
ar
X

iv
:2

30
9.

04
23

0v
1

 [
cs

.S
E

]
 8

 S
ep

 2
02

3

Testing Real-World Healthcare IoT Application: Experiences and
Lessons Learned

Hassan Sartaj
Simula Research Laboratory

Oslo, Norway
hassan@simula.no

Shaukat Ali
Simula Research Laboratory, Oslo Metropolitan

University
Oslo, Norway

shaukat@simula.no

Tao Yue
Simula Research Laboratory

Oslo, Norway
tao@simula.no

Kjetil Moberg
Welfare Technologies Section, Oslo Kommune

Helseetaten
Oslo, Norway

kjetil.moberg@hel.oslo.kommune.no

ABSTRACT

Healthcare Internet of Things (IoT) applications require rigorous
testing to ensure their dependability. Such applications are typi-
cally integrated with various third-party healthcare applications
and medical devices through REST APIs. This integrated network
of healthcare IoT applications leads to RESTAPIs with complicated
and interdependent structures, thus creating a major challenge for
automated system-level testing. We report an industrial evaluation
of a state-of-the-art REST APIs testing approach (RESTest) on a
real-world healthcare IoT application.We analyze the effectiveness
of RESTest’s testing strategies regarding REST APIs failures, faults
in the application, and REST API coverage, by experimenting with
six REST APIs of 41 API endpoints of the healthcare IoT applica-
tion. Results show that several failures are discovered in different
REST APIs with ≈56% coverage using RESTest. Moreover, nine po-
tential faults are identified. Using the evidence collected from the
experiments, we provide our experiences and lessons learned.

CCS CONCEPTS

• Software and its engineering → Software testing and debug-
ging; Software verification and validation.

KEYWORDS

Healthcare Internet of Things (IoT), REST APIs, Black-box Testing,
Experience Report

ACM Reference Format:

Hassan Sartaj, Shaukat Ali, Tao Yue, and Kjetil Moberg. 2023. Testing Real-
World Healthcare IoT Application: Experiences and Lessons Learned. In
Proceedings of the 31st ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3613888

December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3611643.3613888

1 INTRODUCTION

Healthcare Internet of Things (IoT) applications use a cloud-based
architecture to provide a central access point to different stakehold-
ers such as healthcare professionals, caretakers, and patients [18].
This is achieved by integrating various healthcare applications serv-
ing different purposes (e.g., pharmacies) and manymedical devices
(e.g., medicine dispensers) assigned to patients.Malfunctioning due
to faults in the central healthcare application or integrated appli-
cations, or medical devices may have severe consequences. The
safety-critical nature of these applications requires automated test-
ing at various levels to ensure their dependability. Particularly, system-
level testing of such applications requires integrating various med-
ical devices and third-party healthcare applications. The integra-
tion of different healthcare applications to create an IoT cloud is
accomplished through Application Programming Interfaces (APIs)
following Representational State Transfer (REST) [20] architecture.
This integration leads to a complicated structure of REST APIs
which makes testing such APIs a challenging task.

This paper reports our work in the real-world context of Oslo
City’s healthcare department [4], where different healthcare IoT
applications are developed and managed to deliver a wide range of
healthcare services to residents of Oslo. The healthcare IoT appli-
cations are connected with various third-party healthcare applica-
tions through REST APIs for providing various healthcare services
to patients at home care, for instance. Our primary objective is to
test the REST APIs of such applications at the system level con-
nected with the APIs of third-party applications in a production
environment. The complicated nature of these REST APIs due to
their dependency on different third-party APIs requires a sophisti-
cated testing approach to explore these REST APIs thoroughly.

Several approaches have been proposed for testing of web appli-
cations REST APIs such as RESTest [32], RESTler [12], Semanthe-
sis [24], RESTCT [42], RestTestGen [14], and EvoMaster [9]. Some
empirical studies have been conducted to compare different ap-
proaches for testing REST APIs, such as [11, 27, 30]. Our goal is
to assess one of the latest approaches suitable for a healthcare IoT
application deployed in Oslo City to provide recommendations to

http://arxiv.org/abs/2309.04230v1
https://orcid.org/0000-0001-5212-9787
https://orcid.org/0000-0002-9979-3519
https://orcid.org/0000-0003-3262-5577
https://orcid.org/0009-0002-5042-7371
https://doi.org/10.1145/3611643.3613888
https://doi.org/10.1145/3611643.3613888

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Hassan Sartaj et al.

the Oslo City health department for testing their current and fu-
ture healthcare IoT applications.

