1 (%) Top-5 (%) MAP (%) MRR (%) Cost (% Tests or R.Time)
R$ I$ R� R$ I$ R� R$ I$ R� R$ I$ R� R$ I$ R� (s)

IFLM1 10 3 22 28 8 66 13 9 29 20 9 45 44 39 327
IFLM� 12 27 24 30 62 65 17 40 37 22 40 49 100 100 885

Table 5: Effectiveness of IFLM:
5
with k=1–5 (R$ /I$ = Real/Artificial Defects4J bugs, R� = Real Cvent bugs).

Failed
Tests

Top-1 (%) Top-5 (%) MAP (%) MRR (%) Cost (% Tests or R.Time)
R$ I$ R� R$ I$ R� R$ I$ R� R$ I$ R� R$ I$ R� (s)

1 10 3 22 28 8 66 13 9 29 20 9 45 44 39 327
2 10 26 23 34 74 70 15 43 32 19 43 47 54 48 415
3 6 42 20 31 75 65 13 53 29 18 53 43 55 62 451
4 11 0 19 37 100 65 16 33 28 23 33 43 57 83 539
5 11 0 18 32 100 62 14 33 26 21 33 41 57 93 574

Table 6: Effectiveness of IFLM:
? when k = 1–10 (R$ /I$ = Real/Artificial Defects4J bugs, R� = Real Cvent bugs).

Additional
Passed Tests

Top-1 (%) Top-5 (%) MAP (%) MRR (%) Cost (% Tests or R.Time)

R$ I$ R� R$ I$ R� R$ I$ R� R$ I$ R� R$ I$ R� (s)

1 11 3 22 28 14 66 14 12 29 20 12 45 46 41 327
2 12 3 22 29 14 66 14 12 29 21 12 45 47 44 329
3 11 3 22 31 22 66 14 13 29 21 13 45 48 46 330
4 12 3 22 30 22 66 15 13 29 21 13 45 48 46 331
5 11 3 22 29 31 61 15 16 26 20 16 45 48 48 333
6 10 11 22 29 39 61 15 23 26 20 23 41 48 50 335
7 11 17 22 31 47 61 16 29 26 21 29 41 49 52 336
8 11 17 20 32 42 60 16 28 26 21 28 41 50 55 339
9 10 17 21 32 42 60 16 29 26 20 29 41 49 57 340

10 11 19 21 34 44 60 17 31 26 22 31 41 49 54 341

Top-1, 14% to 44% in Top-5, 12% to 31% in MAP and MRR. There
was discrepancy between the results of real and artificial bugs,
suggesting that artificial bugs might not be a reliable benchmark
for evaluating SBFL.

4.4 RQ2: Sensitivity to SBFL Formulae
We ran IFLM using 25 popular SBFL formulae shown in Tab. 3 to
ensure the generalizability of our observation comparing IFLM1 and
IFLM� and explore IFLM’s sensitivity to different SBFL formulae.

1779

Triggering Modes in Spectrum-Based Multi-location Fault Localization ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 7: The effectiveness of IFLM1 and IFLM� using all 25 different formulae on Defects4J’s real bugs.

Real Bugs
Formulae Top-1 (%) Top-5 (%) MAP (%) MRR (%)

IFLM1 IFLM� Diff IFLM1 IFLM� Diff IFLM1 IFLM� Diff IFLM1 IFLM� Diff
Ample 10 8 +2 25 25 0 12 12 0 18 16 +2
Anderberg 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Dice 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Euclid 0 0 0 6 6 0 3 3 0 3 3 0
Goodman 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Hamann 5 4 +1 13 10 +3 6 6 0 10 7 +3
Hamming 0 0 0 6 6 0 3 3 0 3 3 0
Jaccard 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Kulczynski1 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Kulczynski2 0 0 0 1 2 -1 1 2 -1 1 2 -1
M1 5 4 +1 13 10 +3 6 6 0 10 7 +3
M2 10 10 0 28 28 0 13 15 -2 20 20 0
Ochiai 0 0 0 1 2 -1 1 2 -1 1 2 -1
Ochiai2 0 0 0 1 2 -1 1 2 -1 1 2 -1
Overlap 0 0 0 0 0 0 1 0 +1 0 0 0
RogersTanimoto 5 4 +1 13 10 +3 6 6 0 10 7 +3
RussellRao 10 10 0 28 26 +2 13 14 -1 20 19 +1
SimpleMatching 5 4 +1 13 10 +3 6 6 0 10 7 +3
Sokal 5 4 +1 13 10 +3 6 6 0 10 7 +3
SqrensenDice 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Tarantula 0 0 0 1 2 -1 1 2 -1 1 2 -1
Wong1 0 0 0 6 6 0 3 3 0 3 3 0
Wong2 5 6 -1 13 11 +2 6 7 -1 10 9 +1
Wong3 5 6 -1 13 13 0 6 8 -2 10 10 0
Zoltar 0 0 0 1 2 -1 1 2 -1 1 2 -1
Average (%) 5 5 0 15 14 1 7 8 -1 10 10 0

Table 8: The effectiveness of IFLM1 and IFLM� using all 25 different formulae on Defects4J’s artificial bugs.

