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ABSTRACT
Spectrum-based fault localization (SBFL) techniques can aid in
debugging, but their practicality in industrial settings has been
limited due to the large number of tests needed to execute before
applying SBFL. Previous research has explored different trigger
modes for SBFL and found that applying it immediately after the
first test failure is also effective. However, this study only considered
single-location bugs, while multi-location bugs are prevalent in
real-world scenarios and especially at our company Cvent, which
is interested in integrating SBFL to its CI/CD workflow.

In this work, we investigate the effectiveness of SBFL on multi-
location bugs and propose a framework called Instant Fault Lo-
calization for Multi-location Bugs (IFLM). We compare and evalu-
ate four trigger modes of IFLM using open-source (Defects4J) and
close-source (Cvent) bug datasets. Our study showed that it is not
necessary to execute all test cases before applying SBFL. However,
we also found that that applying SBFL right after the first failed
test is less effective than applying it after executing all tests for
multi-location bugs, which is contrary to the single-location bug
study. We also observe differences in performance between real
and artificial bugs. Our contributions include the development of
IFLM and CVent bug datasets, analysis of SBFL effectiveness for
multi-location bugs, and practical implications for integrating SBFL
in industrial environments.
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1 INTRODUCTION
Debugging software is a well-known and challenging task that
consumes a significant amount of developers’ time. The process is
also expensive, and software defects alone cost the US economy
$1.56 trillion in 2020 [33]. To aid debugging, many automatic fault
localization techniques have been proposed. For example, the well-
known spectrum-based fault localization (SBFL) technique [12, 30]
instruments programs to (i) collect execution coverage of passed
and failed tests, and (ii) compute a suspiciousness score for each
program element such as classes, methods, and statements.

Despite its popularity, SBFL may not be practical for industry
deployment because it typically requires the execution of all or a
significant portion of test cases before it can analyze and rank buggy
locations. To further understand and address this limitation, in a
previous work [21], we studied the necessity of this requirement.
Specificallly, we explored various trigger modes, such as applying
SBFL after the first test failure or after a combination of initial fail-
ures along with additional failed or passed tests. We evaluated these
trigger modes using a variety of SBFL methods and found that the
application of SBFL immediately after the first test failure appears
to be equally effective or even better than other trigger modes,
including those that execute all tests. These findings are interesting
and promising for the prtical uses of SBFL in an industrial setting
with a large number of tests.

Recently, we attempted to integrate SBFL in the debugging pro-
cess of Cvent, a Northern Virginia-based company that offers meet-
ing and event management software solutions to clients including
event planners, attendees, and hosts. While the study in [21] plays
a crucial role in this decision, considering CI/CD pipeline of Cvent
consumes thousands of CPU hours to execute integration tests,
it has a major limitation in considering only single-location bugs,
whose root causes confined to individual lines of code (i.e., the bug
can be fixed by modifying a single line). However, bugs encountered
at CVent often have root causes that span multiple lines of code
(requiring the modification of multiple lines to fix). For instance,
we found that that around 72% of Cvent’s bugs committed and
fixed during the development stage were multi-location bugs. More
generally, previous studies, e.g., [42], found that it is not practical
to assume a program contains only single-location bugs.

Motivated by this challenge, in this work we assess the effective-
ness of SBFL for multi-location bugs. Specifically, we extend our
inital study to develop a framework called Instant Fault Localization
for Multi-location Bugs (IFLM) that triggers SBFL in four modes:
(i) IFLM1 invokes SBFL right after the first failed test; (ii) IFLM:

5

triggers SBFL after every :=1–5 test failures (IFLM1 is the special
case when : = 1); (iii) IFLM:

? activates SBFL after the first failed
test and subsequently, : additional passed tests (:=1 – 10); and (iv)
IFLM� triggers SBFL after executing all tests.
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Weconduct the IFLM study using twomulti-location bug datasets:
(i) the open-source Defect4J dataset [4], consisting of 174 real bugs
and 37 artificial bugs, and (ii) the close-source Cvent dataset, con-
sisting of 27 real bugs.

Similarly to our prior single-location study, we found that we
do not always need to run all test cases for SBFL to be effective for
multi-location bugs. This is promising for industrial environments
with a multitude of tests. Specifically, compared to IFLM� , IFLM1
just needs to run less than 50% of the tests to be almost as effective
as IFLM� , which requires running all tests.

We also found that IFLM1 performed worse over artificial bugs
compared to real bugs. Conversely, IFLM� performed better over
artificial bugs compared to real ones. We believe that artificial bugs
could potentially exhibit a bias that favors using IFLM� to evaluate
SBFL techniques.

In summary, our paper made the following contributions:

• We built IFLM, a tool that can trigger SBFL in four different
modes using 25 widely-used ranking formulae.

• We applied IFLM to Cvent close-sourced software projects
(27 real multi-location bugs) and five Defects4J open-sourced
projects (174 real and 37 artificial multi-location bugs).

• We found that IFLM1 performed almost as effectively as
IFLM� , while only needing to run less than half of the tests.

• We created and provided a dataset comprising 27 real bugs
from four programs currently used at Cvent.

We hope that this study can offer valuable insights into the inte-
gration of SBFL within existing software processes in an industry
environment. IFLM and all experimental data are available in a
Github repositiory at [5].

2 BACKGROUND
2.1 Spectrum-Based Fault Localization (SBFL)
SBFL aims to identify bug locations or entities (e.g., statement,
method, class) of a buggy program using coverage information
(spectra). Let the program under investigation % = {4 |4 = 4=C8C~}
be represented as a set of its entities. Let % ’s test set, ) = )5 ∪)? ,
and =5 = |)5 |, =? = |)? |, where )5 and )? are the set of failed and
passed tests, respectively. For an entity 4 ∈ % , let 45 and 4? be the
numbers of distinct failed tests ∈ )5 and passed tests ∈ )? that
cover 4 , respectively. Then, 4’s spectrum is defined as 4spectrum =

(45 , 4? , =5 , =? ). % ’s spectra, %spectra, is {4spectrum}, a set of all 4’s
spectrum for all 4 ∈ % .

