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ABSTRACT

Automated static data�ow analysis is an e�ective technique for

detecting security critical issues like sensitive data leak, and vulnera-

bility to injection attacks. Ensuringhighprecision and recall requires

an analysis that is context, �eld and object sensitive. However, it

is challenging to attain high precision and recall and scale to large

industrial code bases. Compositional style analyses inwhich individ-

ual software components are analyzed separately, independent from

their usage contexts, compute reusable summaries of components.

This is an essential feature when deploying such analyses in CI/CD

at code-review time or when scanning deployed container images.

In both these settings the majority of software components stay the

same between subsequent scans. However, it is not obvious how to

extend such analyses to check the kind of contextual taint speci�-

cations that arise in practice, while maintaining compositionality.

In thisworkwepresent contextualdata�owmodeling, anextension

to the compositional analysis to check complex taint speci�cations

and signi�cantly increasing recall and precision. Furthermore, we

show how such high-�delity analysis can scale in production us-

ing three key optimizations: (i) discarding intermediate results for

previously-analyzed components, an optimization exploiting the

compositional nature of our analysis; (ii) a scope-reduction analysis

to reduce the scope of the taint analysis w.r.t. the taint speci�ca-

tions being checked, and (iii) caching of analysis models. We show

a 9.85% reduction in false positive rate on a comprehensive test suite

comprising the OWASP open-source benchmarks as well as internal

real-world code samples. We measure the performance and scal-

ability impact of each individual optimization using open source

JVM packages from the Maven central repository and internal AWS

service codebases. This combination of high precision, recall, perfor-

mance, and scalability has allowed us to enforce security policies at

scaleboth internallywithinAmazonaswell as for external customers

through integrations into multiple external AWS cloud services.
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1 INTRODUCTION

Enterprises enforce a wide range of security policies on software ap-

plications to detect potential vulnerabilities [8, 20, 22], data leaks [13,

21] , information �ow policy breaches [10], etc. A common route to

enforcing these policies is statically analyzing code and con�gura-

tions and issuing warnings to the user either early on in software

lifecycle, e.g., during code reviews [2, 6, 7], or analyzing deployed

artifacts like containerized applications [3, 9] and issue high-severity

warnings [18, 19]. Irrespective of the stage at which static analysis

tools are deployed, it is essential that these tools have a low false

positive rate to minimize the e�ort and time required to investigate

these warnings, and a low false negative rate in order to ensure high

coverage w.r.t. the properties being checked. Typically, achieving

these goals is at odds with scaling to analyzing millions of lines of

code in industry-scale applications [31].

Tracking data�ow from sources to sinks can detect a large class of

security vulnerabilities i.e., it can report data�ow from APIs where

user-controlled or "tainted" data enters the application to where

the data reaches security-sensitive endpoints. A vast amount of re-

search exists in scaling static taint analysis such as demand-driven

approaches that follow a "start anywhere" in code [47, 49], modular

bottom-up analysis [35], and bi-abduction based analysis [30]. In this

paper, we describe CompTaint, a compositional taint analysis for

Java code that is deployed internally within AWS and externally as

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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part of two cloud-based services–Amazon CodeGuru Reviewer [2]

and Amazon Inspector [18].

Design Choice CompTaint implements a �eld, object and context

sensitive compositional heap analysis following the approach in

[35, 41].We extend this heap analysis to a compositional taint analy-

sis using the approach in [36]. We made the design decision to focus

on a compositional analysis because it unblocks optimizations that

are key to our two main use cases: code-review integration on inter-

nal codebasesand inCodeGuruReviewer [2], andcontainer scanning

as part of Amazon Inspector [18]. A compositional analysis typically

involves computing a generalizable summary of a program compo-

nent that canbeapplied tomultiple contexts, e.g., computinganalysis

summary of a method that can be applied to di�erent calling con-

texts to obtain the context-sensitive analysis states at call sites. This is

important when deploying an analysis that posts recommendations

at code review time as most of the code stays the same between

commits. Reusing the analysis results from a previous scan for un-

changed components ensures a fast turnaround. Furthermore, code

artifacts deployed in containers often consist of many open source

libraries that do not change between deployments. Precomputing

analysis results for such libraries greatly reduces analysis time.

The bene�ts of such a modular analysis (avoiding repeated re-

analysis of components, e.g., per usage context, and analyzing inde-

pendent components in parallel) are well-established and have been

discussed by previous work [40, 41]. In this paper, we present three

orthogonal performance optimizations that were key to deploying

this analysis in production including discarding the intermediate

state, an optimization intrinsic to the compositional nature of the

analysis. Furthermore, we present an extension to the taint analysis

in order to verify complex taint speci�cations that arise in practice,

whilemaintaining the compositional nature of the analysis resulting

in a signi�cant improvement in precision.

Soundness and PrecisionA lot of work in the literature explores

the impact of memory abstractions [37] and design choices around

context, �ow, and �eld sensitivities [46, 48, 49] on the precision of

static analyses. While precisely tracking data�ow from sources to

sinks is indeed important to maintaining a low false positive rate,

an equally important aspect that has received signi�cantly less at-

tention is the problem of precisely identifying sources and sinks

in source code. With the notable exception of CodeQL [6], many

taint speci�cations in the literature simply list a set of APIs of inter-

est [17, 43] that are marked as sinks or sources. However, in practice

the speci�c behavior of these APIs that determines whether they are

sinks, sources or sanitizers depends on the context in which they

are called. For example, the Java Cipher class will either perform

encryption (behave as sanitizer) or decryption (behave as source)

depending on how it was initialized.

We found that in addition to precisely tracking data�ow, the preci-

sion of the analysis signi�cantly depends on the accuracy of identify-

ing program locations matching such contextual taint speci�cations.

The context could be constant values passed to certain APIs as in the

Cipher example, sequences ofAPI calls to de�ne sources or sinks, and

such. To address this concern while maintaining compositionality,

we developed a novel speculative context resolution technique inte-

grated into the compositional taint analysis. This technique resulted

in a reduction in the false positive rate of CompTaint by 9% on av-

erage on a large corpus of real-world examples as motivated in § 2.1.