Artificial Bugs
Formulae Top-1 (%) Top-5 (%) MAP (%) MRR (%)

IFLM1 IFLM� Diff IFLM1 IFLM� Diff IFLM1 IFLM� Diff IFLM1 IFLM� Diff
Ample 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Anderberg 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Dice 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Euclid 0 0 0 0 0 0 2 2 0 2 2 0
Goodman 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Hamann 3 14 -11 5 27 -22 7 20 -13 7 20 -13
Hamming 0 0 0 0 0 0 2 2 0 2 2 0
Jaccard 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Kulczynski1 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Kulczynski2 0 0 0 0 0 0 1 1 0 1 1 0
M1 3 14 -11 5 27 -22 7 20 -13 7 20 -13
M2 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Ochiai 0 0 0 0 0 0 1 1 0 1 1 0
Ochiai2 0 0 0 0 0 0 1 1 0 1 1 0
Overlap 0 0 0 0 0 0 0 0 0 0 0 0
RogersTanimoto 3 14 -11 5 27 -22 7 20 -13 7 20 -13
RussellRao 3 27 -24 8 62 -54 9 40 -31 9 40 -31
SimpleMatching 3 14 -11 5 27 -22 7 20 -13 7 20 -13
Sokal 3 14 -11 5 27 -22 7 20 -13 7 20 -13
SqrensenDice 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Tarantula 0 0 0 0 0 0 1 1 0 1 1 0
Wong1 0 0 0 0 0 0 2 2 0 2 2 0
Wong2 3 27 -24 5 51 -46 7 37 -30 7 37 -30
Wong3 3 27 -24 5 51 -46 7 37 -30 7 37 30
Zoltar 0 0 0 0 0 0 1 1 0 1 1 0
Average (%) 2 15 -13 4 32 -28 6 22 -16 6 22 -16

1780

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tung Dao, Na Meng, and ThanhVu Nguyen

1 2 3 4 5

10

20

30

40

Failed Tests

%
4A
24
=
C0
6
4
(%

)
Top-1
Top-5
MAP
MRR

Goodman

1 2 3 4 5

10

20

30

40

Failed Tests

%
4A
24
=
C0
6
4
(%

)

Top-1
Top-5
MAP
MRR

Hamann

1 2 3 4 5

2

4

6

8

10

Failed Tests

%
4A
24
=
C0
6
4
(%

)

Top-1
Top-5
MAP
MRR

Euclid

(a) Real Open-Source Bugs.

1 2 3 4 5

10

20

40

60

80

Failed Tests

%
4A
24
=
C0
6
4
(%

)

Top-1
Top-5
MAP
MRR

Goodman

1 2 3 4 5

10

20

30

40

Failed Tests

%
4A
24
=
C0
6
4
(%

)
Top-1
Top-5
MAP
MRR

Hamann

1 2 3 4 5

10

20

30

40

Failed Tests

%
4A
24
=
C0
6
4
(%

)

Top-1
Top-5
MAP
MRR

Euclid

(b) Real Close-Source Bugs.

1 2 3 4 5

20

40

60

80

100

Failed Tests

%
4A
24
=
C0
6
4
(%

)

Top-1
Top-5
MAP
MRR

Goodman

1 2 3 4 5

20

40

60

80

100

Failed Tests

%
4A
24
=
C0
6
4
(%

)

Top-1
Top-5
MAP
MRR

Hamann

1 2 3 4 5

1

2

3

4

5

Failed Tests

%
4A
24
=
C0
6
4
(%

)
Top-1
Top-5
MAP
MRR

Euclid

(c) Artificial Open-Source Bugs.

Figure 3: Effectiveness of IFLM:
5
using different SBFL formulae: Goodman, Hamann, Euclid.

The results of IFLM1 and IFLM� are given in Tab. 7, and Tab. 8
for the Defects4J’s real, artificial bugs, respectively; and Tab. 9 for
Cvent bugs. The Diff column shows the differences of measured
values between IFLM1 and IFLM� (larger or equal values are in
bold). A positive or zero diff value (in bold) indicates that IFLM1
performed as well as or better than IFLM� .

For the real bugs in Defects4J, out of the total 25 formulae, IFLM1
outperformed or achieved comparable results to IFLM� in Top-1,
Top-5, MAP, and MRR in 17, 14, 10, and 14 formulae, respectively
(Tab. 7). We observe a similar trend in the Cvent dataset, i.e., 17 in
Top-1, 22 in Top-5, 12 in MAP, and 15 in MRR (Tab. 9). On average,
there was minimal distinction between IFLM1 and IFLM� across all
four performance metrics. Thus, for real bugs, the observation that
IFLM1 performed at least as well as IFLM� (in all four effectiveness

metrics) was confirmed in more than 50% of the 25 investigated
SBFL formulae.