For assessment, we select RESTest [32] due to its advanced fea-
tures, such as online testing in a production environment, han-
dling inter-parameter dependencies, and generating realistic test
data — the initial requirements of our real-world application. We
analyze the effectiveness of all testing techniques implemented in
RESTest, i.e., constraint-based testing (CBT), adaptive random test-
ing (ART), random testing (RT), and fuzz testing (FT). The effec-
tiveness is measured with failures in REST APIs, coverage of REST
APIs, and faults in the healthcare IoT application. These metrics
are commonly used in similar experiments [27, 33]. We conducted
an evaluation with six REST APIs with 41 API endpoints for differ-
ent healthcare features. Results show that several failures are dis-
covered by RESTest in six REST APIs under test. Moreover, with
RESTest, we achieved ≈56% overall coverage of REST APIs. Results
also show that nine potential faults are found in five REST APIs
by analyzing RESTest’s generated failure and success reports. The
testing techniques CBT, ART, and RT are more effective than FT
in terms of failures and faults. Finally, we provide a set of lessons
learned that we believe are valuable for industries working with
similar applications and other healthcare departments of cities.

The upcoming part of the paper is structured as follows. In-
dustrial context and challenges are described in Section 2. Related
works are outlined in Section 3. Empirical evaluation and results
are presented in Section 4. Experiences and lessons learned are dis-
cussed in Section 5. Finally, the paper concludes in Section 6.

2 INDUSTRIAL CONTEXT AND CHALLENGES

The national welfare technology program [3] started byOslo City’s
healthcare department [4] facilitates residents with high-quality
healthcare services. Oslo City collaborates with several third par-
ties to develop IoT-based healthcare applications to achieve this.
Our collaborationwith Oslo City is carried out as a part of an inno-
vation project with Oslo City’s healthcare department. The overall
goal is to build a generic test infrastructure to improve the qual-
ity of healthcare IoT applications through rigorous and automated
testing of such applications. For this purpose, we have access to
a healthcare IoT application (system under test) and the required
medical devices/applications for creating an experimental setup.

The healthcare IoT application under test has several REST APIs
to allow the integration of different applications and medical de-
vices. These REST APIs have complicated structures due to their
dependency on the APIs of different applications. For instance, a
common procedure for testing the medical device settings feature
of a healthcare IoT application is: a testing technique sends a re-
quest with test data to a healthcare application; the healthcare ap-
plication receives and processes the request, creates and sends a
request including test data to medical device APIs, receives a re-
sponse from medical device APIs, and creates and returns a re-
sponse to the testing technique. Similar is the case with other inte-
grated applications, e.g., pharmacies.

The main challenge of testing such complex REST APIs is re-
garding the evolution of healthcare IoT applications, e.g., the con-
tinuous addition of medical devices from vendors, healthcare ser-
vices, and software updates of third-party applications. This brings

another challenge of analyzing the primary source (IoT application
or integrated applications) of failures or faults. A fault in a health-
care IoT application typically leads to failures in its REST APIs.
Such failures are determined by error codes 4XX and 5XX returned
in response to the REST API calls. Moreover, third-party applica-
tions define a limit on the number of API requests. Exceeding this
limit may result in service blocking or damaging a medical device.
Lastly, the automated generation of realistic and domain-specific
test data for healthcare IoT applications is challenging because it
requires domain knowledge.

3 RELATED WORKS

Testing REST APIs. Approaches for automated black-box testing
of REST APIs are proposed in the literature, including RESTest [32,
33], ARTE [7] — an extension to RESTest, RESTler [12, 22], Seman-
thesis [24], RESTCT [42], RestTestGen [14, 15], EvoMaster [9, 10],
RapiTest [19], and QuickREST [26]. Our study utilizes RESTest, as
it is a black-box REST APIs testing approach, which supports real-
istic test data generation [7] and has shown good results in testing
online applications [33]. Open-source tools are also available for
testing REST APIs such as APIFuzzer [1], Tcases [5], and Dredd [2].
However, they did not outperform the research-based tools as re-
ported in [27].

Many works are available targeting different types of testing
of REST APIs such as regression testing [23], model-based test-
ing [29], specification-based testing [17], robustness testing [28],
metamorphic testing [37], search-based test case improvement [40],
security testing [13], and test input validation using deep learn-
ing [34]. Some studies are also conducted analyzing REST APIs
testing approaches/tools in different contexts such as in [27], [30],
and [11]. We however focus on the healthcare IoT application in
the context of Oslo City’s health department with the ultimate goal
of suggesting the necessary testing tools for continuous testing of
their evolving healthcare IoT applications.

Testing IoT Applications. Several studies target different as-
pects of testing IoT applications [16] such as model-based confor-
mance testing of IoT [6], testing heterogeneity of IoT devices in
loop [8], identifying faults in devices integration with IoT applica-
tion [41], combinatorial testing and coverage criteria for IoT sys-
tems [25], combinatorial testing for IoT-based smart home applica-
tions [21], and simulation of health monitoring activities of health-
care IoT applications [39]. Our work focuses on testing REST APIs
of a real-world healthcare IoT application using one of the latest
REST APIs testing approaches.

4 EMPIRICAL EVALUATION

We aim to evaluate the CBT, ART, RT, and FT testing techniques of
RESTest [32] for testing an operating healthcare IoT application in
terms of REST APIs failures, faults in the application, and coverage
of RESTAPIs by answering the following research questions (RQs).

• RQ1: How effective is RESTest in detecting failures in REST APIs?