StepsbeforeProduction Toascertain thatCompTaint isproduction-

ready, we evaluated it on the OWASP+ benchmark [14] with ground-

truth, conducted shadow reviews on datasets without ground-truth

and iterated on adding features in the analysis to address recall and

precision. Once the analysis achieved best-in-class OWASP score

among competing tools and a stipulated high acceptance rate in its

internal deployment (<20% false positives for all its information�ow

rules),we focusedonscaling theanalysis to larger analysis targets fol-

lowed by large number of analysis targets. A target is any analyzable

artifact. For example, a target could be a JAR �le from build artifacts

of a code repository or even a collectionof JAR�les including the run-

time dependency closure of a set of code repositories. Before deploy-

ing in production, we evaluated the analysis on datasets representa-

tive of twodeployment scenarios: (a) a small number of code artifacts

as target. This represents the deployment in CI/CD on code reviews

alongside other cloud-based SAST tools that runs in AWS [1, 34, 42].

(b) large dependency closures of a code artifact, typically containing

hundreds of code artifacts, representing analysis of containerized

applications running in the cloud [18, 19].Out of the box, the analysis

did not scale to the single-target deployment scenario above.

Contributions In this paper, we �rst describe CompTaint’s com-

positional taint analysis emphasizing key features that allowed it to

meet the recall and precision bar inside AWS. Speci�cally:

• We developed an encoding on top of our abstraction of the heap

to perform a compositional taint analysis, including a novel

speculative context resolution technique to identify contexts

aroundsources, sinks, andsanitizers,whichsigni�cantly increased

the precision of our analysis while retaining its compositional

formulation.

Next, we describe a set of optimizations that made it possible to scale

CompTaint to large industry-scale applications in its production

deployment:

• Discarding intermediate analysis state: we leverage composi-

tionality of our analysis to discard a large fraction of the abstract

state for analysis components that are already summarized. We

measure its e�ect and show how it favorably impactsCompTaint.

• Analysis scope reduction: we design a light-weight scope-

reduction analysis that prunes entry-points into the program that

if analyzed could not produce a security vulnerability given a set

of input taint speci�cations. This optimization elides the analysis

of a sizeable amount of code signi�cantly reducing analysis

complexity without compromising soundness.

• Caching invocation models: we implement caching of

applicable taint speci�cations matching invocation sites of taint

relevant APIs. We show that this substantially reduce the time

for the scope-reduction analysis and the taint analysis.

Evaluation In this paper, we evaluate CompTaint on 20 artifacts

from Maven Central [12] and code artifacts from 4 external AWS

services. In order to present results comparable to CompTaint’s

deployment in Amazon Inspectorwhere it scans large containerized

applications, we create analysis targets by generating code artifacts

of the dependency closures of 500 Maven Central repositories and

use a sampling methodology to select the closures. Likewise, to mea-

sure CompTaint’s performance on scans of industry-scale cloud
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services, we analyze the dependency closures of AWS services start-

ing from a few known root repositories. We measure the e�ect of

each optimization on the above datasets and describe how these

techniques underpinning our analysis turned out to be critical in

production. In order to evaluate the e�cacy of speculative context

resolutionwe evaluate CompTaint on a dataset of injection vulner-

abilities. Further, to establish that the baseline analysis with context

resolution, before the performance optimizations, has state-of-the-

art recall and precision, we evaluate CompTaint on the dataset

that includes OWASP [14], an industry standard for benchmarking

security properties, among other real-world code examples.

Deployment CompTaint is deployed internally at Amazon inte-

grated with the code-review system. CompTaint runs an ensemble

ofchecks, andautomaticallyposts recommendationsoncodereviews

based on its �ndings. Developers have the option of marking recom-

mendations as useful or not useful. Based on this developer feedback,

CompTaint has an average acceptance rate of >80%
1. CompTaint

is also deployed externally as part of an AWS service called Amazon

Inspector [4, 18] and Amazon CodeGuru Reviewer [2]. CompTaint

powers Amazon Inspector to execute high-�delity scans of con-

tainerized AWS Lambda [5, 18] functions.

2 MOTIVATION

In this section, we present several motivating examples to illustrate

the kind of complex contextual taint speci�cations that arise in prac-

tice. Additionally, we motivate the need for additional performance

optimizations by showing empirical results on running the baseline

analysis on benchmarks fromMaven Central [12] and code artifacts

from four external AWS services using the methodology described

in § 6.

Traditionally, taint tracking tools [17, 43] specify sources, sinks

and sanitizers at the API level by matching against a given method

signature. However, in practice whether a given API acts as a source,

sink or sanitizer often depends on the context. Consider Code 1:

whether the Cipher.doFinalmethod performs encryption and acts

as a sanitizer for sensitive data, depends on whether the Cipher class

was initialized with the Cipher.ENCRYPT_MODE option. It is not safe

to assume that any call of Cipher.doFinal performs encryption. As

another example, consider checkingwhether Code 2 is vulnerable to

cross-site scripting: we want to ensure that attacker controlled data

doesnot reach theHttpServletResponse.getWriter().writemethod.

Note that the HttpServletResponse.getWriter()method returns a

PrintWriter. Simply matching on the PrintWriter.write method

signature results in many spurious �ndings.

Finally, Code 3 shows a more complex example of object deseri-

alization using an XStream [23] instance typically used to serialize

and deserialize objects in XML and JSON formats. The simplicity of

usage of XStream comes with the cost of exploitability. It has been

exploited by researchers and adversaries to in�ict remote command

execution and denial-of-service attacks [24]. In Code 3, a new URL

is created from untrusted external input on line 6 and InputStream

created from the URL is later deserialized using XStream on line 7. The

XStream library now provides methods to allow list trusted types

1We cannot disclose exact details around numbers of recommendations and their
validity for AWS internal subjects, so we present conservative numbers here.

1 Cipher cipher = Cipher . getInstance ("AES");

2 cipher .init( Cipher . ENCRYPT_MODE , key);

3 log.info( cipher . doFinal ( secretText ));

Code 1: Cipher sanitizer for sensitive data leak.

1 void process ( HttpServletRequest req ,

HttpServletResponse rsp) {

2 String param = req. getParameter ("val");

3 rsp. getWriter (). write ( param ); // XSS sink

4 PrintWriter writer = new PrintWriter ();

5 writer . write ( param ); // not a sink

6 } Code 2: Cross-site-scripting (XSS) sink.

