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ABSTRACT

Healthcare Internet of Things (IoT) applications require rigorous
testing to ensure their dependability. Such applications are typi-
cally integrated with various third-party healthcare applications
and medical devices through REST APIs. This integrated network
of healthcare IoT applications leads to RESTAPIs with complicated
and interdependent structures, thus creating a major challenge for
automated system-level testing. We report an industrial evaluation
of a state-of-the-art REST APIs testing approach (RESTest) on a
real-world healthcare IoT application.We analyze the effectiveness
of RESTest’s testing strategies regarding REST APIs failures, faults
in the application, and REST API coverage, by experimenting with
six REST APIs of 41 API endpoints of the healthcare IoT applica-
tion. Results show that several failures are discovered in different
REST APIs with ≈56% coverage using RESTest. Moreover, nine po-
tential faults are identified. Using the evidence collected from the
experiments, we provide our experiences and lessons learned.

CCS CONCEPTS

• Software and its engineering → Software testing and debug-
ging; Software verification and validation.
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1 INTRODUCTION

Healthcare Internet of Things (IoT) applications use a cloud-based
architecture to provide a central access point to different stakehold-
ers such as healthcare professionals, caretakers, and patients [18].
This is achieved by integrating various healthcare applications serv-
ing different purposes (e.g., pharmacies) and manymedical devices
(e.g., medicine dispensers) assigned to patients.Malfunctioning due
to faults in the central healthcare application or integrated appli-
cations, or medical devices may have severe consequences. The
safety-critical nature of these applications requires automated test-
ing at various levels to ensure their dependability. Particularly, system-
level testing of such applications requires integrating various med-
ical devices and third-party healthcare applications. The integra-
tion of different healthcare applications to create an IoT cloud is
accomplished through Application Programming Interfaces (APIs)
following Representational State Transfer (REST) [20] architecture.
This integration leads to a complicated structure of REST APIs
which makes testing such APIs a challenging task.

This paper reports our work in the real-world context of Oslo
City’s healthcare department [4], where different healthcare IoT
applications are developed and managed to deliver a wide range of
healthcare services to residents of Oslo. The healthcare IoT appli-
cations are connected with various third-party healthcare applica-
tions through REST APIs for providing various healthcare services
to patients at home care, for instance. Our primary objective is to
test the REST APIs of such applications at the system level con-
nected with the APIs of third-party applications in a production
environment. The complicated nature of these REST APIs due to
their dependency on different third-party APIs requires a sophisti-
cated testing approach to explore these REST APIs thoroughly.

Several approaches have been proposed for testing of web appli-
cations REST APIs such as RESTest [32], RESTler [12], Semanthe-
sis [24], RESTCT [42], RestTestGen [14], and EvoMaster [9]. Some
empirical studies have been conducted to compare different ap-
proaches for testing REST APIs, such as [11, 27, 30]. Our goal is
to assess one of the latest approaches suitable for a healthcare IoT
application deployed in Oslo City to provide recommendations to
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the Oslo City health department for testing their current and fu-
ture healthcare IoT applications.

For assessment, we select RESTest [32] due to its advanced fea-
tures, such as online testing in a production environment, han-
dling inter-parameter dependencies, and generating realistic test
data — the initial requirements of our real-world application. We
analyze the effectiveness of all testing techniques implemented in
RESTest, i.e., constraint-based testing (CBT), adaptive random test-
ing (ART), random testing (RT), and fuzz testing (FT). The effec-
tiveness is measured with failures in REST APIs, coverage of REST
APIs, and faults in the healthcare IoT application. These metrics
are commonly used in similar experiments [27, 33]. We conducted
an evaluation with six REST APIs with 41 API endpoints for differ-
ent healthcare features. Results show that several failures are dis-
covered by RESTest in six REST APIs under test. Moreover, with
RESTest, we achieved ≈56% overall coverage of REST APIs. Results
also show that nine potential faults are found in five REST APIs
by analyzing RESTest’s generated failure and success reports. The
testing techniques CBT, ART, and RT are more effective than FT
in terms of failures and faults. Finally, we provide a set of lessons
learned that we believe are valuable for industries working with
similar applications and other healthcare departments of cities.

The upcoming part of the paper is structured as follows. In-
dustrial context and challenges are described in Section 2. Related
works are outlined in Section 3. Empirical evaluation and results
are presented in Section 4. Experiences and lessons learned are dis-
cussed in Section 5. Finally, the paper concludes in Section 6.