This RQ aims to analyze the failure detection ability of RESTest
with various testing techniques such that the best one can be
suggested for Oslo City.

Testing Real-World Healthcare IoT Application ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: Characteristics of APIs selected for evaluation, i.e.,

API label, # of endpoints (EPs), and features

API Label EPs Features

Alerts 2 Assign, Close
Authenti-
cation

13 Email, Password, SMS, Phone, IMEI,
Token, Device, Log-in, Forgot Password
(Send/Resend), Credentials, Emergency
Profile

Devices 3 Settings, Plan, Pharmacy
Patients 6 Health data, Billings, Time logs, Tracking,

Actions, Reimbursements
Measure-
ments

5 Single & Multiple Inputs (Manual/Auto),
Time series

Users 12 Notes, Events, Threshold, Search methods,
Invoicing operations, Subscriptions

• RQ2: How effective is RESTest in identifying faults in REST APIs

under test? Since not every failure observed in a REST API re-
quest leads to a potential fault, this RQ investigates faults from
the test results, which helps study the relationship between fail-
ures and actual faults.

• RQ3: How effective is RESTest with various testing techniques re-

garding the REST API coverage? This RQ analyzes covered and
uncovered aspects of REST APIs such that testing techniques
can be devised to cover the uncovered aspects of REST APIs.

4.1 REST APIs for Evaluation

The healthcare IoT application used for this evaluation consists of
several types of RESTAPIs corresponding to different features, e.g.,
APIs for integrating various medical devices and third-party ap-
plications (pharmacies/hospitals), medical professionals, caretak-
ers, authentication, and patients’ medical records. We identify se-
lection criteria from several sessions with Oslo City’s technical
team. We select a diverse set of APIs based on (i) primary con-
cerning features to test for rapid release, (ii) involving users with
different roles, (iii) including third-party applications/medical de-
vices, and (iv) containing multiple HTTP methods such as GET,
POST, and DELETE. We pick six APIs (41 endpoints) using these
criteria. This includes APIs formanaging various alerts, addressing
diverse mechanisms for authenticating different users and third-
party applications, communicating with medical devices, handling
patients’ events/payment history/medication and measurements,
and managing user profiles/tasks/accounts (as shown in Table 1).
The purpose of careful selection is to utilize good representative
APIs for the evaluation.

4.2 Evaluation Setup, Execution, and Metrics

Setup. We acquired RESTest latest version (v1.2.0) from GitHub.
The tool needs API schema, test configurations for each API, and
a properties file. We use the API schema in OpenAPI Specification
(OAS) format for each REST API (see Table 1). We define test con-
figurations for each REST API following the guidelines in RESTest
documentation. The property file specifies the experiment settings,
including input/output paths, testing technique (CBT/ART/RT/FT),

number of test cases, coverage, and path for test reports. We ad-
justed experiment settings considering the constraints specified
by Oslo City’s technical team. The service providers of third-party
applications and medical devices allow a certain number of API re-
quests for a specific duration. Exceeding this limit may block third-
party application requests or damage medical devices. For this, we
configure experiment settings to make a time-bound activity with
a delay between two subsequent iterations. We configure the ex-
periment setup to run for one hour with a delay of one second.
The same configurations are used for each testing technique and
five REST APIs (except medical device-specific APIs). Since medi-
cal devices require some time to process a request and respond, we
configure a delay of three seconds for the APIs involving medical
devices. For the technique-specific settings (e.g., CBT), we use the
recommended default values for RESTest.

Execution. We executed experiments on two machines with
specifications: (i) an 8-core CPU, 24 GB RAM, and macOS, and (ii)
a four cores 3.6 GHz CPU, 32 GB RAM, and Windows OS. Our
evaluation does not consider machine-dependent parameters (e.g.,
time). Hence, using different machines does not affect results.

Metrics. To analyze the experiment results, we compute the
number of failures, the number of faults, and the percentage of
REST API coverage. We calculate the unique number of failures
using the heuristics defined by Martin-Lopez et al. [33]. Based on
these heuristics, the two responses are identical if the similarity
between the two responses exceeds a defined threshold (in [33]).
Since automated identification of faults is an openproblem [33],we
perform manual inspections of test reports generated by RESTest
to identify faults. Specifically, we compare each test case result
with the corresponding API specifications. The coverage of REST
APIs is measured using criteria defined by Martin-Lopez et al. [31].
Every criterion calculates a test suite’s coverage of the number of
API elements, including requests with test parameters and their
responses.

4.3 Results and Discussion

Table 2 shows the overall results of each testing technique used for
six REST APIs. The results of each RQ are discussed below.