1 void parse ( String url) {

2 XStream xs = new XStream ();

3 readUrl (url , xs);

4 }

5 void readUrl ( String url , XStream xs) {

6 InputStream in = new URL(url). openStream ();

7 Snapshot obj = ( Snapshot ) deserialize (xs , in);

8 }

9 Object deserialize ( XStream xs , InputStream in) {

10 byte [] str = in. readAllBytes ();

11 return xs. fromXML (str);

12 }

13 void safeConfigure ( XStream xs) {

14 xs. allowTypes (new Class [] { Snapshot .class ,

Envelope . class })

15 }
Code 3: XML external entity sink.

using allowTypes. Line 14 shows this potential mitigation to the vul-

nerability by calling safeConfigure before readUrl on line 3. Observe

that tainted data–variable str–still �ows into the sink on line 11. The

context that the analysis must capture is associated with variable xs

andnot the tainted variable str, and the sink fromXML() is neutralized

due to safe state of the xs object. This example also illustrates that

precisely tracking the context requires an inter-procedural analysis.

2.1 Contextual Taint Speci�cations

Not taking the context into account, and matching the taint speci�-

cation at the API level results in a precision loss of 9.85% on average

and as much as 50% on certain vulnerability categories (§ 6.1: Table 1

shows detailed results).

Compositionality inContextualData-�ow Inorder toaccurately

identify the context aroundmatching taint speci�cationsonprogram

values that are not tainted but relevant to context, the analysis could

use other sub-analyses to identify the sources, sinks, and sanitizers

precisely, either apriori or synchronously with the main analysis.

These sub-analyses could use light-weight, local analyses to identify

these contexts imprecisely, use demand-driven heavy-weight inter-

procedural precise analyses such as constant propagation, type-state,

and complex-value �ow analysis. We overview the compositional

taint analysis that powers CompTaint in § 3. Our design resolves

these contexts in the same pass integrated with the compositional

taint analysis. First, in the use cases we encountered the context

spanned across large depths of inter-procedural data-�ow obviating

local lightweight analysis. Secondon-demandanalysis does not scale

beyond a bounded depth of inter-procedural �ow in practice due to

an exponential number of recursive queries [34], and it’s challenging

to reuse partial analysis results due to new contexts that renders the

partial summaries invalid [28]. Third, we wanted to keep the compo-

sitional formulation such that the analysis remains compatible with
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our goals of leveraging reusable summaries of already analyzed pro-

gram components. Fourth, as § 3 will detail, the computation of the

abstraction of the heap computed for every strongly connected com-

ponent (SCC) in the program is expensive and is prohibitive to be re-

peated for �ow of di�erent types through the heap such as constants,

API calls for context, as well as other metadata for the taint analysis

ruling out the possibility of using multiple sequential analyses.

2.2 Practical Challenges: Speed and Scale

Before we describe the techniques in § 3 underpinning the high

precision in contextual data-�ows (results in § 6.1), we note that this

appealing result initially camewithpractical setbacks.Weperformed

o�ine experimentation on initial versions of our evaluation datasets

(see § 6.2.1) before deploying CompTaint in production. We ran the

baseline analysis without the performance optimizations in § 4 on

the dependency closures of repositories fromMaven Central [12]

and dependency closures of target repositories of 4 AWS services.

We observed that 19.5% out of 82 Maven dependency closures timed

out with a time limit of 1 hr; the logs showed on average 57.5% of

the whole program was not analyzed on the Maven closures com-

puted based on number of SCCs processed. This raises the following

question: Is there a path to e�ciency without sacri�cing accuracy? To

answer the question we started investigating on three main areas:

(a) Given a set of taint speci�cations ( , does the analysis need to

analyze all components in the global callgraph� built from all the

target code artifacts to retain soundness and precision? (b) Are there

performance bottlenecks in the analysis? (c) Are there any symp-

toms of memory bottlenecks, and if yes, can we address the issues

leveraging the compositional analysis design?

3 COMPOSITIONALANALYSIS

In this section we give a high level overview of CompTaint ’s com-

positional analysis algorithm. To handle heap aliasing composition-

ally, we use the approach described in [41] to compute context-

independent summaries that are agnostic to the input heap. To

achieve compositional taint tracking, we extend the compositional

heap summaries of [41], to taint summaries by taking the approach

presented in [36]: heap e�ects in summaries are extended with taint

e�ects (§ 3.2). Taint e�ects capture how the tainted speci�cation

applies to code e.g. whether a heap location contains tainted data

coming from a source, or whether it �ows into a sink.

At a high level,CompTaint considers eachmethod in the program

as a component, i.e., theunit of composition. For eachmethod,Comp-

Taint computes its e�ectsusing thee�ects computed for themethods

it calls. § 3.1 describes the de�nition of a component in presence of re-

cursion. E�ects,whichwedescribe in § 3.2, capture data�ow relevant

behavior, includingheapaccesses, and taint sourcesandsinks, among

other analysis state.CompTaint computesmethods’ e�ects in depen-

dency order, i.e., callees before callers. The dependency order is de-

termined from the call graph, whichwe describe in § 3.1.CompTaint

computes the e�ects of each method by iterating over the e�ects

of its statements. Since the call graph may be cyclic, and individual

methods can contain loops,CompTaint computes the limits of these

iteration sequences to ensure methods’ e�ects capture all possible

behaviors. We guarantee termination by ensuring these limits have

�xed points by applying abstractions to approximate e�ects [32].

3.1 Component Dependency Order

To determine the dependency order between program components,

CompTaint �rst computes a whole-program call graph. Technically,

the call graph provides a mapping from program statements that

might invoke some method, i.e., call sites, to methods that are po-

tentially invoked, i.e., call targets. We obtain a dependency graph

among methods by identifying call sites with their enclosing meth-

ods. However, this dependency graph may be cyclic, due to either

recursion or call-graph imprecision. To obtain the desired depen-

dencyorder amongcomponents,we compute the strongly connected

components (SCCs) of the method dependency graph. CompTaint

then considers each SCC as one single component, and computes

components’ e�ects in SCC dependency order.