SBFL uses four steps to identify and rank buggy locations:

(1) Instrumentation: % and ) are instrumented by techniques
that modify the source code directly or indirectly via their
compiled code (e.g., Java byte code), so that %spectra can
be recorded and collected. Tools such as SonarQube [9],
Clover [2], Jacoco [6], Corbetura [3] are often used in in-
dustry for this purpose. We use Clover in this paper.

(2) Test Execution: ) is run against the instrumented % us-
ing automated test runner or framewor, such as Maven [8],
TestNG [10], JUnit [7]. Once the test execution is finished,
%spectra is all recorded.

(3) Suspiciousness Score Calculation: For each entity 4 ∈ % ,
its buggy suspiciousness score, 4B2>A4 , is calculated using

1 private final long validDays = 7L;

2 - private final Predicate<LocaDate> expired = cachedAt ->

cachedAt.plusDays(validDays). isAfter (LocaDate.now());↩→

3 + private final Predicate<LocaDate> expired = cachedAt ->

cachedAt.plusDays(validDays). isBefore (LocaDate.now());↩→

Listing 1: Single-location Bug Example

1 Response<DatasetResolvedForTestUse> response =

2 - client.getDatasetForTestUse (datasetId, env) .execute();

3 + client.getDatasetForTestUse (datasetId, env, false) .execute();//

don't increment usage count↩→
4 //...

5 public Object getOrCreateDatasetMinimalBlocking(String datasetId,

String env, DatasetReusePolicy policy, List<DatasetDependency>

dependencies, BiFunction<ResolvedDependencyCollection,

DatasetHelper, List<Object> datasetCreationFunction) throws

IOException, InterruptedException {

↩→
↩→
↩→
↩→

6 Reponse<DatasetResolvedForTestUse> response =

7 - client.getDatasetForTestUse (datasetId, env) .execute();

8 + client.getDatasetForTestUse (datasetId, env, true) .execute();

// do increment usage count↩→
9 //...

10 }

Listing 2: Multi-location Bug Example

4B?42CAD< , (45 , 4? , =5 , =? ). There are numerous spectrum-
based formulae proposed to compute 4score, such as, �824 =

2∗45
45 +4?+=5

,�>>3<0= =
2∗45 −=5 −4?
2∗45 +=5 +4? ,�0<0== =

45 +=?−4?−=5

45 +4?+=5 +=? ,
and �D2;83 =

√
45 + =? . In this paper we used 25 popular

formulae shown in Tab. 3, and described in detail in [21].
(4) Ranking: Entities in % are ranked based on their suspicious-

ness scores in decreasing order, where the most likely buggy
locations are on top. The ranked list of % ’s entities are the
final result of the bug localization process.

Multi-Location Bugs. Our study focuses on multi-location bugs.
A multi-location bug contains more than one buggy location, com-
pared with a single-location bug that has only one single line of
code responsible for the bug. Listings 1 and 2 use two simplified
real bug examples from Cvent to demonstrate single- and multi-
location bugs. Lines marked with minus (-) in red represent buggy
locations, and their corresponding fixes are marked with plus (+)
in green. Listing 1 is a single-location bug (incorrect predicate to
check cache expiry). Listing 2 shows a multi-location bug involving
in two buggy locations, i.e., lines 2 and 7 (faulty in tracking dataset
usage).

In theory, SBFL is designed towork for both cases, though finding
multi-location bugs is more challenging because SBFL needs to
find those locations equally well. In the example, the two buggy
locations should be ranked as first and second, in which case the
accuracy of SBFL is 100%. However, if SBFL ranks them as second
and fifth, then its accuracy would be reduced to 45% (see §4.2 for
definitions of accuracy metrics).
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2.2 Continuous Integration/ Continuous
Delivery (CI/CD)

Cvent uses a CI/CD build pipeline to manage its software devel-
opment and operations, including build, test, and deploy stages.
This reduces human effort and allows for easy and automated tasks
to handle changes, integration, implementation, and delivery of
software features. For example, when code changes are committed,
a CI/CD script is invoked to automate tasks including compiling,
running tests, packaging, and deploying.

Fig. 1 outlines the CI/CD workflow at Cvent. Without SBFL, test
failures require manual inspection to find bugs. However, with SBFL
integration, bugs are automatically localized using code coverage
profiling data.This accelerates the debugging process for developers
asmanually localizing bugs, especiallymulti-location ones, is highly
time-consuming and difficult. In short, at Cvent we believe that an
automatic fault localization approach such as SBFL is an important
component of our CI/CD workflow.

However, with thousands of CPU hours spent daily running
tests and an average failure rate of around 7%, waiting for all test
executions to finish before applying SBFL becomes impractical. In
this scenario, IFLM appears to be a more suitable alternative to
SBFL for scaling to our level of operations.

Collecting Code Coverage. The CI/CD build pipeline at Cvent
uses the open-source Clover tool [2] to collect profiling data. Fig. 2
illustrates how Clover collects code coverage from profiling data
of a Java-based micro-service application. Activities related to the
application (under investigation) are represented by green boxes: (1)
configuring the app’s pom.xml, (2) instrumenting application code
to enable code coverage tracking, (3) packaging the instrumented
application into a deployable and executable file, and (4) deploying
the application.

Activities related to testing are marked in red: (5) configuring the
test’s pom.xml file, (6) instrumenting the test code, (7) executing the
tests, (8) running the application in a cloud-based environment, (9)
shutting down the application JVM once tests are completed, (10)
merging coverage databases generated by the application and the
tests into a shared coverage data, and (11) finally, obtaining per-test
coverage profiling data for both of the tests and the application. Of
course, in the CI/CD build pipeline this is achieved automatically
with build scripts (using Groovy at Cvent).

3 STUDY APPROACH
Our goal is to evaluate SBFL on multi-location bugs at different
moments, e.g., after some or all tests were executed. Our Instant
Fault Localization for Multi-location Bugs (IFLM) framework uses
four “trigger modes” to represent these moments.