4.3.1 RQ1: Failures in REST APIs. The failures were identified in
various REST APIs due to HTTP error messages, i.e., client-side
(4XX) and server-side (5XX) error messages. For the Alerts, Au-
thentication, and Devices APIs, the majority of failures were ob-
served due to 4XX error messages in the case of each testing tech-
nique. This happens due to incorrect input values or types in the
request body. In the case of Authentication API, we observed an
error message (429 Too Many Requests) indicating that the maxi-
mum attempts for login have been reached. Only a few failures
due to 5XX error messages were found by ART and FT in the case
of Alerts and Authentication APIs. For Devices APIs, some 5XX er-
ror messages were detected by FT only, whereas there is not even
one 5XX error message detected by CBT, ART, and RT. In the case
of APIs related to Patients, Measurements, and Users, both types
of failures are identified by CBT, ART, and RT. However, failures
identified using FT are only due to 5XX error messages.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Hassan Sartaj et al.

Table 2: Results of each REST API w.r.t techniques showing

the number of failures (4XX & 5XX), faults causing failures

(FF), faults from success (FS), and percentage coverage

API Tech. 4XX 5XX FF FS %Cov.

A
le
rt
s

(T
C
s:
10
00
) CBT 114 0 0 0 65.0

ART 1 1 0 0 65.0
RT 121 0 0 0 65.0
FT 0 1 0 0 70.0

A
u
th
en
ti
-

ca
ti
on

(T
C
s:
28
21
) CBT 973 0 0 2 (f1, f2) 58.0

ART 845 2 0 2 (f1, f2) 56.6
RT 962 0 0 2 (f1, f2) 58.0
FT 259 1 0 1 (f1) 62.9

D
ev
ic
es

(T
C
s:
84
0) CBT 557 0 0 1 (f3) 51.4

ART 553 0 0 1 (f3) 51.3
RT 559 0 0 1 (f3) 51.3
FT 280 65 0 1 (f3) 56.8

P
at
ie
n
ts

(T
C
s:
21
42
) CBT 1218 69 1 (f4) 0 50.0

ART 176 1 1 (f4) 0 50.0
RT 1210 63 1 (f4) 0 50.0
FT 0 714 1 (f4) 0 43.6

M
ea
su
re
-

m
en
ts

(T
C
s:
10
15
) CBT 20 52 1 (f5) 1 (f6) 72.3

ART 1 10 1 (f5) 1 (f6) 61.5
RT 27 44 1 (f5) 1 (f6) 75.4
FT 0 1 1 (f5) 1 (f6) 55.4

U
se
rs

(T
C
s:
27
36
) CBT 523 617 2 (f7, f8) 1 (f9) 45.5

ART 683 458 2 (f7, f8) 1 (f9) 46.1
RT 517 623 2 (f7, f8) 1 (f9) 45.5
FT 0 189 1 (f7) 0 48.7

RQ1 Result: A higher number of failures in all REST APIs
were discovered using CBT and RT, whereas, with ART and
FT, the majority of failures were detected in only three REST
APIs.

4.3.2 RQ2: Faults in REST APIs. To identify faults in REST APIs
under test, we investigated both failure and success reports for
this purpose. Failures in Alerts, Authentication, and Devices APIs
did not lead to faults using all testing techniques (as shown in Ta-
ble 2). We found two faults (f1 & f2) in Authentication API and one
fault (f3) in the Devices API by analyzing the success results. One
fault in Authentication API is concerned with forgot password fea-
ture in which incorrect email results in 200 OK response. Another
fault is identified from the error message (403 Forbidden) while au-
thenticating through a medical device. The fault in Devices API is
related to settings feature. With incorrect values or empty values
for device settings, a 200 OK status is received, including an error
message from the third-party device APIs.

In Patients API related to Tracking, we identified one fault (f4)
corresponding to 500 Internal Server Error message generated by
all testing techniques. This fault is discovered due to an incorrect
Enum value for the code group, which should be handled during
input validation. Another fault (f5) is found in Measurements API

due to 500 Internal Server Error message which is detected by each
testing technique. This fault is generated due to measurement type
mismatch. In addition to faults due to failures, we identified one
fault (f6) from successful responses. For the empty input measure-
mentswith thewrong device serial number or time, a 200 OK status
containing an empty array of measurements is received. The two
faults (f7 & f8) are identified in Users’ APIs related to Events and
Search features due to failures. In Events API, an incorrect Cate-
goryId resulted in 500 Internal Server Error message with informa-
tion containing database queries (f7). The other fault (f8) was dis-
covered due to 400 Bad Request with a message showing that the
search is disabled. Using an incorrect Social SecurityNumber (SSN)
in the search API, led to disabling the search with SSN. Another
API for searching through SSN resulted in 503 Service Unavailable

error message that originated from a third-party healthcare appli-
cation. A fault (f9) found in success reports indicating a 200 OK

status with an empty array is obtained when searching a user by
incorrect date of birth. Similarly, for an entry note from a user with
an incorrect ID, a response with 200 OK status and an empty array
is received. Though the APIs differ, the faults (f8 & f9) are common
in multiple REST APIs.

All faults outlined above are reported to Oslo City and are cur-
rently in the official review process. We will get confirmation after
a thorough analysis by the REST APIs development team of Oslo
City’s industry partner.