To achieve an adequate balance of precision and scalability,Comp-

Taint computes call graphs via the variable type analysis (VTA) algo-

rithm [50] implemented by SPARK [39]. This algorithmutilizes an in-

expensive yet whole-program context-, �ow- and object-insensitive

“pointer analysis” using a data structure called the type-propagation

graph or pointer assignment graph (PAG). Graph nodes represent

program variables, and edges represent assignments. Program types

are seeded to their corresponding graphnodes at allocation sites, and

propagatedacrossgraphedges to thenodescorresponding tocall-site

receivers. We obtain the resulting call graph by collecting methods’

implementations for the types propagated to each call site as poten-

tial targets. We achieve this in linear time by computing and prop-

agating types over the strongly connected components of the PAG.

3.2 Compositional E�ects

CompTaint computes e�ects capturing the behaviors relevant to

data�ow analysis. These e�ects include whether a given program

value originated from a data�ow source, reached a data�ow sink,

or was processed by a data�ow sanitizer. Since these e�ects are

semantic properties relative to the policy being enforced, their spec-

i�cations are provided as input rather than hard-coded into the

analysis. CompTaint consumes such speci�cations as models that

apply to program statements. For example, models can specify that

sink e�ects are applied to the input arguments of SLF4J logging API

calls, or that a sanitizer e�ect is applied to the return value of an

application-speci�c sanitizer method.

Because CompTaint analyzes each component in isolation, we

must capture these e�ects, e.g., of a sink, without knowing whether

thegivenvalueoriginated fromasource.CompTaint represents such

compositional e�ects symbolically with respect to method param-

eters. Simple e�ects like source, sink, and sanitizer amount to unary

predicates on symbolic parameters, as well as local and global vari-

ables. Inputmodels induce suche�ects, for example inCode3at line 6

a source model for URL.openStream()would apply a source e�ect on

its return value. Flow-through e�ects capture binary data�ow rela-

tions among symbolic parameters, e.g., �ow from a method parame-

ter to its return value. For example in Code 3 at line 10, a �owmodel

for InputStream.readAllBytes()would apply a �ow-through e�ect

from its receiver object to its return value.Whenmethods’ e�ects are

composed together, i.e., at call sites, the resolution of symbolic e�ects

can trigger combinational logic. For example, when a sink e�ect of

a method parameter is resolved to a call-site argument with a source

e�ect, a source-to-sink �ow can be detected; if the �rst parameter
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had a sanitize e�ect instead, the source e�ect could be removed.

To achieve an adequate level of precision, e�ects are context-,

�ow-, �eld- and object- sensitive. The aforementioned symbolic rep-

resentation provides context sensitivity, since symbolic values are

resolved according to call-site context. We achieve �ow sensitivity

by computing e�ects sequentially over program statements and com-

posing e�ects at call sites in call graph dependency order. To achieve

�eld and object sensitivity, CompTaint follows the modular heap

analysis frameworkofMadhavanet al. [41] andFenget al. [35], repre-

senting e�ects over object graphs: nodes correspond to objects reach-

able from parameters, local, and global variables, and edges capture

�eld accesses among objects. In this way, aliasing among accesses

is captured by multiple incoming edges to a given node. This repre-

sentation provides �eld sensitivity, since distinct �elds of any given

object may be incident on distinct nodes in the graph, and object sen-

sitivity, since distinct objects in the graph may share the same type.

3.3 Speculative Context Resolution

Next,wediscuss the challengewith contextual taint speci�cations.

The fundamental problem stems from two distinct �ows, one for the

taint, and another for data-�owdetermining context around the taint.

Referring back to the code example in Code 3, the XStream.fromXML()

method applies a sink e�ect on str only in program contexts where

XStream.allowTypes() has not been called earlier on its receiver xs.

Note that when this context dependency is actually resolved, for

example at line 14 inside safeConfiguremethod, the tainted value

str is not available and thus we cannot simply apply a sanitize ef-

fect on it. Instead, the validity of the sink e�ect on str at line 11

depends on the state of xs. If safeConfigure were to be called just

before line 11, then this context could be immediately resolved for

any context where deserialize is called and we could elide the sink

e�ect on str. In general however, this context may be resolved inter-

procedurally, for example by calling safeConfigure before the call

to readUrl at line 3 when neither the source e�ect at line 6 nor the

sink e�ect at line 11 have yet manifested. As such, when analyzing

deserialize method in isolation, the validity of the sink e�ect at

line 11 cannot be resolved since it may indeed be called in a context

where safeConfigurewas never called.

In order to capture such inter-procedural contextual data-�ows in

our compositional analysis design, we introduce speculative e�ects-

an e�ect that is only valid when additional context predicates are

− t a r g e t :

c l a s s : XStream

method: a l lowTypes

sou r c e : ! t h i s # taints the receiver object

kind : SAFE_CONFIG # to capture context

− t a r g e t :

c l a s s : XStream

method: fromXML

s ink : ! a l l A r g s # sinks all arguments

kind : XML_READ

con t e x t : { on: ! t h i s , i f : { has :NONE, k ind :SAFE_CONFIG } }

Code 4: CompTaint speci�cations for handling contextual

data-�ows in Code 3.

also satis�ed. A context predicate evaluates a logical combination of

primitive predicates on a symbolic method parameter. CompTaint

supports two types of predicates that check set membership of the

kind(s) of taint or the values of program constants among a speci�ed

set of values.

The general support for contextual data-�ows in CompTaint

necessitatedcarefulhandlingof speculativee�ects tohandlemultiple

context predicates, their partial resolution inmethod summaries, and

their interactionswithregularorspeculativesanitizee�ects.Weelide

thesedetails here, but such intricatehandlingwasneeded toprecisely

resolve contextual data-�ows in observed real-world code patterns.

4 OPTIMIZATIONS

This section describes the three optimizations that had a signi�cant

impact in CompTaint’s deployment.

4.1 Discarding Intermediate E�ects

Recall that CompTaint implements a compositional analysis that

computes individual method summaries, and analyzes SCC in the

method dependency graph to a �x point. This means that we can

reduce the peak memory usage by discarding intermediate per-

statement e�ects for previously-analyzed components, loading pro-

gram components dynamically as they are analyzed, and unloading

previously-analyzed program components.CompTaint currently

exploits the former, but not the latter two opportunities. Note that

within a component, CompTaint must keep the e�ects for each

program statement in order to compute the �xed points of e�ect iter-

ation sequence limits. Once the �xed points have been computed for

a given component, only the method-level e�ects need be retained,

i.e., to apply to call sites; per-statement e�ects are deallocated. Note

that a traditional whole-program analysis would need to keep the

state at all program locations in order to reach a �xed point, so this

optimization leverages the compositional nature of the analysis.