(1) First-Failure Triggering (IFLM1) invokes SBFL right after
the first test failure.This is the minimal requirement for SBFL
to work as it requires at least 1 failed test. While this mode
uses minimal time and computing resources, it also collect
fewer coverage (spectrum) information.

(2) Multi-Failure Triggering (IFLM:
5
) initiates SBFL after ev-

ery :Cℎ (k=1–5) test failures. As : increases, more spectrum
information was collected. However, this mode requires
more time and computing resources.

(3) Failure-Pass Triggering (IFLM:
? ) activates SBFL after the

first test failure, and subsequently : extra passed tests (:
= 1–10). Compared to IFLM1, IFLM:

? spends more time and
resources to collect coverage data. Here we can study the
trade-off between gained accuracy and time and resources
required for executing more tests.

(4) Complete Execution Triggering (IFLM�) is the conven-
tional SBFL, which ranks bug locations after executing all
available tests. IFLM� is thus expensive and might not be
applicable in the real world, e.g., at Cvent with many tests.

Each triggering mode thus corresponds to a different approach
for selecting a subset of tests from the complete test set. Our goal
is to collect a partial set of spectrum data that is sufficient for SBFL
to function effectively. By experimenting with these different trig-
gering modes, we explore the trade-offs between effectiveness of
SBFL and its runtime cost. Note in our study that all tests were exe-
cuted sequentially in a fixed order, determined by the test executor
(Maven-Clover plugin).

This fixed ordering ensures deterministic results throughout
our study. In addition, all triggering modes use instrumented tests.
While instrumentation adds overhead, it is generally not a concern
in practice, as companies (e.g., Cvent) often run instrumented tests
to at least measure code coverage metrics, as part of code quality
control procedure.

4 EVALUATION
We use IFLM to investigate the two research questions: (RQ1) how
sensitive is IFLM to different triggering modes? and (RQ2) how
sensitive is IFLM to different SBFL formulae?

IFLM and all data in this study are available at [5].

4.1 Datasets
We used 238 multi-location bugs, of which 211 are from Defect4J
dataset [31] and 27 are mined from four close-source software prod-
ucts from Cvent. For the Defects4j bugs, we reused the spectrum
data published in [1] to save time.

Defects4J Bugs. Defects4J is a widely-used dataset of real bugs in
popular open-source software. Defects4J contains 835 bugs from 17
projects [31]. Out of these bugs, we found 174 multi-location bugs
from 6 projects that have spectra data [1].

We also used artificial bugs from [1] in our study.These bugswere
injected through mutation into the same open-source programs
in Defect4J, causing the logic or semantics of the program to fail.
Our objective is to compare the evaluation results between real
bugs and artificial bugs. If the results were consistent for both bug
sets, it would provide more confidence in using artificial bugs for
evaluating SBFL techniques when real bugs are limited. Noting that
while the [1] database contains numerous injected bugs, most of
them are single-location bugs. We were able to identify only 37
multi-location bugs, all of which were from the Common-Lang
project and used in our study.

Tab. 1 describes our Defects4J dataset. The first column shows
the project names. The next column shows the # of Bugs (R: real
bugs, I: inserted/artificial bugs).

1776



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Tung Dao, Na Meng, and ThanhVu Nguyen

Legend

Deploy

Build

Test

Change

SBFL

Developers

CI/CD
Loop

SBFL-
based

Debugging
Loop

Ranked List of
buggy locations

Shared cloud-based
infrastructure

Code coverage
DB

Infrastructure

CI/CD
activity

CI/CD
loop

Code coverage
profiling DB

SBFL

SBFL
integration

Figure 1: CI/CD and SBFL Integration Outline. Figure 2: Collecting coverage profiling data with Clover.

Table 1: The Defect4J dataset: 174 real bugs and 37 artificial
bugs from 5 open-source projects.

Project # of Bugs LOC Exec # Tests 1st Failed IdxR I
Chart 13

0

25–7,057 1–428 1–248
Math 73 68–7,036 3–1,513 1–599
Mockito 26 931–4,252 25–1,111 9–273
Time 21 931–4,252 25–1,111 9–273
Lang 41 37 189–2,817 7–198 1–149
Total 174 37

Column LOC Executed shows the code sizes in terms of lines of
code (LOC) among buggy program versions that are covered by test
cases. Column # Tests shows the number of tests executed for each
buggy program. The last column, 1st Failed Idx, gives the index
of the first failed test among the tests. Note that values in these
columns are given in a range (e.g., 1-428) because each program
has multiple snapshots, each of which corresponds to an individual
bug.

Table 2: Distribution of number of failed tests in Defect4J.

# of Failed Tests Real Bugs Artificial Bugs
# % # %

1 101 58 (%) 18 49 (%)
2 41 24 (%) 7 19 (%)
3 5 3 (%) 11 30 (%)
4 8 5 (%) 0 0 (%)

≥ 5 19 11 (%) 1 3 (%)
Total 174 100 (%) 37 100 (%)

Tab. 2 provides additional information for failed tests. Approxi-
mately 50% of the bugs have more than 1 failing test. Among these
bugs, the majority of them have 2-3 failing tests. This justifies why
in the IFLM:

5
, we set :’s upper bound to 5 as bugs having more

than 5 failed tests are rare.

Cvent Bug Dataset. This dataset consists of 27 real multi-location
bugs in 4 close-source programs from Cvent. These bugs were
identified and fixed by developers within Cvent’s internal CI/CD

process. We collected the bugs by analyzing build logs, Git commits,
Jira tickets, and test reports. The ground truths for these bugs were
determined based on the fixes applied by developers. In cases where
it was difficult to distinguish between code modifications made for
bug fixing purposes and those made for refactoring, we excluded
those fixes to ensure the accuracy of the dataset.

The four subject programs are written in Java and have a medium
size, ranging from 10-20 kLOC. Among these programs, one is an
internal tool software developed for Cvent’s own developers, while
the other three are related to Cvent’s business domains, specifically
event management, account provisioning, and planners’ tools, used
by Cvent’s external clients. The test sizes for these programs range
from a few hundred to one thousand test cases, consisting of both
unit tests and integration tests. Due to legal constraints, we cannot
publish all the details of the dataset. However, we have made the
spectrum data available at [5].