RQ2 Result: Nine potential faults are identified in five REST
APIs due to failures and success results produced by CBT, ART,
and RT. Whereas FT’s results can only lead to three potential
faults (out of nine).

4.3.3 RQ3: Coverage of REST APIs. In the case of both Alerts and
Authentication APIs, RESTest attained ≈60% coverage. For APIs
related to Devices, Patients, and Users, RESTest can only achieve
≈50% coverage. Only for Measurements API, more than 70% cov-
erage is achieved with CBT and RT techniques, whereas ART and
FT can only achieve 61% and 55% coverage, respectively. From the
coverage results, it is analyzed that the coverage for a request’s
path, operations, and parameters is 100%. However, the response
coverage for status codes and types of status codes is nearly 50%.
Due to this, the overall REST APIs coverage is not 100% in all cases.

RQ3 Result: The overall coverage of REST APIs achieved by
RESTest’s different testing techniques is ≈56%.

4.4 Threats to Validity

To reduce threats to external validity, we performed empirical
evaluation using REST APIs targeting features critical for testing.
We carefully selected a good representative set of REST APIs con-
sidering the testing requirements ofOslo City. The application used
in our evaluation has a large scope and operates in multiple coun-
tries. Our results may not be generalizable to all healthcare applica-
tions; however, this problem is common in empirical studies [38].
In the future, we plan to include more APIs for large-scale evalu-
ation. The threat to internal validity can occur due to the evalu-
ation setup. To minimize the chances of this threat, we used APIs

Testing Real-World Healthcare IoT Application ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

and documentation provided by Oslo City to create different APIs
schema. We also held various sessions with the technical team
from Oslo City to demonstrate the setup and get their feedback.
Moreover, we defined test configurations for RESTest considering
test configurations used in different experiments of RESTest. For
conclusion and construct validity threats, we reported the re-
sults of our evaluation using commonly used metrics in similar
types of experiments, e.g., in [33]. To reduce potential personal bias
errors during the manual inspection, we reported the experiment
results to Oslo City for confirmation. Making a replication pack-
age or data available publicly is not possible due to non-disclosure
agreements.

5 EXPERIENCES AND LESSONS LEARNED

Faults Identification.During the faults identification process, we
realized that failures in RESTAPIs are not only potential indicators
for faults in the application. Successful responses can also lead to
faults. This is especially true for REST APIs communicating with
REST APIs of integrated third-party healthcare applications. For
example, we observed that sometimes an OK response is returned
with a body containing an error message that is received from a
third-party application or a medical device. It seems that a test case
is passed when actually it is not. Therefore, identifying the root
cause of a fault is tricky due to the integration of various healthcare
applications with the IoT application under test.
Domain and Context-based Test Data. Though RESTest tries
to generate realistic test data, RESTest could not generate test data
considering domain properties and particular testing contexts. For
instance, generating a correct medication plan for a patient is not a
straightforward task. Creating a medication plan requires informa-
tion about the number of medicine doses, starting date, dose intake
time, number of days to take medicine, and medication rolls of a
medicine dispenser. This involves understanding domain proper-
ties related to medications and the context of a medicine dispenser.
There is still a need for domain-specific and context-aware test
data generation approaches.
Valid JSON Object Generation. Healthcare IoT applications use
JavaScript Object Notation (JSON) format for data interchange. Send-
ing a valid JSON object in an HTTP request is a preliminary re-
quirement for the application to process the request. An invalid
JSON object leads to client error messages with 4XX status codes.
Since RESTest does not guarantee the generation of valid JSON ob-
jects, we identified many failures due to client-side error messages.
Further, type mismatching is another problem in creating a valid
JSON object. This happens when anAPI requires certain properties
in string formats. For example, if an API requires a phone number
in string format and RESTest generates meaningful strings, the API
returns a type mismatch error message. Therefore, Generating a
valid JSON object is necessary for testing REST APIs of IoT appli-
cations.
Tailoring Test Configurations. An important input of RESTest
is a test configurations file that specifies API endpoints, test param-
eters, weights, type of test data generator, and expected outcome.
Though RESTest can generate test configuration files, modifying
them for a particular application context is needed to be done care-
fully. Among all types of test configurations, selecting a test data