4.2 Analysis Scope Reduction

Given a set of input speci�cations ( and a call-graph� built globally

over all the targets for an instance of the analysis, the goal is to de-

termine parts of the program on which the heavyweight heap-e�ect

analysis can be elided without loss in soundness or precision. The

analysis that determines what can be elided must be lightweight.

Soundness Versus CostAt a very high-level, one might start from

an insight as follows: a subgraph� ′ of thewhole-program call graph,

� , is relevant for theanalysis if data-�owfromasourceof tainteddata

to a sinkoccurs in� ′.A simpleover-approximationof this idea is that

if a sourceandsinkarenot reachable ina subgraph� ′ rootedatvertex

+ over outgoing edge�, then� ′ could be elided from analysis assum-

ing� ′ is reachable from roots of� only via+ . However, it is straight-

forward to come up with a counterexample to the above argument.

public void entry () {

valB = foo(valA) // aliases valA and valB

bar(valA , valB) // taints valA and sinks valB

}

In the example above, we see an invocation to foo is followed by

invocation tobar inmethodentry.While� ′, the program reachable

from foo does not taint or sink the data �owing into foo, it creates an

aliasing relationship between valA and valB. The subgraph rooted

at bar then taints valA and sinks valB creating an insecure data �ow.
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Clearly, eliding� ′’s analysis will be unsound, however, precisely

checking for aliasing will require an analysis as expensive as the

full-blown taint analysis.

Eliding Safe Call Graph Roots To avoid analyzing a subgraph it

is not su�cient to conclude that the subgraph is devoid of program

locations with matching sources or sinks but we need to ascertain

that the subgraph does not induce aliasing relations that are then

used in the same subgraph or another subgraph in the call graph.

Fundamentally, to elide analysis of subgraph � ′ rooted at + , the

analysis needs to consider sources and sinks reachable from+ and

aliasing created in� ′. As a sound over-approximation, we can elide

roots ' of the call graph from analysis—inferred as safe roots—if no

matching sources and sinks are reachable∀A ∈', i.e. even if reachable

subgraphs from' create aliasing. For example, in the example above,

if no source or sink were reachable from the subgraph rooted at the

call to bar, the root entry is safe, hence the entire program reachable

from entry can be elided from taint analysis.

Adding Precision to Root Elision Given a set of taint speci�ca-

tions ( , we derive a set of taint rules)' . A rule, C in)' is given by

{C | C ∈ (BA2:8=3 , B8=::8=3 )}. The single element e�ects described

in § 3 such as source and sink belong to a hierarchy of types called

kinds. A rule speci�es the types of sources and sinks that constitute a

vulnerability. For example, a rule to detect XXE vulnerability [16] in

Code 3 is speci�ed by source type UNTRUSTED_DATA_NETWORK and sink

type XML_READ. A root of the call graph is only relevant for analysis,

if it has reachable source and sink types associated by a rule)' . The

scope-reduction analysis computes all source types and sink types

reachable from the roots of the call graph—the entrypoints—and dis-

cards the entrypoints which lack any reachable (BA2:8=3 , B8=::8=3 )

that corresponds to any rule C ∈)' . The scope-reduction analysis

is lightweight and discards entrypoints that are guaranteed to be

safe. The call graph is reused across the scope-reduction analysis

and taint analysis. The scope-reduction only requiresmatching taint

speci�cations—sources and sinks, and propagatesmatching (BA2:8=3
and B8=::8=3 ) up to the entrypoints bottom-up in the SCC graph.

Note that its analysis domain does not need any notion of access

paths or variables. CompTaint uses the results of scope-reduction

analysis to recompute a SCC graph using only potentially unsafe

entrypoints that are relevant for the analysis; the heavyweight taint

analysis that follows uses the reduced SCC graph. In § 6, we discuss

the impact of this optimization.

4.3 Caching InvocationModels

CompTaint provides a library of source, sink, and sanitizer speci�-

cations that are applied to the program under analysis. Additionally,

to model the �ow of tainted data in libraries, CompTaint supports

�ow models that apply �ow-through e�ects. These models are ap-

plied at invocation sites to di�erent methods, i.e. API calls in the

program, and referred to as invocation models2. Any instantiation

of CompTaintmust match every model in" , the set of invocation

models in the speci�cation library, to every call site. CompTaint as

described in § 3 executes a �xed-point iteration on every SCC. In the

entire program if CompTaint executes � iterations, and models are

2Note that there are other models in CompTaint that are applied to non-
invocations, e.g. �eld models directly capture tainted data-�ow through �elds and are
applied to loads/stores directly.

matched at every invocation site, say # sites, the time complexity

of model matching is$ ("×�×# ).

In order to avoid repeating a linear scan of all the models every

time a call site is analyzed in an iteration, CompTaint creates an

index of the target and the models that match the target method(s)

at a call site. Once cached, the cost of model matching at a call site is

roughly a constant time lookup on the cachedmodels that apply only

for the targets at the call site. Asymptotically the time complexity

is dominated by � and # , i.e.$ (�×# ). This is signi�cant since a tool

like CompTaint usually has a perpetually growing list of models

owing to its vast number of customers and common libraries and

SDKs used by its di�erent customers.

The caching described here is an over-approximation and ignores

the context resolutiondescribed in § 3.3. Further, the scope-reduction

analysis and taint analysis equally bene�t from caching invocation

models. Recall that the scope-reduction analysis only needs caching

of source and sink models, unlike taint analysis, which caches san-

itizer and �owmodels in addition. § 6 discusses the impact of this

optimization on CompTaint’s performance.

5 IMPLEMENTATION

CompTaint is implemented as a modular static data-�ow analysis

framework for Java. At the heart of this framework lies an abstract

reachability algorithmsmodule that traverses over abstract program

statements and control-�ow edges to compute �xed point. Thismod-

ule can plugin the underlying program representation, and currently

we support the Soot Jimple representation [51] for Java bytecode

analysis, and the MUGraph representation [25] for Java and Python

source code analysis. Before the analysis, we compute the entry-

points for the analysis. Entry-points can be annotated explicitly.