4.2 Effectiveness Metrics
We adopt three widely used metrics to measure the effectiveness of
IFLM [39, 58].

Recall at Top N (Top-N). This measures the percentage of buggy
entities that are included in the top N ranked locations. For example,
if an entity is ranked third, its Top-1 recall rate would be 0% (as it
is not ranked first) and its Top-5 recall rate would be 100% (as it is
within the top five ranks). In general, a higher Top-N recall means
better performance.

Mean Average Precision (MAP). This measures the accuracy and
ranking quality of FL in identifying the (faulty) entities. Higher
MAP value is better. The Average Precision (AP) of an FL task is:

�% =

"∑
:=1

% (:) × ?>B (:)
number of positive instances

× 100% (1)

Suppose that FL ranked " statements and one of them is positive
(i.e., buggy), then the number of positive instances is equal to 1. For
each value of : , where : varies from 1 to " , % (:) is the percentage
of positive instances among the top : instances, and ?>B (:) is a
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binary indicator of whether or not the :Cℎ statement is positive.
Namely, ?>B (:) = 1 if the :Cℎ statement is positive, otherwise
?>B (:) = 0 . For example, if four statements are ranked, and the
3A3 and 4Cℎ are positive, then AP is ( 13 + 2

4 )/2 × 100% = 42%. On
the other hand, if the 1BC and 2=3 of the ranked list are buggy, then
�% = ( 11 + 2

2 )/2 × 100% = 100%.

Mean Reciprocal Rank (MRR). This measures precision in a dif-
ferent way. Given a set of fault localization tasks, it calculates the
mean of reciprocal rank values for all tasks. Overall, higher MRR
value indicates better the precision. The Reciprocal Rank (RR) of
a single task is defined as:

'' =
1

rankbest
× 100% (2)

where rankbest is the rank of the first actual bug located. For exam-
ple, for 4 ranked statements with the 3A3 and 4Cℎ being buggy, RR
is 1

3 × 100% = 33%.

4.3 RQ1: Comparing Triggering Modes
We evaluate the effectiveness of different triggering modes for
SBFL using Dice (see §2.1 for its definition) as the default ranking
formula for IFLM. This is because Dice generally outperformed
other formulae. Tab. 3 gives an overview of the performance of each
formula averaged across all bug and triggering mode combinations.
The ranking formulae are categorized into different groups based
on their performance: best (green), second (dark-gray), and the least
effective (orange).

4.3.1 Effectiveness of IFLM1and IFLM� . Tab. 4 shows the results
from IFLM1 and IFLM� on the 174 real bugs and 37 artificial bugs
from open-source projects in Defect4J dataset, and 27 real bugs
from Cvent’s close-source dataset. The five columns present the
performance metrics and test execution cost for real (R) and inject-
ed/artificial (I) bugs.

Contrary to the findings for single-location bugs, IFLM� outper-
formed IFLM1 on both real and artificial bugs. For the real open-
source bugs, IFLM� performed slightly better than IFLM1 with
metrics such as 12% versus 10% for Top-1, 30% versus 28% for Top-5,
17% versus 13% for MAP, and 22% versus 20% for MRR. Similarly,
we see the comparable performance of the two in the close-source
Cvent bugs. However, IFLM� required more than twice test exe-
cutions compared to IFLM1. Similarly, for Cvent bugs, in average,
IFLM1 takes only 327 seconds, while IFLM� consumes 885 seconds.
In other words, empirically, IFLM1 runs more than twice as fast as
IFLM� , as a result of running far more fewer tests.

For artificial bugs, IFLM� demonstrated significant improvement
compared to real bugs, achieving over 100% better performance
across all metrics: 27% versus 12% for Top-1, 62% versus 30% for
Top-5, 40% versus 17% for MAP, and 40% versus 22% for MRR. In
contrast, IFLM1 performed much worse for artificial bugs compared
to real bugs: 3% versus 10% for Top-1, 8% versus 28% for Top-5, 9%
versus 13% for MAP, and 9% versus 20% for MRR.

Overall, for artificial bugs, IFLM1 performed significantly worse
than IFLM� withmetrics such as 3% versus 27% for Top-1, 8% versus
62% for Top-5, and 9% versus 40% for both MAP and MRR. These
results highlight the differences in performance between IFLM1 and
IFLM� on artificial bugs compared to real bugs. Additionally, arti-
ficial bugs appear biased towards IFLM� and become challenging

for IFLM1. Thus, we do not advise using artificial bugs to evaluate
SBFL on multi-location bugs.

Finding 1: For real bugs, IFLM1 performs slightly worse than
IFLM� (≈ 2 percentage point difference, e.g., Top-1, Top-5, MRR),
but it offers a significant advantage in test execution reduction (≈
100% better than IFLM� , in terms of runtime and the number of
executed tests). However, for artificial bugs, IFLM� significantly
outperforms IFLM1, suggesting that artificial bugs might not be
suitable for evaluating SBFL for multi-location bugs.

4.3.2 Effectiveness of IFLM:
5
. We evaluated IFLM:

5
by triggering

SBFL at every :Cℎ occurrence of a test failure, where k= 1–5. Tab. 5
shows the average measurements. As can be seen, the effectiveness
measurements did not consistently improve with an increasing
number of failed tests, i.e., we do not need too many failed tests for
SBFL to work. For instance, for real bugs, the Top-1 measurement
remained at 10% for both : = 1 and : = 2, but decreased to 6% at
: = 3. The maximum value of Top-1, 11%, was achieved at : = 4, 5,
which only slightly differed from the value at: = 1 (10%). Increasing
the Top-1 measurement by 1 percent point required running 44%
of tests with : = 1 and 57% with : = 5 (by 13 percent points). We
observed similar results for artificial bugs.

For generality, we perform the same experiment for IFLM:
5
using

3 ranking formulae randomly selected in 3 corresponding represen-
tative groups in Tab. 3, namely Goodman, Hamann, and Euclid
(§2.1). Fig. 3 (a)(b) shows the results for real bugs for Defects4J
and Cvent, respectively. In Goodman and Hamann, Top-1, Top-5,
MAP, and MRR decreased when : go from 1 to 3. While in Euclid,
Top-1 stayed constant against : , for all other metrics, their values
decreased significantly when : reached 5.