2 INDUSTRIAL CONTEXT AND CHALLENGES

The national welfare technology program [3] started byOslo City’s
healthcare department [4] facilitates residents with high-quality
healthcare services. Oslo City collaborates with several third par-
ties to develop IoT-based healthcare applications to achieve this.
Our collaborationwith Oslo City is carried out as a part of an inno-
vation project with Oslo City’s healthcare department. The overall
goal is to build a generic test infrastructure to improve the qual-
ity of healthcare IoT applications through rigorous and automated
testing of such applications. For this purpose, we have access to
a healthcare IoT application (system under test) and the required
medical devices/applications for creating an experimental setup.

The healthcare IoT application under test has several REST APIs
to allow the integration of different applications and medical de-
vices. These REST APIs have complicated structures due to their
dependency on the APIs of different applications. For instance, a
common procedure for testing the medical device settings feature
of a healthcare IoT application is: a testing technique sends a re-
quest with test data to a healthcare application; the healthcare ap-
plication receives and processes the request, creates and sends a
request including test data to medical device APIs, receives a re-
sponse from medical device APIs, and creates and returns a re-
sponse to the testing technique. Similar is the case with other inte-
grated applications, e.g., pharmacies.

The main challenge of testing such complex REST APIs is re-
garding the evolution of healthcare IoT applications, e.g., the con-
tinuous addition of medical devices from vendors, healthcare ser-
vices, and software updates of third-party applications. This brings

another challenge of analyzing the primary source (IoT application
or integrated applications) of failures or faults. A fault in a health-
care IoT application typically leads to failures in its REST APIs.
Such failures are determined by error codes 4XX and 5XX returned
in response to the REST API calls. Moreover, third-party applica-
tions define a limit on the number of API requests. Exceeding this
limit may result in service blocking or damaging a medical device.
Lastly, the automated generation of realistic and domain-specific
test data for healthcare IoT applications is challenging because it
requires domain knowledge.

3 RELATED WORKS

Testing REST APIs. Approaches for automated black-box testing
of REST APIs are proposed in the literature, including RESTest [32,
33], ARTE [7] — an extension to RESTest, RESTler [12, 22], Seman-
thesis [24], RESTCT [42], RestTestGen [14, 15], EvoMaster [9, 10],
RapiTest [19], and QuickREST [26]. Our study utilizes RESTest, as
it is a black-box REST APIs testing approach, which supports real-
istic test data generation [7] and has shown good results in testing
online applications [33]. Open-source tools are also available for
testing REST APIs such as APIFuzzer [1], Tcases [5], and Dredd [2].
However, they did not outperform the research-based tools as re-
ported in [27].

Many works are available targeting different types of testing
of REST APIs such as regression testing [23], model-based test-
ing [29], specification-based testing [17], robustness testing [28],
metamorphic testing [37], search-based test case improvement [40],
security testing [13], and test input validation using deep learn-
ing [34]. Some studies are also conducted analyzing REST APIs
testing approaches/tools in different contexts such as in [27], [30],
and [11]. We however focus on the healthcare IoT application in
the context of Oslo City’s health department with the ultimate goal
of suggesting the necessary testing tools for continuous testing of
their evolving healthcare IoT applications.

Testing IoT Applications. Several studies target different as-
pects of testing IoT applications [16] such as model-based confor-
mance testing of IoT [6], testing heterogeneity of IoT devices in
loop [8], identifying faults in devices integration with IoT applica-
tion [41], combinatorial testing and coverage criteria for IoT sys-
tems [25], combinatorial testing for IoT-based smart home applica-
tions [21], and simulation of health monitoring activities of health-
care IoT applications [39]. Our work focuses on testing REST APIs
of a real-world healthcare IoT application using one of the latest
REST APIs testing approaches.

4 EMPIRICAL EVALUATION

We aim to evaluate the CBT, ART, RT, and FT testing techniques of
RESTest [32] for testing an operating healthcare IoT application in
terms of REST APIs failures, faults in the application, and coverage
of RESTAPIs by answering the following research questions (RQs).

• RQ1: How effective is RESTest in detecting failures in REST APIs?