In addition, we generate a synthetic entry-point for a subject that

captures invocations to all public methods in a non-deterministic

order. We then build the whole-program call-graph using variable-

type analysis (VTA) [50] implementation fromSoot Pointer Analysis

Research Kit [39] to determine the component dependency order

as described in § 3.1. Client analyses extend the reachability anal-

ysis by providing implementations for their analysis e�ects, states

and state transformers. CompTaint implements an alias analysis by

modeling heap locations as nodes in a graph and program statements

with alias e�ects for assignments, reads and writes inducing edges

among them. CompTaint then extends this with the introduction of

taint attributes for heap locations and e�ects of source, sink, sanitize

and �ow of taint attributes. The aliasing and taint e�ects are com-

puted and summarized simultaneously for each programcomponent.

Throughout the analysis, various relations from program locations

to e�ects on attributes of heap locations are asynchronously written

to a tracing database on disk. When CompTaint detects a �nding,

it uses the tracing database to reconstructs a trace on-demand. In

addition to the optimizations discussed in § 4,CompTaint provides a

number of options and analysis abstract state size limits for con�gur-

ing the scope of analysis e.g. state size limiting for SCC components,

and making it tractable within various SLAs of its deployment use

cases. To ensure we can handle very large inputs where it may not

be feasible to terminate, CompTaint has the ability to report partial

�ndings. A trace reconstruction thread runs in parallel and queries

the tracing database to report detailed traces as �ndings are discov-

ered. Note that this works evenwhenwe reach the analysis state size
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budget on an SCC component: due to the compositional nature of the

analysis we can just compute an empty summary for the o�ending

component and continue the rest of the analysis.

For security policy enforcement, CompTaint provides an exten-

sible YAML based language to specify rules and models. Rules map

interactions of taint and sink kinds to known vulnerabilities. And

models specify which API methods induce taint e�ects of said kinds.

CompTaint checks 17 information-�ow policy rules to prevent data

leaks and top OWASP injection vulnerabilities [15]. It has an exten-

sive library of models for the JDK, Javax, Apache Commons, Guava

and popular Java libraries for logging, authentication, serialization

and DOM parsing, database connectivity and web-app frameworks.

Additionally, it uses models for the AWS SDK and service APIs for

scanning Amazon internal codebases.

Limitations: CompTaint’s current implementation is robust for

Java bytecode analysis, thoroughly tested for versions 8 and 11 of

the JDK. It does not analyze native code and code that uses re�ec-

tion. It does not currently support runtime dependency injection

frameworks. When analyzing concurrent programs, it considers

their single-threaded execution, so it does not guarantee detection

of data-�ows via shared-memory interference, and inter-process

communication.

6 EVALUATION

In this sectionwepresent experimental results showing theprecision

and scalability of CompTaint. For evaluating precision we use a

labeled dataset consisting of the OWASP Benchmark [14] as well as

an internal testsuite. For the performance evaluation, we use a set

of open-source Maven Java projects, as well as a set of internal Java

Amazoncodebases. Inbothcases,weanalyzenotonly theapplication

packages, but also include the packages in the runtime dependency

closure. Note, we do not evaluate precision and recall on this larger

dataset because we do not have ground truth labels for this dataset.

6.1 Precision Impact of Contextual Data�ow

To evaluate the precision impact of contextual data�owmodels, we

use a comprehensive labeled dataset of injection vulnerabilities from

theOWASP benchmark [14], an industry standard for evaluating the

accuracyandcoverageofautomatedsoftwarevulnerabilitydetection

tools. Due to the synthetic nature of these benchmarks, we further

Table 1: False positive rate (FPR) of CompTaint on a labeled

dataset of injection vulnerabilities compiled from 1572

OWASP tests, and 120 real-world code examples from thewild

with false positives reported by AWS developers on recom-

mendations reported by di�erent SAST tools on code reviews.

FPR = FP/(FP+TP)

Vulnerability category Baseline CompTaint

cross-site-scripting 7.61 6.97
ldap-injection 14.71 12.12
os-command-injection 13.46 12.90
path-traversal 13.41 13.41
sql-injection 11.01 10.75
xpath-injection 14.29 10.00
code-injection 50.00 0.00
http-response-splitting 0.00 0.00
log-injection 0.00 0.00
untrusted-deserialization 0.00 0.00
xml-external-entity 50.00 0.00

Average 15.86 6.01

complement them by adding 120 real-world code examples based on

false positives reported byAmazon developers on recommendations

reported by di�erent SAST tools on Amazon’s internal code reviews.

This further includes �ve additional injection categories not covered

by the OWASP tests (shaded bottom �ve rows in Table 1).

Table 1 summarizes the false positive rate (FPR) when running

CompTaintonbothdatasets.On theOWASPbenchmarks [14] alone,

CompTaint achieves a 100% recall and 13.23% false positive rate on

the six applicable categories. The table reports FPR with Baseline

and withCompTaint’s contextual data-�owmodeling– i.e. modeling

validity of sources, sinks, and sanitizers based on inter-procedural

context similar to Code 3. On all injection attack categories, an ab-

sence of contextual modeling, causes a precision loss of 9.85% on

average, most notably a loss of 50% on code-injection vulnerabilities.

To evaluate precision on real world code, we use our internal

deployment of CompTaint at code-review time. CompTaint posts

�ndings as comments on code reviews, and Amazon developers can

mark recommendations as useful, or not useful. Contextual data-

�owmodeling lowers the false positive rate, computed based on this

developer feedback, to less than 20% on internal code 1.

Notably, this signi�cant improvement in precision is achieved

with modest e�ort in writing and maintaining taint speci�cations.

CompTaint uses a library of 1534 taint speci�cations and only 42

(2.7%) of these require additional contextual modeling.

6.2 Performance Impact of Optimizations

6.2.1. Experimental Setup. Weprovide themethodology for build-

ing dependency closures fromMaven and internal service reposi-

tories.