Fig. 3 (c) shows the results for artificial bugs. For Goodman and
Hamann, Top-1, MAP, and MRR reached optimal values when :

was between 2 and 3, then decreased when : was between 3 and
5. Only Top-5 achieved optimal at : = 5. However, for Euclid, all
metrics got optimal values at : = 3, and then decreased when :

approached 5.

Finding 2: While increasing the number failed tests costs more to
execute and collecting profiling data, IFLM:

5
does not work better

with more failing tests.

4.3.3 Effectiveness of IFLM:
? . Tab. 6 shows our results for IFLM:

? ,
which applies SBFL at every occurrence of additional :Cℎ passed
tests after the first failed test (k = 1 – 10). For real bugs, IFLM:

? per-
formed slightly better with more additional passed tests. However,
the increased performance was insignificant. As shown in Tab. 6,
Top-1 stayed relatively consistent around 11%; all other metrics
slightly increased: 28–34% in Top-5, 14–17% in MAP, and 20–22%
in MRR, while the cost of running tests increased from 46–49%.

Finding 3: Given the execution data of extra passed tests after the
initial test failure, IFLM:

? did not outperform IFLM1 for real bugs.

For artificial bugs, performance gained were significant. When
k increases from 1 to 10, performances increased 3% to 19% in
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Table 3: Effectiveness of 25 ranking algorithms

Real Bugs Artificial Bugs
Ranking Algorithms # Instances Top-1 (%) Top-5 (%) MAP (%) MRR (%) Ranking Algorithms # Instances Top-1 (%) Top-5 (%) MAP (%) MRR (%)

DICE [19] 2040 11 30 15 21 DICE [19] 466 12 35 23 23
KULCZYNSKI1 [37] 2040 11 30 15 21 KULCZYNSKI1 KULCZYNSKI1 [37] 466 12 35 23 23
SORENSENDICE [11] 2040 11 30 15 21 SORENSENDICE [11] 466 12 35 23 23
GOODMAN [26] 2040 11 30 15 21 GOODMAN [26] 466 12 35 23 23
ANDERBERG [11] 2040 11 30 15 21 ANDERBERG [11] 466 12 35 23 23
JACCARD [14] 2040 11 30 15 21 JACCARD [14] 466 12 35 23 23
M2 [56] 2040 10 28 14 19 M2 [56] 466 12 35 23 23
RUSSELLRAO [19] 2040 10 28 14 19 RUSSELLRAO [19] 466 12 35 23 23
AMPLE [19] 2040 8 25 12 17 AMPLE [19] 466 12 35 23 23
WONG3 [22] 2040 6 15 7 10 WONG3 [22] 466 12 27 20 20
WONG2 [48] 2040 5 15 7 10 WONG2 [48] 466 12 27 20 20
SIMPLEMATCHING 2040 5 14 6 9 SIMPLEMATCHING 466 10 22 17 17
HAMANN [19] 2040 5 14 6 9 HAMANN [19] 466 10 22 17 17
SOKAL [19] 2040 5 14 6 9 SOKAL [19] 466 10 22 17 17
ROGERSTANIMOTO [19] 2040 5 14 6 9 ROGERSTANIMOTO [19] 466 10 22 17 17
M1 [56] 2040 5 14 6 9 M1 [56] 466 10 22 17 17
EUCLID [19] 2040 0 5 3 3 EUCLID [19] 466 0 0 2 2
WONG1 [48] 2040 0 5 3 3 WONG1 [48] 466 0 0 2 2
HAMMING [19] 2040 0 5 3 3 HAMMING [19] 466 0 0 2 2
OCHIAI2 [19] 2040 0 1 1 1 OCHIAI2 [19] 466 0 0 1 1
OCHIAI [14] 2040 0 1 1 1 OCHIAI [14] 466 0 0 1 1
TARANTULA [14] 2040 0 1 1 1 TARANTULA [14] 466 0 0 1 1
KULCZYNSKI2 [19] 2040 0 1 1 1 KULCZYNSKI2 [19] 466 0 0 1 1
ZOLTAR [13] 2040 0 1 1 1 ZOLTAR [13] 466 0 0 1 1
OVERLAP [21] 2040 0 0 0 0 OVERLAP [21] 466 0 0 0 0

Table 4: Comparing IFLM1 and IFLM� (R$ /I$ = Real/Artificial Defects4J bugs, R� = Real Cvent bugs).

Mode Top-1 (%) Top-5 (%) MAP (%) MRR (%) Cost (% Tests or R.Time)
R$ I$ R� R$ I$ R� R$ I$ R� R$ I$ R� R$ I$ R� (s)

IFLM1 10 3 22 28 8 66 13 9 29 20 9 45 44 39 327
IFLM� 12 27 24 30 62 65 17 40 37 22 40 49 100 100 885

Table 5: Effectiveness of IFLM:
5
with k=1–5 (R$ /I$ = Real/Artificial Defects4J bugs, R� = Real Cvent bugs).

# Failed
Tests

Top-1 (%) Top-5 (%) MAP (%) MRR (%) Cost (% Tests or R.Time)
R$ I$ R� R$ I$ R� R$ I$ R� R$ I$ R� R$ I$ R� (s)

1 10 3 22 28 8 66 13 9 29 20 9 45 44 39 327
2 10 26 23 34 74 70 15 43 32 19 43 47 54 48 415
3 6 42 20 31 75 65 13 53 29 18 53 43 55 62 451
4 11 0 19 37 100 65 16 33 28 23 33 43 57 83 539
5 11 0 18 32 100 62 14 33 26 21 33 41 57 93 574

Table 6: Effectiveness of IFLM:
? when k = 1–10 (R$ /I$ = Real/Artificial Defects4J bugs, R� = Real Cvent bugs).