generator and designing its structure is crucial, especially for JSON
objects with complex layouts. Moreover, defining test configura-
tions for one release may not be reused for testing the next release.
For each REST API property change, its corresponding test config-
urations must also be modified accordingly.
ConsideringOASConstraints.OAS schema allows defining non-
nullable properties. In our experiments, we observed that RESTest
generates test cases without considering non-nullable constraints
on the properties. Violating such constraints results in input valida-
tion error messages with 4XX status codes. Thus, considering such
OAS constraints in RESTest’s test generation process is important.
Smart Testing Strategy. The dependency among various REST
API endpoints of a healthcare IoT application needs an intelligent
testing strategy. For example, the steps for assigning an alert (re-
ceived from a patient) to a medical professional are: (i) get an unas-
signed alert, (ii) identify an appropriate person (doctor, nurse, care-
taker, etc.) to assign the alert, and (iii) send a POST request to as-
sign the alert. Each step has a separate REST API. Calling each
REST API individually in different orderings will not lead to ade-
quately testing the alert assigning scenario. Consequently, failures
detected in this way will not help in finding faults. We also ob-
served that APIs have optional properties in their schema. Some-
times RESTest sends a request without optional properties and ex-
pects a failure response. Moreover, the overall 56% API coverage
achieved by RESTest is low for IoT applications. Therefore, a smart
testing strategy is needed by considering API dependencies, op-
tional properties, and API coverage.
Test Stubs Generation. Many REST APIs related to various in-
tegrated healthcare applications and medical devices support two-
way communication. Testing such REST APIs requires initial in-
put from integrated healthcare applications or medical devices. For
example, a medical device can generate an alert about a patient’s
medical condition. To test the assign alert REST API, a medical de-
vice must have generated an alert. Without having an alert before-
hand, generating test cases for assign alert REST API will not lead
to finding faults. This requires an approach to generate test stubs
for integrated healthcare applications and medical devices.
Optimized Tests Generation. Testing REST APIs of an IoT ap-
plication in production and a rapid-release environment involves
constraints such as a fixed time frame for test generation/execution
and a limit on API requests to third-party applications. Generating
and executing many test cases for such a scenario is not practical.
Moreover, test cases with a high degree of random test data make
it challenging to reproduce faults. Therefore, a testing approach
that focuses on generating and executing an optimized set of test
cases is needed.
Relevance of Lessons Learned. Our evaluation is valuable for
Oslo City in terms of improving the quality of healthcare applica-
tions and developing a testing infrastructure in the future [36]. Ad-
ditionally, since REST APIs are commonly used in IoT-based appli-
cations [35], the lessons presented are also relevant for practition-
ers developing other IoT applications. Moreover, similar faults (the
ones discussed in this paper) exist in various IoT applications, e.g.,
smart home systems [41]. Consequently, practitioners can benefit
from implications and lessons while testing REST APIs of their re-
spective IoT applications, e.g., smart homes and security systems.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Hassan Sartaj et al.

6 CONCLUSION

We reported a real-world evaluation of RESTest for testing REST
APIs for a healthcare IoT application to assess RESTest in identi-
fying REST APIs failures, faults in the application, and REST APIs
coverage. We evaluate different testing techniques of RESTest in-
cluding CBT, ART, RT, and FT using six REST APIs. Results show
that several failures are discovered in different REST APIs with
≈56% overall coverage using RESTest. Results also show that nine
potential faults are found in five REST APIs from failure and suc-
cess reports produced by RESTest. Moreover, testing techniques
CBT, ART, and RT are more effective than FT regarding failures
and faults.

ACKNOWLEDGMENTS

This research work is a part of theWTT4Oslo project (No. 309175)
funded by the Research Council of Norway. All the experiments re-
ported in this paper are conducted in a laboratory setting of Simula
Research Laboratory; therefore, they do not by any means reflect
the quality of services Oslo City provides to its citizens. Moreover,
these experiments do not reflect the quality of services various ven-
dors provide to Oslo City.

REFERENCES
[1] [n. d.]. APIFuzzer — HTTP API Testing Framework.

https://github.com/KissPeter/APIFuzzer. [Online; accessed 20-April-2023].
[2] [n. d.]. Dredd — HTTP API Testing Framework.

https://github.com/apiaryio/dredd. [Online; accessed 20-April-2023].
[3] [n. d.]. National Welfare Technology Program.

https://www.helsedirektoratet.no/tema/velferdsteknologi. [Online; accessed
11-May-2023].

[4] [n. d.]. NorwegianHealth Authority. https://www.oslo.kommune.no/etater-foretak-og-ombud/helseetaten/.
[Online; accessed 11-May-2023].

[5] [n. d.]. Tcases: A Model-Based Test Case Generator.
https://github.com/Cornutum/tcases. [Online; accessed 20-April-2023].

[6] Abbas Ahmad, Fabrice Bouquet, Elizabeta Fourneret, Franck Le Gall, and Bruno
Legeard. 2016. Model-based testing as a service for iot platforms. In Leveraging
Applications of Formal Methods, Verification and Validation: Discussion, Dissem-
ination, Applications: 7th International Symposium, ISoLA 2016, Imperial, Corfu,
Greece, October 10-14, 2016, Proceedings, Part II 7. Springer, 727–742.

[7] Juan C Alonso, Alberto Martin-Lopez, Sergio Segura, Jose Maria Garcia, and An-
tonio Ruiz-Cortes. 2022. ARTE: Automated Generation of Realistic Test Inputs
for Web APIs. IEEE Transactions on Software Engineering 49, 1 (2022), 348–363.