Finding 4: For real bugs, in general, IFLM1 performed equally or
better than IFLM� on more than half of the 25 investigated SBFL
formulae, across all of the four effectiveness metrics.

However, the observation for the Defects4J artificial bugs contra-
dicted that of the real bug dataset. IFLM� outperformed IFLM1 for
16/25 formulae. The remaining 9 formulae showed similar perfor-
mance levels for both IFLM1 and IFLM� . This substantial difference
between the real and artificial bug datasets suggests that artificial
bugs may not accurately predict the performance of SBFL tech-
niques in localizing real bugs.

1781

Triggering Modes in Spectrum-Based Multi-location Fault Localization ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 9: The effectiveness of IFLM1 and IFLM� using all 25 different formulae on Cvent bugs.

Formulae Top-1 (%) Top-5 (%) MAP (%) MRR (%)
IFLM1 IFLM� Diff IFLM1 IFLM� Diff IFLM1 IFLM� Diff IFLM1 IFLM� Diff

Ample 22 16 +6 59 54 +5 27 26 +1 40 36 +4
Anderberg 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Dice 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Euclid 12 0 +12 28 13 +15 13 7 +6 13 7 +6
Goodman 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Hamann 11 8 +3 31 22 +9 13 13 0 22 16 +6
Hamming 0 0 0 14 13 +1 7 7 0 7 7 0
Jaccard 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Kulczynski1 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Kulczynski2 0 0 0 2 4 -2 2 4 -2 2 4 -2
M1 11 8 +3 31 22 +9 13 13 0 22 16 +6
M2 22 20 +2 66 61 +5 29 33 -4 45 45 0
Ochiai 11 0 +11 30 4 +26 12 4 +8 13 4 +9
Ochiai2 0 0 0 2 4 -2 2 4 -2 2 4 -2
Overlap 0 0 0 0 0 0 2 0 +2 0 0 0
RogersTanimoto 11 8 +3 31 22 +9 13 13 0 22 16 +6
RussellRao 22 20 +2 66 56 +10 29 30 -1 45 42 +3
SimpleMatching 11 8 +3 31 22 +9 13 13 0 22 16 +6
Sokal 11 8 +3 31 22 +9 13 13 0 22 16 +6
SqrensenDice 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Tarantula 11 7 +4 30 27 +3 13 13 0 21 22 -1
Wong1 0 0 0 14 13 +1 7 7 0 7 7 0
Wong2 11 12 -1 31 24 +7 13 15 -2 22 20 +2
Wong3 11 12 -1 31 28 +3 13 17 -4 22 22 0
Zoltar 0 0 0 2 4 -2 2 4 -2 2 4 -2
Average (%) 13 11 +2 37 32 +5 17 18 -1 25 24 +1

For sensitivity of IFLM to SBFL formulae, Tab. 7 & 8 showed that
the choice of formulae played a crucial role in accurately localizing
both real and artificial bugs. Formulae such as Ample, Dice, and
Jaccard contributed to achieving 28% and 30% Top-5, as well as 20%
and 22% MRR for IFLM1 and IFLM� respectively. Conversely, for-
mulae such as Overlap, Kulczynski2, and Zoltar performed poorly
and exhibited inaccuracy. Furthermore, there was no single for-
mula that consistently outperformed others. Instead, multiple top-
performing formulae demonstrated similar levels of performance
for both IFLM1 and IFLM� .

Finding 5: SBFL formulae can have significant influence to the
performance of IFLM. There were often multiple formulae that
worked equally-well for IFLM.

5 THREATS TO VALIDITY
External Validity. Our findings depend on the quality and charac-

teristics of the bug datasets used in our experiments. However, our
benchmark, Defects4J, a well-known dataset with real Java bugs,
and the four current Cvent projects, can help mitigate this threat.

Construct Validity. We focused on multi-location bugs, whose
ground truths were constructed by comparing the buggy and fixed
versions of the programs. Locations (except comment) that were
modified (i.e., add, delete, change) were considered locations of
the bug. In reality, developers often mixed between bug fixing
and refactoring in a commit, and it is not trivial to distinct the
two, especially in Cvent dataset. However, the first-author who
constructed the dataset is familiar with the selected programs and
thus help address this concern.

Internal Validity. Similar to prior fault localization research [34,
50, 59], given a bug fix, we treated the location where the fixing
change was applied as ground truth. However, in reality, the place
where a bug is fixed is not always the place where a bug is found.
Another concern was the reliability of the coverage data. This data
collection process was time-consuming and hard to validate.

For the open-source Defects4J dataset, we reused the data pub-
lished in [1]. For the close-source Cvent dataset, we modified Clover
[2] and ran tests to gather the profiling data. For accuracy, we re-
peated the collection process three times. We publish the close-
source dataset in standardized spectrum format and the tool we
built on top of Clover in [5].