This RQ aims to analyze the failure detection ability of RESTest
with various testing techniques such that the best one can be
suggested for Oslo City.
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Table 1: Characteristics of APIs selected for evaluation, i.e.,

API label, # of endpoints (EPs), and features

API Label EPs Features

Alerts 2 Assign, Close
Authenti-
cation

13 Email, Password, SMS, Phone, IMEI,
Token, Device, Log-in, Forgot Password
(Send/Resend), Credentials, Emergency
Profile

Devices 3 Settings, Plan, Pharmacy
Patients 6 Health data, Billings, Time logs, Tracking,

Actions, Reimbursements
Measure-
ments

5 Single & Multiple Inputs (Manual/Auto),
Time series

Users 12 Notes, Events, Threshold, Search methods,
Invoicing operations, Subscriptions

• RQ2: How effective is RESTest in identifying faults in REST APIs

under test? Since not every failure observed in a REST API re-
quest leads to a potential fault, this RQ investigates faults from
the test results, which helps study the relationship between fail-
ures and actual faults.

• RQ3: How effective is RESTest with various testing techniques re-

garding the REST API coverage? This RQ analyzes covered and
uncovered aspects of REST APIs such that testing techniques
can be devised to cover the uncovered aspects of REST APIs.

4.1 REST APIs for Evaluation

The healthcare IoT application used for this evaluation consists of
several types of RESTAPIs corresponding to different features, e.g.,
APIs for integrating various medical devices and third-party ap-
plications (pharmacies/hospitals), medical professionals, caretak-
ers, authentication, and patients’ medical records. We identify se-
lection criteria from several sessions with Oslo City’s technical
team. We select a diverse set of APIs based on (i) primary con-
cerning features to test for rapid release, (ii) involving users with
different roles, (iii) including third-party applications/medical de-
vices, and (iv) containing multiple HTTP methods such as GET,
POST, and DELETE. We pick six APIs (41 endpoints) using these
criteria. This includes APIs formanaging various alerts, addressing
diverse mechanisms for authenticating different users and third-
party applications, communicating with medical devices, handling
patients’ events/payment history/medication and measurements,
and managing user profiles/tasks/accounts (as shown in Table 1).
The purpose of careful selection is to utilize good representative
APIs for the evaluation.

4.2 Evaluation Setup, Execution, and Metrics

Setup. We acquired RESTest latest version (v1.2.0) from GitHub.
The tool needs API schema, test configurations for each API, and
a properties file. We use the API schema in OpenAPI Specification
(OAS) format for each REST API (see Table 1). We define test con-
figurations for each REST API following the guidelines in RESTest
documentation. The property file specifies the experiment settings,
including input/output paths, testing technique (CBT/ART/RT/FT),

number of test cases, coverage, and path for test reports. We ad-
justed experiment settings considering the constraints specified
by Oslo City’s technical team. The service providers of third-party
applications and medical devices allow a certain number of API re-
quests for a specific duration. Exceeding this limit may block third-
party application requests or damage medical devices. For this, we
configure experiment settings to make a time-bound activity with
a delay between two subsequent iterations. We configure the ex-
periment setup to run for one hour with a delay of one second.
The same configurations are used for each testing technique and
five REST APIs (except medical device-specific APIs). Since medi-
cal devices require some time to process a request and respond, we
configure a delay of three seconds for the APIs involving medical
devices. For the technique-specific settings (e.g., CBT), we use the
recommended default values for RESTest.

Execution. We executed experiments on two machines with
specifications: (i) an 8-core CPU, 24 GB RAM, and macOS, and (ii)
a four cores 3.6 GHz CPU, 32 GB RAM, and Windows OS. Our
evaluation does not consider machine-dependent parameters (e.g.,
time). Hence, using different machines does not affect results.

Metrics. To analyze the experiment results, we compute the
number of failures, the number of faults, and the percentage of
REST API coverage. We calculate the unique number of failures
using the heuristics defined by Martin-Lopez et al. [33]. Based on
these heuristics, the two responses are identical if the similarity
between the two responses exceeds a defined threshold (in [33]).
Since automated identification of faults is an openproblem [33],we
perform manual inspections of test reports generated by RESTest
to identify faults. Specifically, we compare each test case result
with the corresponding API specifications. The coverage of REST
APIs is measured using criteria defined by Martin-Lopez et al. [31].
Every criterion calculates a test suite’s coverage of the number of
API elements, including requests with test parameters and their
responses.