[8] Domenico Amalfitano, Nicola Amatucci, Vincenzo De Simone, Vincenzo Ric-
cio, and Fasolino Anna Rita. 2017. Towards a Thing-In-the-Loop ap-
proach for the verification and validation of IoT systems. In Proceed-
ings of the 1st ACM Workshop on the Internet of Safe Things. 57–63.
https://doi.org/10.1145/3137003.3137007

[9] Andrea Arcuri. 2018. Evomaster: Evolutionary multi-context automated system
test generation. In 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 394–397.

[10] Andrea Arcuri. 2019. RESTful API automated test case generation with EvoMas-
ter. ACM Transactions on Software Engineering and Methodology (TOSEM) 28, 1
(2019), 1–37. https://doi.org/10.1145/3293455

[11] Andrea Arcuri, Man Zhang, Asma Belhadi, Bogdan Marculescu, Amid Golmo-
hammadi, Juan Pablo Galeotti, and Susruthan Seran. 2023. Building an open-
source system test generation tool: lessons learned and empirical analyses with
EvoMaster. Software Quality Journal (2023), 1–44.

[12] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2019. Restler:
Stateful rest api fuzzing. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE). IEEE, 748–758.

[13] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. 2020. Checking
security properties of cloud service REST APIs. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST). IEEE, 387–397.

[14] Davide Corradini, Amedeo Zampieri, Michele Pasqua, and Mariano Ceccato.
2022. RestTestGen: An Extensible Framework for Automated Black-box Testing
of RESTful APIs. In 2022 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 504–508.

[15] Davide Corradini, Amedeo Zampieri, Michele Pasqua, Emanuele Viglianisi,
Michael Dallago, and Mariano Ceccato. 2022. Automated black-box testing of
nominal and error scenarios in RESTful APIs. Software Testing, Verification and
Reliability 32, 5 (2022), e1808. https://doi.org/10.1002/stvr.1808

[16] João Pedro Dias, Flávio Couto, Ana CR Paiva, and Hugo Sereno Ferreira. 2018.
A brief overview of existing tools for testing the internet-of-things. In 2018 IEEE
international conference on software testing, verification and validation workshops
(ICSTW). IEEE, 104–109. https://doi.org/10.1109/ICSTW.2018.00035

[17] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2018. Auto-
matic generation of test cases for REST APIs: A specification-based approach.
In 2018 IEEE 22nd international enterprise distributed object computing conference
(EDOC). IEEE, 181–190. https://doi.org/10.1109/EDOC.2018.00031

[18] Haya Elayan, Moayad Aloqaily, and Mohsen Guizani. 2021. Digital twin for
intelligent context-aware IoT healthcare systems. IEEE Internet of Things Journal
8, 23 (2021), 16749–16757. https://doi.org/10.1109/JIOT.2021.3051158

[19] Duarte Felício, José Simão, and Nuno Datia. 2023. RapiTest: Continuous Black-
Box Testing of RESTful Web APIs. Procedia Computer Science 219 (2023), 537–
545.

[20] Roy Thomas Fielding. 2000. Architectural styles and the design of network-based
software architectures. University of California, Irvine.

[21] Bernhard Garn, Dominik-Philip Schreiber, Dimitris E Simos, Rick Kuhn, Jeff
Voas, and Raghu Kacker. 2022. Combinatorial methods for testing internet of
things smart home systems. Software Testing, Verification and Reliability 32, 2
(2022), e1805.

[22] Patrice Godefroid, Bo-Yuan Huang, and Marina Polishchuk. 2020. Intelligent
REST API data fuzzing. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 725–736. https://doi.org/10.1145/3368089.3409719

[23] Patrice Godefroid, Daniel Lehmann, and Marina Polishchuk. 2020. Differential
regression testing for REST APIs. In Proceedings of the 29th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis. 312–323.

[24] ZacHatfield-Dodds and DmitryDygalo. 2022. Deriving semantics-aware fuzzers
from web API schemas. In Proceedings of the ACM/IEEE 44th International Con-
ference on Software Engineering: Companion Proceedings. 345–346.

[25] LinghuanHu,WEricWong, D Richard Kuhn, RaghuNKacker, and Shuo Li. 2022.
CT-IoT: a combinatorial testing-based path selection framework for effective IoT
testing. Empirical Software Engineering 27 (2022), 1–38.

[26] Stefan Karlsson, Adnan Čaušević, and Daniel Sundmark. 2020. QuickREST:
Property-based test generation of OpenAPI-described RESTful APIs. In 2020
IEEE 13th International Conference on Software Testing, Validation and Verifica-
tion (ICST). IEEE, 131–141. https://doi.org/10.1109/ICST46399.2020.00023

[27] Myeongsoo Kim, Qi Xin, Saurabh Sinha, and Alessandro Orso. 2022. Automated
test generation for rest apis: No time to rest yet. In Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis. 289–301.

[28] Nuno Laranjeiro, João Agnelo, and Jorge Bernardino. 2021. A black box tool for
robustness testing of REST services. IEEE Access 9 (2021), 24738–24754.