6 RELATEDWORK
We describe several FL techniques realted to this study, including
the effectiveness and applicability of SBFL; test reduction, prioriti-
zation, and generation; and bug characteristics.

Spectrum-Based Fault Localization (SBFL). Tarantula [30] was the
first SBFL technique that identifies buggy locations by leveraging
the execution information or code coverage profiling data gath-
ered by running tests against a program under investigation. Since
then there have been many other variations of the SBFL approach,
such as, Ochia, Jaccard, Dice [12, 20, 29, 30, 38, 50, 51]. The main
difference among these techniques is how a program spectra are
formulated into a metric called suspiciousness score (i.e., SBFL for-
mula) to predict how buggy each location of the program is. Lucia et
al. [35] and Yoo et al. [53] compared different formulae defined for
SBFL approaches, and concluded that there was no optimal formula
that always worked better than others.

1782

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tung Dao, Na Meng, and ThanhVu Nguyen

This paper does not define any new SBFL formula but instead
reuses 25 existing SBFL ones. We built the —IFLM framework to
investigate diverse triggering modes of SBFL, and to understand
how each triggering mode balances the effectiveness and efficiency
of bug localization. Our exploration compared IFLM’s effectiveness
given (i) different SBFL formulae and (ii) distinct triggering mech-
anisms for SBFL formulae. Our ultimate goal was to find optimal
triggering modes that worked best with SBFL in industrial settings.

Enhanced SBFL Techniques. Unlike standard SBFL methods that
use only program’s coverage information and one single ranking
metric, recent enhanced SBFL approaches leverage other program
analysis inputs, such as, dependency and execution graphs, contex-
tual information, types of program entities (e.g., branch, predicate)
to localize bugs more accurately [16, 17, 27, 40, 44, 50]. He et al.
augmented coverage information with test call graph to construct
fault inducing or influencing network, which helps narrow down
bug searching space [27]. Beszédes et al. used snapshots of call stack
to assist SBFL to localize buggy functions [17]. Xuan et al. used
machine learning to train a model by combining 25 suspiciousness
score formulae [50]. Our study is different in that it focuses on how
to reduce the overhead cost of applying the existing SBFL tech-
niques in the real-world with as minimal accuracy loss as possible.

Effectiveness and Applicability of SBFL. Many studies have high-
lighted the insufficiency of SBFL and its limited real-world ap-
plication [25, 28, 32, 35, 40, 41, 45, 47, 49, 53]. Wang et al. con-
ducted user studies involving developers to assess the usefulness
of Information-Based Fault Localization (IBFL) tools, revealing de-
velopers’ dissatisfaction with these techniques [47]. Sarhan et al.,
in a recent survey [40], provided reasons for the limited adoption
of SBFL, including the unavailability of supported tools, high cost
of collecting execution information, and inaccurate results.

These concerns regarding the overhead cost of collecting spec-
trum data were shared by our team at Cvent and served as moti-
vation for our study. However, in contrast to these work that rely
on older open-source datasets for evaluation, we further validated
our findings using an industry-scaled dataset benchmark that is
up-to-date.

Test Reduction, Prioritization, or Generation. These topics not only
improve fault localization accuracy but also reduce its overhead
costs. Several approaches have been proposed to facilitate fault
localization through test case reduction, prioritization, and genera-
tion [15, 18, 23, 36, 52, 54, 57]. For instance, Masri et al. introduced
“coincidental correctness” to describe scenarios where buggy state-
ments are executed but do not result in test failures. They proposed
a technique to identify and remove these coincidentally correct tests
from a given test suite, aiming to improve SBFL approaches [36].
Yu et al. investigated the influence of test suite reduction strategies
on the effectiveness of fault localization techniques. They observed
that existing SBFL techniques tend to perform worse when the
number of test cases covering the same statement is reduced. They
then proposed a new test suite reduction strategy that minimally
impacts fault localization while reducing test case redundancy [54].

Yoo et al. presented FLINT, an information-theoretic approach
that prioritizes statements and test cases. Statements are ordered
based on their suspiciousness, while test cases are ordered by their

ability to reduce the inherent entropy in fault localization [52]. Artzi
et al. developed a test generation approach that aims to maximize
the effectiveness of SBFL. They defined a “similarity criterion” to
measure the similarity in execution characteristics between two
tests. This criterion guides concolic execution to generate tests with
similar execution characteristics to a given failed test [15].

Our research shares a similar motivation, particularly in explor-
ing methods to reduce the running cost of SBFL. Our proposed
IFLM triggering modes serve as a practical technique for reduc-
ing test execution, and in the future, we plan to investigate test
prioritization to further improve triggering modes in practice.

Bug Characteristics and Relation with SBFL. Bug characteristics
include various aspects such as bug type (e.g., single or multiple
faults), programming language used (e.g., C++, Java, JavaScript),
and program complexity (e.g., nesting level, length of methods).
Previous studies have shown a correlation between bug character-
istics and the effectiveness of SBFL techniques [24, 41, 46, 55]. For
instance, Vancsics et al. found that for the same nesting complex-
ity, shorter programs tend to have more accurate bug localization
compared to longer ones [43, 46].