Additional
Passed Tests

Top-1 (%) Top-5 (%) MAP (%) MRR (%) Cost (% Tests or R.Time)

R$ I$ R� R$ I$ R� R$ I$ R� R$ I$ R� R$ I$ R� (s)

1 11 3 22 28 14 66 14 12 29 20 12 45 46 41 327
2 12 3 22 29 14 66 14 12 29 21 12 45 47 44 329
3 11 3 22 31 22 66 14 13 29 21 13 45 48 46 330
4 12 3 22 30 22 66 15 13 29 21 13 45 48 46 331
5 11 3 22 29 31 61 15 16 26 20 16 45 48 48 333
6 10 11 22 29 39 61 15 23 26 20 23 41 48 50 335
7 11 17 22 31 47 61 16 29 26 21 29 41 49 52 336
8 11 17 20 32 42 60 16 28 26 21 28 41 50 55 339
9 10 17 21 32 42 60 16 29 26 20 29 41 49 57 340

10 11 19 21 34 44 60 17 31 26 22 31 41 49 54 341

Top-1, 14% to 44% in Top-5, 12% to 31% in MAP and MRR. There
was discrepancy between the results of real and artificial bugs,
suggesting that artificial bugs might not be a reliable benchmark
for evaluating SBFL.

4.4 RQ2: Sensitivity to SBFL Formulae
We ran IFLM using 25 popular SBFL formulae shown in Tab. 3 to
ensure the generalizability of our observation comparing IFLM1 and
IFLM� and explore IFLM’s sensitivity to different SBFL formulae.
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Table 7: The effectiveness of IFLM1 and IFLM� using all 25 different formulae on Defects4J’s real bugs.

Real Bugs
Formulae Top-1 (%) Top-5 (%) MAP (%) MRR (%)

IFLM1 IFLM� Diff IFLM1 IFLM� Diff IFLM1 IFLM� Diff IFLM1 IFLM� Diff
Ample 10 8 +2 25 25 0 12 12 0 18 16 +2
Anderberg 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Dice 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Euclid 0 0 0 6 6 0 3 3 0 3 3 0
Goodman 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Hamann 5 4 +1 13 10 +3 6 6 0 10 7 +3
Hamming 0 0 0 6 6 0 3 3 0 3 3 0
Jaccard 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Kulczynski1 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Kulczynski2 0 0 0 1 2 -1 1 2 -1 1 2 -1
M1 5 4 +1 13 10 +3 6 6 0 10 7 +3
M2 10 10 0 28 28 0 13 15 -2 20 20 0
Ochiai 0 0 0 1 2 -1 1 2 -1 1 2 -1
Ochiai2 0 0 0 1 2 -1 1 2 -1 1 2 -1
Overlap 0 0 0 0 0 0 1 0 +1 0 0 0
RogersTanimoto 5 4 +1 13 10 +3 6 6 0 10 7 +3
RussellRao 10 10 0 28 26 +2 13 14 -1 20 19 +1
SimpleMatching 5 4 +1 13 10 +3 6 6 0 10 7 +3
Sokal 5 4 +1 13 10 +3 6 6 0 10 7 +3
SqrensenDice 10 12 -2 28 30 -2 13 17 -4 20 22 -2
Tarantula 0 0 0 1 2 -1 1 2 -1 1 2 -1
Wong1 0 0 0 6 6 0 3 3 0 3 3 0
Wong2 5 6 -1 13 11 +2 6 7 -1 10 9 +1
Wong3 5 6 -1 13 13 0 6 8 -2 10 10 0
Zoltar 0 0 0 1 2 -1 1 2 -1 1 2 -1
Average (%) 5 5 0 15 14 1 7 8 -1 10 10 0

Table 8: The effectiveness of IFLM1 and IFLM� using all 25 different formulae on Defects4J’s artificial bugs.

Artificial Bugs
Formulae Top-1 (%) Top-5 (%) MAP (%) MRR (%)

IFLM1 IFLM� Diff IFLM1 IFLM� Diff IFLM1 IFLM� Diff IFLM1 IFLM� Diff
Ample 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Anderberg 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Dice 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Euclid 0 0 0 0 0 0 2 2 0 2 2 0
Goodman 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Hamann 3 14 -11 5 27 -22 7 20 -13 7 20 -13
Hamming 0 0 0 0 0 0 2 2 0 2 2 0
Jaccard 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Kulczynski1 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Kulczynski2 0 0 0 0 0 0 1 1 0 1 1 0
M1 3 14 -11 5 27 -22 7 20 -13 7 20 -13
M2 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Ochiai 0 0 0 0 0 0 1 1 0 1 1 0
Ochiai2 0 0 0 0 0 0 1 1 0 1 1 0
Overlap 0 0 0 0 0 0 0 0 0 0 0 0
RogersTanimoto 3 14 -11 5 27 -22 7 20 -13 7 20 -13
RussellRao 3 27 -24 8 62 -54 9 40 -31 9 40 -31
SimpleMatching 3 14 -11 5 27 -22 7 20 -13 7 20 -13
Sokal 3 14 -11 5 27 -22 7 20 -13 7 20 -13
SqrensenDice 3 27 -24 8 62 -54 9 40 -31 9 40 -31
Tarantula 0 0 0 0 0 0 1 1 0 1 1 0
Wong1 0 0 0 0 0 0 2 2 0 2 2 0
Wong2 3 27 -24 5 51 -46 7 37 -30 7 37 -30
Wong3 3 27 -24 5 51 -46 7 37 -30 7 37 30
Zoltar 0 0 0 0 0 0 1 1 0 1 1 0
Average (%) 2 15 -13 4 32 -28 6 22 -16 6 22 -16
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(b) Real Close-Source Bugs.
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(c) Artificial Open-Source Bugs.

Figure 3: Effectiveness of IFLM:
5
using different SBFL formulae: Goodman, Hamann, Euclid.

The results of IFLM1 and IFLM� are given in Tab. 7, and Tab. 8
for the Defects4J’s real, artificial bugs, respectively; and Tab. 9 for
Cvent bugs. The Diff column shows the differences of measured
values between IFLM1 and IFLM� (larger or equal values are in
bold). A positive or zero diff value (in bold) indicates that IFLM1
performed as well as or better than IFLM� .