[29] Yi Liu, Yuekang Li, Gelei Deng, Yang Liu, Ruiyuan Wan, Runchao Wu, Dandan
Ji, Shiheng Xu, and Minli Bao. 2022. Morest: model-based RESTful API testing
with execution feedback. In Proceedings of the 44th International Conference on
Software Engineering. 1406–1417. https://doi.org/10.1145/3510003.3510133

[30] Alberto Martin-Lopez, Andrea Arcuri, Sergio Segura, and Antonio Ruiz-Cortés.
2021. Black-box and white-box test case generation for RESTful APIs: Enemies
or allies?. In 2021 IEEE 32nd International Symposium on Software Reliability En-
gineering (ISSRE). IEEE, 231–241.

[31] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2019. Test cov-
erage criteria for RESTful web APIs. In Proceedings of the 10th ACM SIGSOFT
International Workshop on Automating TEST Case Design, Selection, and Evalua-
tion. 15–21. https://doi.org/10.1145/3340433.3342822

[32] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2021. RESTest:
automated black-box testing of RESTful web APIs. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 682–
685. https://doi.org/10.1145/3460319.3469082

[33] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. 2022. Online
testing of RESTful APIs: Promises and challenges. In Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering. 408–420.

[34] A Giuliano Mirabella, Alberto Martin-Lopez, Sergio Segura, Luis Valencia-
Cabrera, and Antonio Ruiz-Cortés. 2021. Deep learning-based prediction of test
input validity for RESTful APIs. In 2021 IEEE/ACM Third International Workshop
on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 9–16.
https://doi.org/10.1109/DeepTest52559.2021.00008

[35] Francis Palma, Tobias Olsson, Anna Wingkvist, and Javier Gonzalez-Huerta.
2022. Assessing the linguistic quality of REST APIs for IoT applications. Journal
of Systems and Software 191 (2022), 111369.

[36] Hassan Sartaj, Shaukat Ali, Tao Yue, and Kjetil Moberg. 2023. HITA: An Archi-
tecture for System-level Testing of Healthcare IoT Applications. In Proceedings
of the 17th European Conference on Software Architecture: Companion Proceedings.

https://github.com/KissPeter/APIFuzzer
https://github.com/apiaryio/dredd
https://www.helsedirektoratet.no/tema/velferdsteknologi
https://www.oslo.kommune.no/etater-foretak-og-ombud/helseetaten/
https://github.com/Cornutum/tcases
https://doi.org/10.1145/3137003.3137007
https://doi.org/10.1145/3293455
https://doi.org/10.1002/stvr.1808
https://doi.org/10.1109/ICSTW.2018.00035
https://doi.org/10.1109/EDOC.2018.00031
https://doi.org/10.1109/JIOT.2021.3051158
https://doi.org/10.1145/3368089.3409719
https://doi.org/10.1109/ICST46399.2020.00023
https://doi.org/10.1145/3510003.3510133
https://doi.org/10.1145/3340433.3342822
https://doi.org/10.1145/3460319.3469082
https://doi.org/10.1109/DeepTest52559.2021.00008

Testing Real-World Healthcare IoT Application ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Springer. To Appear.
[37] Sergio Segura, José A Parejo, Javier Troya, and Antonio Ruiz-Cortés. 2018. Meta-

morphic testing of RESTful web APIs. In Proceedings of the 40th International
Conference on Software Engineering. 882–882.

[38] Janet Siegmund, Norbert Siegmund, and Sven Apel. 2015. Views on internal and
external validity in empirical software engineering. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, Vol. 1. IEEE, 9–19.

[39] Stelios Sotiriadis, Nik Bessis, Eleana Asimakopoulou, and Navonil Mustafee.
2014. Towards simulating the internet of things. In 2014 28th International Con-
ference on Advanced Information Networking and Applications Workshops. IEEE,
444–448.

[40] Dimitri Stallenberg, Mitchell Olsthoorn, and Annibale Panichella. 2021. Im-
proving test case generation for REST APIs through hierarchical clustering. In

2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 117–128. https://doi.org/10.1109/ASE51524.2021.9678586

[41] Tao Wang, Kangkang Zhang, Wei Chen, Wensheng Dou, Jiaxin Zhu, Jun Wei,
and Tao Huang. 2022. Understanding device integration bugs in smart home
system. In Proceedings of the 31st ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis. 429–441.

[42] Huayao Wu, Lixin Xu, Xintao Niu, and Changhai Nie. 2022. Combinatorial test-
ing of restful apis. In Proceedings of the 44th International Conference on Software
Engineering. 426–437. https://doi.org/10.1145/3510003.3510151

Received 2023-05-18; accepted 2023-07-31

https://doi.org/10.1109/ASE51524.2021.9678586
https://doi.org/10.1145/3510003.3510151

	Abstract
	1 Introduction
	2 Industrial Context and Challenges
	3 Related Works
	4 Empirical Evaluation
	4.1 REST APIs for Evaluation
	4.2 Evaluation Setup, Execution, and Metrics
	4.3 Results and Discussion
	4.4 Threats to Validity

	5 Experiences and Lessons Learned
	6 Conclusion
	Acknowledgments
	References