Bug type is typically classified as either single-fault or multiple-
fault. In a single-fault scenario, the buggy program has only one
logical bug, and all failed tests can be caused by this single bug,
which may consist of one or more buggy locations. On the other
hand, a multiple-fault situation refers to a buggy program contain-
ing multiple distinct single-faults. SBFL is known to be less effective
for bugs in multiple-fault programs than single-fault ones [55].

Our study focused on bugs in Java programs, which constitute a
major part of the codebase at Cvent. Other programming languages
are left for future research. Moreover, we found it more practical
and reflective of real-world industry settings to classify bugs as
single-location bugs (involving only one location) or multi-location
bugs (requiring fixes at more than one locations). Unlike the study
evaluated on single-location bugs [21], the emphasis of this paper
was on multi-location bugs as they are more common at Cvent.

7 CONCLUSION
This paper explored opportunities of reducing overhead cost of run-
ning tests in SBFL while maintaining its accuracy. We experiment
with the concept of triggering modes proposed in [21] but focus
on multi-location bugs, which are common in real-world settings,
e.g., at our company Cvent. While there were minor disagreements
with the single-location study in [21], our work generally confirms
that it is not always necessary to execute all test cases before using
SBFL formulae to locate bugs. The results in this study are useful
for Cvent and hopefully other industrial companies who seek to
adopt IFLM into their CI/CD development pipeline to automate and
speedup software debugging. In the future, we plan to conduct a
user study to empirically measure productivity (e.g., developer’s
debugging time reduction) would be actually gained with the inte-
gration between IFLM and Cvent’s CI/CD pipeline.

ACKNOWLEDGMENTS
We thank the reviewers for their insightful comments. This work
was partially funded by NSF CCF-1845446, 2238133, and 2200621.

1783

Triggering Modes in Spectrum-Based Multi-location Fault Localization ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

REFERENCES
[1] 2020. Defects4J. http://fault-localization.cs.washington.edu.
[2] 2023. Clover. https://openclover.org/.
[3] 2023. Cobertura. https://cobertura.github.io/cobertura/.
[4] 2023. fault-localization. https://fault-localization.cs.washington.edu/.
[5] 2023. IFLM. https://github.com/idf-icst/sbfl-study.
[6] 2023. Jacoco. https://www.jacoco.org/jacoco/trunk/doc/index.html.
[7] 2023. JUnit. https://junit.org/junit5/.
[8] 2023. Maven. https://maven.apache.org/.
[9] 2023. SonarQube. https://www.sonarsource.com/products/sonarqube/.

[10] 2023. TestNG. https://testng.org/doc/.
[11] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J.C. van Gemund. 2009. A

practical evaluation of spectrum-based fault localization. Journal of Systems and
Software 82, 11 (2009), 1780–1792. https://doi.org/10.1016/j.jss.2009.06.035 SI:
TAIC PART 2007 and MUTATION 2007.

[12] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund. 2007. On the Accuracy of
Spectrum-based Fault Localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION, 2007. TAICPART-MUTATION 2007.
89–98. https://doi.org/10.1109/TAIC.PART.2007.13

[13] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. 2011. Simultaneous
debugging of software faults. Journal of Systems and Software 84, 4 (2011), 573–586.
https://doi.org/10.1016/j.jss.2010.11.915 The Ninth International Conference on
Quality Software.

[14] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. 2007. On the Accuracy of
Spectrum-based Fault Localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007).
89–98. https://doi.org/10.1109/TAIC.PART.2007.13

[15] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. 2010. Directed Test
Generation for Effective Fault Localization. In Proceedings of the 19th Interna-
tional Symposium on Software Testing and Analysis (Trento, Italy) (ISSTA ’10).
Association for Computing Machinery, New York, NY, USA, 49–60. https:
//doi.org/10.1145/1831708.1831715

[16] Rawad Abou Assi, Wes Masri, and Chadi Trad. 2020. Substate Profiling for
Enhanced Fault Detection and Localization: An Empirical Study. In 2020 IEEE
13th International Conference on Software Testing, Validation and Verification
(ICST). 16–27. https://doi.org/10.1109/ICST46399.2020.00013

[17] Árpád Beszédes, Ferenc Horváth, Massimiliano Di Penta, and Tibor Gyimóthy.
2020. Leveraging Contextual Information from Function Call Chains to Improve
Fault Localization. In 2020 IEEE 27th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER). 468–479. https://doi.org/10.1109/
SANER48275.2020.9054820

[18] Yiqun T. Chen, Rahul Gopinath, Anita Tadakamalla, Michael D. Ernst, Reid
Holmes, Gordon Fraser, Paul Ammann, and René Just. 2020. Revisiting the
Relationship Between Fault Detection, Test Adequacy Criteria, and Test Set
Size. In 2020 35th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 237–249.