For the real bugs in Defects4J, out of the total 25 formulae, IFLM1
outperformed or achieved comparable results to IFLM� in Top-1,
Top-5, MAP, and MRR in 17, 14, 10, and 14 formulae, respectively
(Tab. 7). We observe a similar trend in the Cvent dataset, i.e., 17 in
Top-1, 22 in Top-5, 12 in MAP, and 15 in MRR (Tab. 9). On average,
there was minimal distinction between IFLM1 and IFLM� across all
four performance metrics. Thus, for real bugs, the observation that
IFLM1 performed at least as well as IFLM� (in all four effectiveness

metrics) was confirmed in more than 50% of the 25 investigated
SBFL formulae.

Finding 4: For real bugs, in general, IFLM1 performed equally or
better than IFLM� on more than half of the 25 investigated SBFL
formulae, across all of the four effectiveness metrics.

However, the observation for the Defects4J artificial bugs contra-
dicted that of the real bug dataset. IFLM� outperformed IFLM1 for
16/25 formulae. The remaining 9 formulae showed similar perfor-
mance levels for both IFLM1 and IFLM� . This substantial difference
between the real and artificial bug datasets suggests that artificial
bugs may not accurately predict the performance of SBFL tech-
niques in localizing real bugs.
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Table 9: The effectiveness of IFLM1 and IFLM� using all 25 different formulae on Cvent bugs.

Formulae Top-1 (%) Top-5 (%) MAP (%) MRR (%)
IFLM1 IFLM� Diff IFLM1 IFLM� Diff IFLM1 IFLM� Diff IFLM1 IFLM� Diff

Ample 22 16 +6 59 54 +5 27 26 +1 40 36 +4
Anderberg 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Dice 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Euclid 12 0 +12 28 13 +15 13 7 +6 13 7 +6
Goodman 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Hamann 11 8 +3 31 22 +9 13 13 0 22 16 +6
Hamming 0 0 0 14 13 +1 7 7 0 7 7 0
Jaccard 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Kulczynski1 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Kulczynski2 0 0 0 2 4 -2 2 4 -2 2 4 -2
M1 11 8 +3 31 22 +9 13 13 0 22 16 +6
M2 22 20 +2 66 61 +5 29 33 -4 45 45 0
Ochiai 11 0 +11 30 4 +26 12 4 +8 13 4 +9
Ochiai2 0 0 0 2 4 -2 2 4 -2 2 4 -2
Overlap 0 0 0 0 0 0 2 0 +2 0 0 0
RogersTanimoto 11 8 +3 31 22 +9 13 13 0 22 16 +6
RussellRao 22 20 +2 66 56 +10 29 30 -1 45 42 +3
SimpleMatching 11 8 +3 31 22 +9 13 13 0 22 16 +6
Sokal 11 8 +3 31 22 +9 13 13 0 22 16 +6
SqrensenDice 22 24 -2 66 65 +1 29 37 -8 45 49 -4
Tarantula 11 7 +4 30 27 +3 13 13 0 21 22 -1
Wong1 0 0 0 14 13 +1 7 7 0 7 7 0
Wong2 11 12 -1 31 24 +7 13 15 -2 22 20 +2
Wong3 11 12 -1 31 28 +3 13 17 -4 22 22 0
Zoltar 0 0 0 2 4 -2 2 4 -2 2 4 -2
Average (%) 13 11 +2 37 32 +5 17 18 -1 25 24 +1

For sensitivity of IFLM to SBFL formulae, Tab. 7 & 8 showed that
the choice of formulae played a crucial role in accurately localizing
both real and artificial bugs. Formulae such as Ample, Dice, and
Jaccard contributed to achieving 28% and 30% Top-5, as well as 20%
and 22% MRR for IFLM1 and IFLM� respectively. Conversely, for-
mulae such as Overlap, Kulczynski2, and Zoltar performed poorly
and exhibited inaccuracy. Furthermore, there was no single for-
mula that consistently outperformed others. Instead, multiple top-
performing formulae demonstrated similar levels of performance
for both IFLM1 and IFLM� .

Finding 5: SBFL formulae can have significant influence to the
performance of IFLM. There were often multiple formulae that
worked equally-well for IFLM.

5 THREATS TO VALIDITY
External Validity. Our findings depend on the quality and charac-

teristics of the bug datasets used in our experiments. However, our
benchmark, Defects4J, a well-known dataset with real Java bugs,
and the four current Cvent projects, can help mitigate this threat.

Construct Validity. We focused on multi-location bugs, whose
ground truths were constructed by comparing the buggy and fixed
versions of the programs. Locations (except comment) that were
modified (i.e., add, delete, change) were considered locations of
the bug. In reality, developers often mixed between bug fixing
and refactoring in a commit, and it is not trivial to distinct the
two, especially in Cvent dataset. However, the first-author who
constructed the dataset is familiar with the selected programs and
thus help address this concern.

Internal Validity. Similar to prior fault localization research [34,
50, 59], given a bug fix, we treated the location where the fixing
change was applied as ground truth. However, in reality, the place
where a bug is fixed is not always the place where a bug is found.
Another concern was the reliability of the coverage data. This data
collection process was time-consuming and hard to validate.

For the open-source Defects4J dataset, we reused the data pub-
lished in [1]. For the close-source Cvent dataset, we modified Clover
[2] and ran tests to gather the profiling data. For accuracy, we re-
peated the collection process three times. We publish the close-
source dataset in standardized spectrum format and the tool we
built on top of Clover in [5].

6 RELATEDWORK
We describe several FL techniques realted to this study, including
the effectiveness and applicability of SBFL; test reduction, prioriti-
zation, and generation; and bug characteristics.