MavenAnalysis TargetsWe used the libraries.io DB [11], which

has precomputed dependencies between libraries, and retained Java

projects fromMaven with Apache, MIT, or BSD-like licenses. This

yielded44,757projects, not countingversionsof the sameproject.We

built the dependency graph modulo versions conservatively count-

ing every version of only the runtime dependencies.We started from

the roots, 10,555 projects, and computed the transitive closure of

dependencies of each. Since evaluating dependency closures with

large overlap is redundant, we reduced overlap as follows. We com-

puted the Jaccard distance between each root and all other roots,

based on sets of dependencies, and sorted the candidates by mean

Jaccard distance to all others.We selected top 500 projectswith latest

versions in libraries.io. We binned these subject closures on number

of .jars, e.g. 1 jar, 2 jars, 3 jars and etc.We limit subject sizes at 20 jars

since subjects with 20+ jars timeout onmost con�gurations, making

it infeasible to empirically demonstrate the e�ect of optimizations.

We used strati�ed sampling on this distribution to get 20 closures

uniformly distributed across buckets.

InternalCodeAnalysis TargetsWealso evaluated our analysis on

four large internal applications. We selected code repositories with

application code and discarded third-party code, e.g. open-source

libraries. For each application, we build the closures from these jars

that includes all their bytecode. We include method signatures and

type hierarchies for the rest of the classpath. Table 2 shows statistics

about the sizeof these subjects. For thepurposesof this evaluationwe

will use “subject” and “closure” interchangeably, the latter referring

to the dependency closure of the former, the root repositories.
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Table 2: Experimental subject closures. Maven subjects

include their full transitive closure of runtime dependencies.

Service subjects include their closure of internal-code

excluding third-party dependencies.

No. Maven Subject #Jar(s) #Classes #LOC (Bytecode)
0 jbasics 1 610 67,328
1 etyl-spriter 2 47 14,127
2 simple-servlet-framework 3 219 23,567
3 elaUtils 4 604 127,353
4 lordo�hejars-bool 5 369 50,037
5 mind-map-swing-panel 6 327 52,009
6 opentracing-jdbc 7 118 17,599
7 minecloud-core 8 2,132 274,463
8 io7m-jvvfs-shell 9 266 31,869
9 javaflow-maven-plugin 9 524 148,394
10 wagon-gitsite 12 817 164,889
11 wicketstu�-restannotations 12 2,458 285,461
12 trap-js 13 325 41,864
13 radial-encapsulation 14 727 125,073
14 truststore-maven-plugin 15 709 132,242
15 maven-hadoop-plugin 16 770 147,249
16 domdrides-maven-plugin 17 1,493 285,993
17 classycle-maven-plugin 18 953 197,119
18 varnishtest-maven-plugin 19 765 149,319
19 maven-notice-plugin 20 1,567 285,351
No. Service Subject #Jar (s) #Classes #LOC (Bytecode)
0 anonymous-service-0 34 3,248 542,211
1 anonymous-service-1 4 277 93,204
2 anonymous-service-2 34 4,455 987,345
3 anonymous-service-3 195 6,831 1,133,865

6.2.2. Evaluation Questions. Our evaluation aims at answering

the following questions about the optimizations:

EQ1: Howmuch e�ect does scope-reduction analysis have in soundly

pruning the size of the analysis problem? This question should

answer howmuch of the program under analysis is irrelevant

given a set of taint speci�cations.

EQ2: What’s the e�ect of scope-reduction analysis in reducing analy-

sis time? Thisquestion clari�es if the codeelided fromanalysis

is truly expensive to analyze. And does scope-reduction add

any overhead to the analysis or is it lightweight in practice?

EQ3: How does model caching improve the time taken by taint analy-

sis and scope-reduction analysis? Wewill dive deeper into the

e�ect of model caching on each, its e�ect on taint analysis,

and to analyze if it has an e�ect on making scope-reduction

analysis lightweight.

EQ4: Does discarding intermediate abstract state impact the total

amount of abstract state maintained by the analysis? We look

into total abstract state sizes that can be discarded leveraging

compositionality in the lifetime of the analysis.

6.2.3. Experimental Results. To evaluate the impact of the opti-

mizations, we run CompTaint on Amazon EC2m5.12xlarge hosts

using di�erent con�gurations as shown below, eachwith 64 GB Java

heap limit and 1 hour time limit.

• Baseline: No performance optimizations enabled.

• ScopeReduction: Only scope reduction enabled over baseline.

• ScopeReduction + Caching: This enables caching invocation

models and scope reduction over baseline, i.e. adds caching to

ScopeReduction con�guration.

• Discarding: This enables only discarding of analysis state for

already summarized components over baseline.

• CompTaint: This enables all analysis optimizations.
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Figure 1: Number of relevant versus total public entry points

forMaven closures.
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Figure 2: Number of relevant versus total public entry points

for service closures.

It is worth noting that these con�gurations are analysis semantics

preserving and have no e�ect on the number of detected �ndings.

We con�rmed that the number of traces generated from each of the

con�gurations is identical for all subjects.

Impactof ScopeReductiononAnalyzedCode In order to answer

EQ1: Howmuch e�ect does scope-reduction analysis have in soundly

pruning the size of theanalysis problem?,wecompareBaselinewithno

performance optimizations and ScopeReduction. Our experiments

show that scope-reduction analysis reduces the number of relevant

entry points in every subject. The average reduction is 87%, with 89%

onMaven and 83% on service code. Figure 1 and Figure 2 show the

reduction in the number of entry points, while Figure 3 and Figure 4

show the reduction in the number of methods analyzed. Note that

adjudging entry points as safe or irrelevant may not lead to propor-

tionally lower methods analyzed. For example, a large fraction of

code may be reachable from a small fraction of relevant entry points.

However, in practice, we see substantial reduction in methods ana-

lyzed, for the reduced set of entry points above, on average 70%, 72%

onMaven and 59% on service closures.
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Figure 3: Number of methods analyzed, with and without

scope-reduction analysis, forMaven closures. TO stands for

timeouts.
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Figure 4: Number of methods analyzed, with and without

scope-reduction analysis, for service closures.

Impact of Scope Reduction onAnalysis Time To address EQ2:

What is the e�ect of scope-reduction analysis in reducing analysis

time?, we analyze the di�erence between analysis time with and

without scope-reduction analysis, ScopeReduction and Baseline re-

spectively, shown in Figure 5 and Figure 6.Without caching, there is

an average 47% reduction forMaven subjects. For service code, there

is reduction in analysis time on the 2 subjects, and in fact for the

remaining 2, scope-reduction analysis adds overhead to the baseline.