[19] Seung-Seok Choi, Sung-Hyuk Cha, and Charles C. Tappert. 2010. A Survey of
Binary Similarity and Distance Measures. Journal on Systemics, Cybernetics and
Informatics 8 (2010), 43–48. https://api.semanticscholar.org/CorpusID:15289045

[20] Valentin Dallmeier, Christian Lindig, and Andreas Zeller. 2005. Lightweight Bug
Localization with AMPLE. In Proceedings of the Sixth International Symposium on
Automated Analysis-driven Debugging.

[21] Tung Dao, Max Wang, and Na Meng. 2021. Exploring the Triggering Modes
of Spectrum-Based Fault Localization: An Industrial Case. In 2021 14th IEEE
Conference on Software Testing, Verification and Validation (ICST). 406–416. https:
//doi.org/10.1109/ICST49551.2021.00052

[22] Vidroha Debroy and W. Eric Wong. 2011. On the Consensus-Based Applica-
tion of Fault Localization Techniques. In 2011 IEEE 35th Annual Computer Soft-
ware and Applications Conference Workshops. 506–511. https://doi.org/10.1109/
COMPSACW.2011.92

[23] Wenhao Fu, Huiqun Yu, Guisheng Fan, and Xiang Ji. 2016. Test Case Prioriti-
zation Approach to Improving the Effectiveness of Fault Localization. In 2016
International Conference on Software Analysis, Testing and Evolution (SATE). 60–65.
https://doi.org/10.1109/SATE.2016.17

[24] Debolina Ghosh and Jagannath Singh. 2021. Spectrum-based multi-fault localiza-
tion using Chaotic Genetic Algorithm. Information and Software Technology 133
(2021), 106512. https://doi.org/10.1016/j.infsof.2021.106512

[25] Mojdeh Golagha, Alexander Pretschner, and Lionel C. Briand. 2020. Can We
Predict the Quality of Spectrum-based Fault Localization?. In 2020 IEEE 13th
International Conference on Software Testing, Validation and Verification (ICST).
4–15. https://doi.org/10.1109/ICST46399.2020.00012

[26] Leo A. Goodman and William H. Kruskal. 1979. Measures of Association for Cross
Classifications. Springer New York, New York, NY, 2–34. https://doi.org/10.1007/
978-1-4612-9995-0_1

[27] HongdouHe, Jiadong Ren, Guyu Zhao, andHaitao He. 2020. Enhancing Spectrum-
Based Fault Localization Using Fault Influence Propagation. IEEE Access 8 (2020),
18497–18513. https://doi.org/10.1109/ACCESS.2020.2965139

[28] Simon Heiden, Lars Grunske, Timo Kehrer, Fabian Keller, André van Hoorn,
Antonio Filieri, and David Lo. 2019. An evaluation of pure spectrum‐based fault
localization techniques for large‐scale software systems. Software: Practice and
Experience 49 (2019), 1197 – 1224.

[29] James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of the Taran-
tula Automatic Fault-localization Technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering (Long Beach, CA,
USA) (ASE ’05). ACM, New York, NY, USA, 273–282. https://doi.org/10.1145/
1101908.1101949

[30] James A. Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of Test
Information to Assist Fault Localization. In Proceedings of the 24th International
Conference on Software Engineering (Orlando, Florida) (ICSE ’02). ACM, New York,
NY, USA, 467–477. https://doi.org/10.1145/581339.581397

[31] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(San Jose, CA, USA) (ISSTA 2014). Association for Computing Machinery, New
York, NY, USA, 4 pages. https://doi.org/10.1145/2610384.2628055

[32] Pavneet Singh Kochhar, Yuan Tian, and David Lo. 2014. Potential Biases in Bug
Localization: Do They Matter?. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering (Vasteras, Sweden) (ASE ’14). ACM,
New York, NY, USA, 803–814. https://doi.org/10.1145/2642937.2642997

[33] Herb Krasner. 2021. The cost of poor software quality in the US: A 2020 report.
Proc. Consortium Inf. Softw. QualityTM (CISQTM) (2021), 1–46.

[34] Xiangyu Li, Marcelo d’Amorim, and Alessandro Orso. 2016. Iterative User-Driven
Fault Localization. Springer International Publishing, Cham, 82–98. https:
//doi.org/10.1007/978-3-319-49052-6_6

[35] Lucia, David Lo, Lingxiao Jiang, andAditya Budi. 2010. Comprehensive evaluation
of association measures for fault localization. In Software Maintenance (ICSM),
2010 IEEE International Conference on. 1–10. https://doi.org/10.1109/ICSM.2010.
5609542

[36] Wes Masri and Rawad Abou Assi. 2014. Prevalence of Coincidental Correctness
and Mitigation of its Impact on Fault Localization. ACM Transactions on Software
Engineering and Methodology (TOSEM) 23 (02 2014). https://doi.org/10.1145/
2559932