Spectrum-Based Fault Localization (SBFL). Tarantula [30] was the
first SBFL technique that identifies buggy locations by leveraging
the execution information or code coverage profiling data gath-
ered by running tests against a program under investigation. Since
then there have been many other variations of the SBFL approach,
such as, Ochia, Jaccard, Dice [12, 20, 29, 30, 38, 50, 51]. The main
difference among these techniques is how a program spectra are
formulated into a metric called suspiciousness score (i.e., SBFL for-
mula) to predict how buggy each location of the program is. Lucia et
al. [35] and Yoo et al. [53] compared different formulae defined for
SBFL approaches, and concluded that there was no optimal formula
that always worked better than others.
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This paper does not define any new SBFL formula but instead
reuses 25 existing SBFL ones. We built the —IFLM framework to
investigate diverse triggering modes of SBFL, and to understand
how each triggering mode balances the effectiveness and efficiency
of bug localization. Our exploration compared IFLM’s effectiveness
given (i) different SBFL formulae and (ii) distinct triggering mech-
anisms for SBFL formulae. Our ultimate goal was to find optimal
triggering modes that worked best with SBFL in industrial settings.

Enhanced SBFL Techniques. Unlike standard SBFL methods that
use only program’s coverage information and one single ranking
metric, recent enhanced SBFL approaches leverage other program
analysis inputs, such as, dependency and execution graphs, contex-
tual information, types of program entities (e.g., branch, predicate)
to localize bugs more accurately [16, 17, 27, 40, 44, 50]. He et al.
augmented coverage information with test call graph to construct
fault inducing or influencing network, which helps narrow down
bug searching space [27]. Beszédes et al. used snapshots of call stack
to assist SBFL to localize buggy functions [17]. Xuan et al. used
machine learning to train a model by combining 25 suspiciousness
score formulae [50]. Our study is different in that it focuses on how
to reduce the overhead cost of applying the existing SBFL tech-
niques in the real-world with as minimal accuracy loss as possible.

Effectiveness and Applicability of SBFL. Many studies have high-
lighted the insufficiency of SBFL and its limited real-world ap-
plication [25, 28, 32, 35, 40, 41, 45, 47, 49, 53]. Wang et al. con-
ducted user studies involving developers to assess the usefulness
of Information-Based Fault Localization (IBFL) tools, revealing de-
velopers’ dissatisfaction with these techniques [47]. Sarhan et al.,
in a recent survey [40], provided reasons for the limited adoption
of SBFL, including the unavailability of supported tools, high cost
of collecting execution information, and inaccurate results.

These concerns regarding the overhead cost of collecting spec-
trum data were shared by our team at Cvent and served as moti-
vation for our study. However, in contrast to these work that rely
on older open-source datasets for evaluation, we further validated
our findings using an industry-scaled dataset benchmark that is
up-to-date.

Test Reduction, Prioritization, or Generation. These topics not only
improve fault localization accuracy but also reduce its overhead
costs. Several approaches have been proposed to facilitate fault
localization through test case reduction, prioritization, and genera-
tion [15, 18, 23, 36, 52, 54, 57]. For instance, Masri et al. introduced
“coincidental correctness” to describe scenarios where buggy state-
ments are executed but do not result in test failures. They proposed
a technique to identify and remove these coincidentally correct tests
from a given test suite, aiming to improve SBFL approaches [36].
Yu et al. investigated the influence of test suite reduction strategies
on the effectiveness of fault localization techniques. They observed
that existing SBFL techniques tend to perform worse when the
number of test cases covering the same statement is reduced. They
then proposed a new test suite reduction strategy that minimally
impacts fault localization while reducing test case redundancy [54].

Yoo et al. presented FLINT, an information-theoretic approach
that prioritizes statements and test cases. Statements are ordered
based on their suspiciousness, while test cases are ordered by their

ability to reduce the inherent entropy in fault localization [52]. Artzi
et al. developed a test generation approach that aims to maximize
the effectiveness of SBFL. They defined a “similarity criterion” to
measure the similarity in execution characteristics between two
tests. This criterion guides concolic execution to generate tests with
similar execution characteristics to a given failed test [15].

Our research shares a similar motivation, particularly in explor-
ing methods to reduce the running cost of SBFL. Our proposed
IFLM triggering modes serve as a practical technique for reduc-
ing test execution, and in the future, we plan to investigate test
prioritization to further improve triggering modes in practice.

Bug Characteristics and Relation with SBFL. Bug characteristics
include various aspects such as bug type (e.g., single or multiple
faults), programming language used (e.g., C++, Java, JavaScript),
and program complexity (e.g., nesting level, length of methods).
Previous studies have shown a correlation between bug character-
istics and the effectiveness of SBFL techniques [24, 41, 46, 55]. For
instance, Vancsics et al. found that for the same nesting complex-
ity, shorter programs tend to have more accurate bug localization
compared to longer ones [43, 46].

Bug type is typically classified as either single-fault or multiple-
fault. In a single-fault scenario, the buggy program has only one
logical bug, and all failed tests can be caused by this single bug,
which may consist of one or more buggy locations. On the other
hand, a multiple-fault situation refers to a buggy program contain-
ing multiple distinct single-faults. SBFL is known to be less effective
for bugs in multiple-fault programs than single-fault ones [55].

Our study focused on bugs in Java programs, which constitute a
major part of the codebase at Cvent. Other programming languages
are left for future research. Moreover, we found it more practical
and reflective of real-world industry settings to classify bugs as
single-location bugs (involving only one location) or multi-location
bugs (requiring fixes at more than one locations). Unlike the study
evaluated on single-location bugs [21], the emphasis of this paper
was on multi-location bugs as they are more common at Cvent.

7 CONCLUSION
This paper explored opportunities of reducing overhead cost of run-
ning tests in SBFL while maintaining its accuracy. We experiment
with the concept of triggering modes proposed in [21] but focus
on multi-location bugs, which are common in real-world settings,
e.g., at our company Cvent. While there were minor disagreements
with the single-location study in [21], our work generally confirms
that it is not always necessary to execute all test cases before using
SBFL formulae to locate bugs. The results in this study are useful
for Cvent and hopefully other industrial companies who seek to
adopt IFLM into their CI/CD development pipeline to automate and
speedup software debugging. In the future, we plan to conduct a
user study to empirically measure productivity (e.g., developer’s
debugging time reduction) would be actually gained with the inte-
gration between IFLM and Cvent’s CI/CD pipeline.
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