Next, in EQ3, we discuss howmodel caching turns this around, and

reverts its performance to be a lightweight analysis as hypothesized.

E�ect of InvocationModel Caching To understand the e�ect of

model caching, we use the con�guration called ScopeReduction +

Caching. Figure 5 and Figure 6 show the analysis time for ScopeRe-

duction + Caching, used to answer EQ3: How does model caching

improve the time taken by taint analysis and scope-reduction analysis?.

The average time reduction versus baseline rises to 60% for Maven

subjects and 19% for service subjects. Hence, combining both opti-

mizations produces worthwhile savings overall. Figure 7 shows the

amount of time spent in scope-reduction analysis with and without

caching. The average reduction is 89.2%. Note that in several Maven
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Figure 5: Total analysis time forMavenclosures for all the con-

�gurations. The label TO adjacent to bars stands for timeouts.
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Figure 6: Total analysis time for service closures with

di�erent con�gurations.

closures we found the analysis time was almost reduced by close to

100 percent, since all entry points were deemed irrelevant by scope-

reduction analysis. We do not present these subjects in the �gures

since they are less interesting, but in practice such scope reduction

has proven to be useful in production to reduce time and cost.

On average, the time spent in scope-reduction analysis without

caching represents 13.6% of total baseline time. With caching, these

percentages drop down to just 1.4% of the total baseline and 7.5% of

the total CompTaint time. Overall, 7.5% of analysis time is spent in

reducing 70% of code analyzed on average, and signi�cant reduction

in overall analysis time as discussed above. We conclude that the

cost of the scope-reduction analysis does pay o� when combined

with model caching.

E�ect ofDiscardingAbstract StateTo answer EQ4: Towhat extent

does discarding intermediate abstract state impact the total amount

of abstract state needed to complete the analysis? wemeasure the size

of the abstract state for Maven closures–nodes and edges in graph

modeling the heap, with and without discarding intermediate state.

Figure 8 shows the size of the abstract state for Maven closures, with

and without discarding intermediate state (minus a few cases where
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Figure 7: Time spent performing the scope-reduction part

of the analysis, forMaven closures.
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Figure 8: Size of abstract state with and without discarding

intermediate state, forMaven closures.

Baseline times out). We observe an average reduction of 94%. We

also measured the peak heap memory usage to estimate the e�ect

of this optimization. Although we see reduction in peak heap usage

on service code (not shown), peak heap usage depends on the heap

budget and frequency and number of garbage collections, and does

not always correlate growth inmemory usage to increase in analysis

problem size.

This dramatic reduction in abstract state size translates to lower-

ing analysis time on some services, e.g. CompTaint versus ScopeRe-

duction +Caching in Figure 6. OnMaven,we observe that discarding

abstract state sometimes come at a small cost in time due to more

garbage collections. Nevertheless, holding only necessary state in

memory lowers chances of out ofmemory errors onpathological sub-

jects with complex components that are memory intensive. Overall,

CompTaint reduces analysis time over baseline by 69.1% onMaven

and by 16.3% on service closures.

7 RELATEDWORK

We discuss relevant related work that are geared towards scaling

static taint analysis.

RAPID [34] internally uses a IFDS [44] based type-state analy-

sis and boomerang based taint analysis [47, 49]. RAPID combines

type-state checking and taint analysis to check similar properties

as CompTaint. RAPID scales on large subjects only with bounded

call-stack depths and cannot reuse analysis results of analyzed com-

ponents due to context-dependent summarization [28]. RAPID re-

quired partitioning [31, 34] in order to scale to subjects of sizes we

evaluate at the cost of soundness.

ANTaint [52] is an approach deployed at Alibaba for data leaks

detection and data consistency checks. It uses the FlowDroid [27]

taint analysis with several changes that improve the precision, re-

call, and scalability on service-oriented applications (SOAs), such

as Spring applications. Another approach tailored to SOAs is Jac-

kEE [26], aDoop-based [29] data-�owanalysis that demonstrates im-

provements in precision and scalability. JackEE achieves this via two

techniques, a generalized modeling of framework runtime behavior

and sound-modulo-analysis model of selected Java data structures.

While JackEE shows speed up of 4X compared to other analyses

on selected applications, the improvements are tailored to speci�c

frameworks and a subset of standard Java data structures. Comp-

Taint introduces more general optimizations.

P/Taint [36] is another approach based on the Doop framework.

In conventional taint analysis approaches, the data-�ow analysis is

a client of the points-to analysis (e.g., Beacon [38], FlowDroid [27]).

The uni�cation of both analyses into a single analysis is the key fea-

ture of this approach. P/Taintmainly focuses on improving precision

and recall. CompTaint is an industry-scale analysis and emphasizes

onmaintaining compositionality but like P/Taint uni�es taint propa-

gation and heap analysis. Tricoder [45] employs a collection of intra-

procedural analyses and uses a microservices architecture for scala-

bility. CompTaint is speci�cally built for scaling inter-procedurally.

Infer andZoncolan [33] are inter-procedural bi-abduction [30] based

analyses that operate at scale in Facebook. A qualitative compar-

ison of the approaches, such as a comparison with CompTaint’s

compositional contextual modeling, requires further analysis details

that are not published to the best of our knowledge. There is a rich

body ofwork onCFL-reachability based static analysis. Graspan [53]

models reachability as transitive closure problem on graphs and uses

large-scale graph processing for scalability. Grapple extends it to

checking �nite state properties [54]. CompTaint, combines taint

tracking with contextual data-�owmodeling, a �nite-state property,

into a single compositional analysis.

8 CONCLUSION

In this paper we presented an industry-scale compositional static

analysis that’s deployed internally in Amazon and externally as part

of AWS cloud services. We overview the compositional algorithm

we implemented and detail our contribution to model contextual

data-�ow over the heap analysis. We describe the setbacks we ex-

perienced before deploying CompTaint in production and how a

set of sound optimizations allowed us to productionize the tool. We

measure the precision bene�t of contextual data-�owmodeling. We

systematically built benchmarks to demonstrate challenges in real

deployment scenarios that require analyzing large artifacts, and

present the e�ect of the optimizations on the subjects.
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