[37] Lee Naish and Hua Jie Lee. 2013. Duals in Spectral Fault Localization. In 2013
22nd Australian Software Engineering Conference. 51–59. https://doi.org/10.1109/
ASWEC.2013.16

[38] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A Model for Spectra-
based Software Diagnosis. ACM Trans. Softw. Eng. Methodol. 20, 3, Article 11
(Aug. 2011), 32 pages. https://doi.org/10.1145/2000791.2000795

[39] R.K. Saha, M. Lease, S. Khurshid, and D.E. Perry. 2013. Improving bug localization
using structured information retrieval. In Automated Software Engineering (ASE),
2013 IEEE/ACM 28th International Conference on. 345–355. https://doi.org/10.
1109/ASE.2013.6693093

[40] Qusay Idrees Sarhan and Árpád Beszédes. 2022. A Survey of Challenges in
Spectrum-Based Software Fault Localization. IEEE Access 10 (2022), 10618–10639.
https://doi.org/10.1109/ACCESS.2022.3144079

[41] Yui Sasaki, Yoshiki Higo, Shinsuke Matsumoto, and Shinji Kusumoto. 2020. SBFL-
Suitability: A Software Characteristic for Fault Localization. In 2020 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME). 702–706.
https://doi.org/10.1109/ICSME46990.2020.00076

[42] Friedrich Steimann, Marcus Frenkel, and Rui Abreu. 2013. Threats to the Validity
and Value of Empirical Assessments of the Accuracy of Coverage-Based Fault
Locators. In Proceedings of the 2013 International Symposium on Software Testing
and Analysis (Lugano, Switzerland) (ISSTA 2013). Association for Computing Ma-
chinery, New York, NY, USA, 314–324. https://doi.org/10.1145/2483760.2483767

[43] Attila Szatmári, Béla Vancsics, and Árpád Beszédes. 2020. Do Bug-Fix Types
Affect Spectrum-Based Fault Localization Algorithms’ Efficiency?. In 2020 IEEE
Workshop on Validation, Analysis and Evolution of Software Tests (VST). 16–23.
https://doi.org/10.1109/VST50071.2020.9051638

[44] Béla Vancsics, Ferenc Horváth, Attila Szatmári, and Árpád Beszédes. 2021. Call
Frequency-Based Fault Localization. In 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER). 365–376. https://doi.
org/10.1109/SANER50967.2021.00041

[45] Béla Vancsics, Attila Szatmári, and Árpád Beszédes. 2020. Relationship between
the Effectiveness of Spectrum-Based Fault Localization and Bug-Fix Types in
JavaScript Programs. In 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). 308–319. https://doi.org/10.1109/
SANER48275.2020.9054803

[46] Béla Vancsics, Attila Szatmári, and Árpád Beszédes. 2020. Relationship between
the Effectiveness of Spectrum-Based Fault Localization and Bug-Fix Types in
JavaScript Programs. In 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). 308–319. https://doi.org/10.1109/
SANER48275.2020.9054803

1784

http://fault-localization.cs.washington.edu
https://openclover.org/
https://cobertura.github.io/cobertura/
https://fault-localization.cs.washington.edu/
https://github.com/idf-icst/sbfl-study
https://www.jacoco.org/jacoco/trunk/doc/index.html
https://junit.org/junit5/
https://maven.apache.org/
https://www.sonarsource.com/products/sonarqube/
https://testng.org/doc/
https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1109/TAIC.PART.2007.13
https://doi.org/10.1016/j.jss.2010.11.915
https://doi.org/10.1109/TAIC.PART.2007.13
https://doi.org/10.1145/1831708.1831715
https://doi.org/10.1145/1831708.1831715
https://doi.org/10.1109/ICST46399.2020.00013
https://doi.org/10.1109/SANER48275.2020.9054820
https://doi.org/10.1109/SANER48275.2020.9054820
https://api.semanticscholar.org/CorpusID:15289045
https://doi.org/10.1109/ICST49551.2021.00052
https://doi.org/10.1109/ICST49551.2021.00052
https://doi.org/10.1109/COMPSACW.2011.92
https://doi.org/10.1109/COMPSACW.2011.92
https://doi.org/10.1109/SATE.2016.17
https://doi.org/10.1016/j.infsof.2021.106512
https://doi.org/10.1109/ICST46399.2020.00012
https://doi.org/10.1007/978-1-4612-9995-0_1
https://doi.org/10.1007/978-1-4612-9995-0_1
https://doi.org/10.1109/ACCESS.2020.2965139
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2642937.2642997
https://doi.org/10.1007/978-3-319-49052-6_6
https://doi.org/10.1007/978-3-319-49052-6_6
https://doi.org/10.1109/ICSM.2010.5609542
https://doi.org/10.1109/ICSM.2010.5609542
https://doi.org/10.1145/2559932
https://doi.org/10.1145/2559932
https://doi.org/10.1109/ASWEC.2013.16
https://doi.org/10.1109/ASWEC.2013.16
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1109/ASE.2013.6693093
https://doi.org/10.1109/ASE.2013.6693093
https://doi.org/10.1109/ACCESS.2022.3144079
https://doi.org/10.1109/ICSME46990.2020.00076
https://doi.org/10.1145/2483760.2483767
https://doi.org/10.1109/VST50071.2020.9051638
https://doi.org/10.1109/SANER50967.2021.00041
https://doi.org/10.1109/SANER50967.2021.00041
https://doi.org/10.1109/SANER48275.2020.9054803
https://doi.org/10.1109/SANER48275.2020.9054803
https://doi.org/10.1109/SANER48275.2020.9054803
https://doi.org/10.1109/SANER48275.2020.9054803