4.3 Results and Discussion

Table 2 shows the overall results of each testing technique used for
six REST APIs. The results of each RQ are discussed below.

4.3.1 RQ1: Failures in REST APIs. The failures were identified in
various REST APIs due to HTTP error messages, i.e., client-side
(4XX) and server-side (5XX) error messages. For the Alerts, Au-
thentication, and Devices APIs, the majority of failures were ob-
served due to 4XX error messages in the case of each testing tech-
nique. This happens due to incorrect input values or types in the
request body. In the case of Authentication API, we observed an
error message (429 Too Many Requests) indicating that the maxi-
mum attempts for login have been reached. Only a few failures
due to 5XX error messages were found by ART and FT in the case
of Alerts and Authentication APIs. For Devices APIs, some 5XX er-
ror messages were detected by FT only, whereas there is not even
one 5XX error message detected by CBT, ART, and RT. In the case
of APIs related to Patients, Measurements, and Users, both types
of failures are identified by CBT, ART, and RT. However, failures
identified using FT are only due to 5XX error messages.
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Table 2: Results of each REST API w.r.t techniques showing

the number of failures (4XX & 5XX), faults causing failures

(FF), faults from success (FS), and percentage coverage

API Tech. 4XX 5XX FF FS %Cov.

A
le
rt
s

(T
C
s:
10
00
) CBT 114 0 0 0 65.0

ART 1 1 0 0 65.0
RT 121 0 0 0 65.0
FT 0 1 0 0 70.0

A
u
th
en
ti
-

ca
ti
on

(T
C
s:
28
21
) CBT 973 0 0 2 (f1, f2) 58.0

ART 845 2 0 2 (f1, f2) 56.6
RT 962 0 0 2 (f1, f2) 58.0
FT 259 1 0 1 (f1) 62.9

D
ev
ic
es

(T
C
s:
84
0) CBT 557 0 0 1 (f3) 51.4

ART 553 0 0 1 (f3) 51.3
RT 559 0 0 1 (f3) 51.3
FT 280 65 0 1 (f3) 56.8

P
at
ie
n
ts

(T
C
s:
21
42
) CBT 1218 69 1 (f4) 0 50.0

ART 176 1 1 (f4) 0 50.0
RT 1210 63 1 (f4) 0 50.0
FT 0 714 1 (f4) 0 43.6

M
ea
su
re
-

m
en
ts

(T
C
s:
10
15
) CBT 20 52 1 (f5) 1 (f6) 72.3

ART 1 10 1 (f5) 1 (f6) 61.5
RT 27 44 1 (f5) 1 (f6) 75.4
FT 0 1 1 (f5) 1 (f6) 55.4

U
se
rs

(T
C
s:
27
36
) CBT 523 617 2 (f7, f8) 1 (f9) 45.5

ART 683 458 2 (f7, f8) 1 (f9) 46.1
RT 517 623 2 (f7, f8) 1 (f9) 45.5
FT 0 189 1 (f7) 0 48.7

RQ1 Result: A higher number of failures in all REST APIs
were discovered using CBT and RT, whereas, with ART and
FT, the majority of failures were detected in only three REST
APIs.

4.3.2 RQ2: Faults in REST APIs. To identify faults in REST APIs
under test, we investigated both failure and success reports for
this purpose. Failures in Alerts, Authentication, and Devices APIs
did not lead to faults using all testing techniques (as shown in Ta-
ble 2). We found two faults (f1 & f2) in Authentication API and one
fault (f3) in the Devices API by analyzing the success results. One
fault in Authentication API is concerned with forgot password fea-
ture in which incorrect email results in 200 OK response. Another
fault is identified from the error message (403 Forbidden) while au-
thenticating through a medical device. The fault in Devices API is
related to settings feature. With incorrect values or empty values
for device settings, a 200 OK status is received, including an error
message from the third-party device APIs.