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tung Dao, Na Meng, and ThanhVu Nguyen

[47] Qianqian Wang, Chris Parnin, and Alessandro Orso. 2015. Evaluating the Useful-
ness of IR-based Fault Localization Techniques. In Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis (Baltimore, MD, USA) (ISSTA
2015). ACM, New York, NY, USA, 1–11. https://doi.org/10.1145/2771783.2771797

[48] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740. https://doi.org/10.1109/TSE.2016.2521368

[49] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. 2016. A Survey on Software
Fault Localization. IEEE Transactions on Software Engineering 42, 8 (Aug 2016),
707–740. https://doi.org/10.1109/TSE.2016.2521368

[50] J. Xuan and M. Monperrus. 2014. Learning to Combine Multiple Ranking Metrics
for Fault Localization. In Software Maintenance and Evolution (ICSME), 2014 IEEE
International Conference on. 191–200. https://doi.org/10.1109/ICSME.2014.41

[51] Shin Yoo. 2012. Evolving Human Competitive Spectra-based Fault Localisation
Techniques. In Proceedings of the 4th International Conference on Search Based
Software Engineering (Riva del Garda, Italy) (SSBSE’12). Springer-Verlag, Berlin,
Heidelberg, 244–258.

[52] Shin Yoo, Mark Harman, and David Clark. 2013. Fault Localization Prioritiza-
tion: Comparing Information-Theoretic and Coverage-Based Approaches. ACM
Transactions on Software Engineering and Methodology (TOSEM) 22 (07 2013).
https://doi.org/10.1145/2491509.2491513

[53] Shin Yoo, Xiaoyuan Xie, Fei-Ching Kuo, Tsong Yueh Chen, and Mark Harman.
2014. No Pot of Gold at the End of Program Spectrum Rainbow: Greatest Risk
Evaluation Formula Does Not Exist. Technical Report. University College London
and Swinburn University.

[54] Y. Yu, J. Jones, and M. J. Harrold. 2008. An empirical study of the effects of
test-suite reduction on fault localization. In 2008 ACM/IEEE 30th International
Conference on Software Engineering. 201–210.

[55] Abubakar Zakari, Sai Peck Lee, Rui Abreu, Babiker Hussien Ahmed, and
Rasheed Abubakar Rasheed. 2020. Multiple fault localization of software pro-
grams: A systematic literature review. Information and Software Technology 124
(2020), 106312. https://doi.org/10.1016/j.infsof.2020.106312

[56] Abubakar Zakari, Sai Peck Lee, and Ibrahim Abaker Targio Hashem. 2019. A
single fault localization technique based on failed test input. Array 3-4 (2019),
100008. https://doi.org/10.1016/j.array.2019.100008

[57] Zhuo Zhang, Yan Lei, Xiaoguang Mao, Meng Yan, and Xin Xia. 2022. Improving
Fault Localization Using Model-domain Synthesized Failing Test Generation.
In 2022 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 199–210. https://doi.org/10.1109/ICSME55016.2022.00026

[58] Jian Zhou, Hongyu Zhang, and D. Lo. 2012. Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug reports.
In Software Engineering (ICSE), 2012 34th International Conference on. 14–24.
https://doi.org/10.1109/ICSE.2012.6227210

[59] Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D. Ernst, and Lu Zhang.
2019. An Empirical Study of Fault Localization Families and Their Combinations.
IEEE Transactions on Software Engineering (2019).

1785

https://doi.org/10.1145/2771783.2771797
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/ICSME.2014.41
https://doi.org/10.1145/2491509.2491513
https://doi.org/10.1016/j.infsof.2020.106312
https://doi.org/10.1016/j.array.2019.100008
https://doi.org/10.1109/ICSME55016.2022.00026
https://doi.org/10.1109/ICSE.2012.6227210

	Abstract
	1 Introduction
	2 Background
	2.1 Spectrum-Based Fault Localization (SBFL)
	2.2 Continuous Integration/ Continuous Delivery (CI/CD)

	3 Study Approach
	4 Evaluation
	4.1 Datasets
	4.2 Effectiveness Metrics
	4.3 RQ1: Comparing Triggering Modes
	4.4 RQ2: Sensitivity to SBFL Formulae

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