In Patients API related to Tracking, we identified one fault (f4)
corresponding to 500 Internal Server Error message generated by
all testing techniques. This fault is discovered due to an incorrect
Enum value for the code group, which should be handled during
input validation. Another fault (f5) is found in Measurements API

due to 500 Internal Server Error message which is detected by each
testing technique. This fault is generated due to measurement type
mismatch. In addition to faults due to failures, we identified one
fault (f6) from successful responses. For the empty input measure-
mentswith thewrong device serial number or time, a 200 OK status
containing an empty array of measurements is received. The two
faults (f7 & f8) are identified in Users’ APIs related to Events and
Search features due to failures. In Events API, an incorrect Cate-
goryId resulted in 500 Internal Server Error message with informa-
tion containing database queries (f7). The other fault (f8) was dis-
covered due to 400 Bad Request with a message showing that the
search is disabled. Using an incorrect Social SecurityNumber (SSN)
in the search API, led to disabling the search with SSN. Another
API for searching through SSN resulted in 503 Service Unavailable

error message that originated from a third-party healthcare appli-
cation. A fault (f9) found in success reports indicating a 200 OK

status with an empty array is obtained when searching a user by
incorrect date of birth. Similarly, for an entry note from a user with
an incorrect ID, a response with 200 OK status and an empty array
is received. Though the APIs differ, the faults (f8 & f9) are common
in multiple REST APIs.

All faults outlined above are reported to Oslo City and are cur-
rently in the official review process. We will get confirmation after
a thorough analysis by the REST APIs development team of Oslo
City’s industry partner.

RQ2 Result: Nine potential faults are identified in five REST
APIs due to failures and success results produced by CBT, ART,
and RT. Whereas FT’s results can only lead to three potential
faults (out of nine).

4.3.3 RQ3: Coverage of REST APIs. In the case of both Alerts and
Authentication APIs, RESTest attained ≈60% coverage. For APIs
related to Devices, Patients, and Users, RESTest can only achieve
≈50% coverage. Only for Measurements API, more than 70% cov-
erage is achieved with CBT and RT techniques, whereas ART and
FT can only achieve 61% and 55% coverage, respectively. From the
coverage results, it is analyzed that the coverage for a request’s
path, operations, and parameters is 100%. However, the response
coverage for status codes and types of status codes is nearly 50%.
Due to this, the overall REST APIs coverage is not 100% in all cases.

RQ3 Result: The overall coverage of REST APIs achieved by
RESTest’s different testing techniques is ≈56%.

4.4 Threats to Validity

To reduce threats to external validity, we performed empirical
evaluation using REST APIs targeting features critical for testing.
We carefully selected a good representative set of REST APIs con-
sidering the testing requirements ofOslo City. The application used
in our evaluation has a large scope and operates in multiple coun-
tries. Our results may not be generalizable to all healthcare applica-
tions; however, this problem is common in empirical studies [38].
In the future, we plan to include more APIs for large-scale evalu-
ation. The threat to internal validity can occur due to the evalu-
ation setup. To minimize the chances of this threat, we used APIs
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and documentation provided by Oslo City to create different APIs
schema. We also held various sessions with the technical team
from Oslo City to demonstrate the setup and get their feedback.
Moreover, we defined test configurations for RESTest considering
test configurations used in different experiments of RESTest. For
conclusion and construct validity threats, we reported the re-
sults of our evaluation using commonly used metrics in similar
types of experiments, e.g., in [33]. To reduce potential personal bias
errors during the manual inspection, we reported the experiment
results to Oslo City for confirmation. Making a replication pack-
age or data available publicly is not possible due to non-disclosure
agreements.

5 EXPERIENCES AND LESSONS LEARNED

Faults Identification.During the faults identification process, we
realized that failures in RESTAPIs are not only potential indicators
for faults in the application. Successful responses can also lead to
faults. This is especially true for REST APIs communicating with
REST APIs of integrated third-party healthcare applications. For
example, we observed that sometimes an OK response is returned
with a body containing an error message that is received from a
third-party application or a medical device. It seems that a test case
is passed when actually it is not. Therefore, identifying the root
cause of a fault is tricky due to the integration of various healthcare
applications with the IoT application under test.
Domain and Context-based Test Data. Though RESTest tries
to generate realistic test data, RESTest could not generate test data
considering domain properties and particular testing contexts. For
instance, generating a correct medication plan for a patient is not a
straightforward task. Creating a medication plan requires informa-
tion about the number of medicine doses, starting date, dose intake
time, number of days to take medicine, and medication rolls of a
medicine dispenser. This involves understanding domain proper-
ties related to medications and the context of a medicine dispenser.
There is still a need for domain-specific and context-aware test
data generation approaches.
Valid JSON Object Generation. Healthcare IoT applications use
JavaScript Object Notation (JSON) format for data interchange. Send-
ing a valid JSON object in an HTTP request is a preliminary re-
quirement for the application to process the request. An invalid
JSON object leads to client error messages with 4XX status codes.
Since RESTest does not guarantee the generation of valid JSON ob-
jects, we identified many failures due to client-side error messages.
Further, type mismatching is another problem in creating a valid
JSON object. This happens when anAPI requires certain properties
in string formats. For example, if an API requires a phone number
in string format and RESTest generates meaningful strings, the API
returns a type mismatch error message. Therefore, Generating a
valid JSON object is necessary for testing REST APIs of IoT appli-
cations.
Tailoring Test Configurations. An important input of RESTest
is a test configurations file that specifies API endpoints, test param-
eters, weights, type of test data generator, and expected outcome.
Though RESTest can generate test configuration files, modifying
them for a particular application context is needed to be done care-
fully. Among all types of test configurations, selecting a test data

generator and designing its structure is crucial, especially for JSON
objects with complex layouts. Moreover, defining test configura-
tions for one release may not be reused for testing the next release.
For each REST API property change, its corresponding test config-
urations must also be modified accordingly.
ConsideringOASConstraints.OAS schema allows defining non-
nullable properties. In our experiments, we observed that RESTest
generates test cases without considering non-nullable constraints
on the properties. Violating such constraints results in input valida-
tion error messages with 4XX status codes. Thus, considering such
OAS constraints in RESTest’s test generation process is important.
Smart Testing Strategy. The dependency among various REST
API endpoints of a healthcare IoT application needs an intelligent
testing strategy. For example, the steps for assigning an alert (re-
ceived from a patient) to a medical professional are: (i) get an unas-
signed alert, (ii) identify an appropriate person (doctor, nurse, care-
taker, etc.) to assign the alert, and (iii) send a POST request to as-
sign the alert. Each step has a separate REST API. Calling each
REST API individually in different orderings will not lead to ade-
quately testing the alert assigning scenario. Consequently, failures
detected in this way will not help in finding faults. We also ob-
served that APIs have optional properties in their schema. Some-
times RESTest sends a request without optional properties and ex-
pects a failure response. Moreover, the overall 56% API coverage
achieved by RESTest is low for IoT applications. Therefore, a smart
testing strategy is needed by considering API dependencies, op-
tional properties, and API coverage.
Test Stubs Generation. Many REST APIs related to various in-
tegrated healthcare applications and medical devices support two-
way communication. Testing such REST APIs requires initial in-
put from integrated healthcare applications or medical devices. For
example, a medical device can generate an alert about a patient’s
medical condition. To test the assign alert REST API, a medical de-
vice must have generated an alert. Without having an alert before-
hand, generating test cases for assign alert REST API will not lead
to finding faults. This requires an approach to generate test stubs
for integrated healthcare applications and medical devices.
Optimized Tests Generation. Testing REST APIs of an IoT ap-
plication in production and a rapid-release environment involves
constraints such as a fixed time frame for test generation/execution
and a limit on API requests to third-party applications. Generating
and executing many test cases for such a scenario is not practical.
Moreover, test cases with a high degree of random test data make
it challenging to reproduce faults. Therefore, a testing approach
that focuses on generating and executing an optimized set of test
cases is needed.
Relevance of Lessons Learned. Our evaluation is valuable for
Oslo City in terms of improving the quality of healthcare applica-
tions and developing a testing infrastructure in the future [36]. Ad-
ditionally, since REST APIs are commonly used in IoT-based appli-
cations [35], the lessons presented are also relevant for practition-
ers developing other IoT applications. Moreover, similar faults (the
ones discussed in this paper) exist in various IoT applications, e.g.,
smart home systems [41]. Consequently, practitioners can benefit
from implications and lessons while testing REST APIs of their re-
spective IoT applications, e.g., smart homes and security systems.
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6 CONCLUSION

We reported a real-world evaluation of RESTest for testing REST
APIs for a healthcare IoT application to assess RESTest in identi-
fying REST APIs failures, faults in the application, and REST APIs
coverage. We evaluate different testing techniques of RESTest in-
cluding CBT, ART, RT, and FT using six REST APIs. Results show
that several failures are discovered in different REST APIs with
≈56% overall coverage using RESTest. Results also show that nine
potential faults are found in five REST APIs from failure and suc-
cess reports produced by RESTest. Moreover, testing techniques
CBT, ART, and RT are more effective than FT regarding failures
and faults.
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