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ABSTRACT

Cloud systems have become increasingly popular in recent years
due to their flexibility and scalability. Each time cloud computing
applications and services hosted on the cloud are affected by a
cloud outage, users can experience slow response times, connection
issues or total service disruption, resulting in a significant negative
business impact. Outages are usually comprised of several concur-
ring events/source causes, and therefore understanding the context
of outages is a very challenging yet crucial first step toward miti-
gating and resolving outages. In current practice, on-call engineers
have to manually assess and summarize outages when they happen,
which is time-consuming and labor-intensive. In this paper, we first
present a large-scale empirical study investigating the way on-call
engineers currently deal with cloud outages at Microsoft, and then
present and empirically validate a novel approach (dubbed Oasis) to
help the engineers in this task. Oasis is able to automatically assess
the impact scope of outages as well as to produce human-readable
summarization. Specifically, Oasis first assesses the impact scope of
an outage by aggregating relevant incidents via multiple techniques.
Then, it generates a human-readable summary by leveraging fine-
tuned large language models like GPT-3.x. The impact assessment
component of Oasis was introduced in Microsoft over three years
ago, and it is now widely adopted, while the outage summarization
component has been recently introduced, and in this article we
present the results of an empirical evaluation we carried out on 18
real-world cloud systems as well as a human-based evaluation with
outage owners. The results obtained show that Oasis can effectively
and efficiently summarize outages, and lead Microsoft to deploy its
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first prototype which is currently under experimental adoption by
some of the incident teams.
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1 INTRODUCTION

With the trend of large IT enterprises such as Microsoft, Amazon,
and Google deploying services to the cloud platforms, cloud systems
have had a booming development in recent years [4, 8, 22, 25, 31].
Tremendous efforts have been devoted to improving the reliability
of cloud systems, however, unplanned incidents or performance
degradation are still inevitable due to the complex and dynamic
nature of cloud systems. Often these incidents escalate to a so called
outage, which impacts multiple services and customers.

Once an outage occurs to a cloud system, it is crucial to under-
stand its impact scope as soon as possible in order to promptly notify
customers [36, 39, 41], mitigate issues [4, 35], and ultimately resolve
the outage [20, 26, 38], aiming at reducing as much as possible the
loss associate with it. Nevertheless, a cloud system is quite complex
and involves many services such as across-region infrastructures,
virtual machines, networking, and database systems, thus making
this task very challenging. To support engineers in monitoring the
reliability of the cloud system, each cloud system service has multi-
ple monitors that create an incident each time something wrong
occurs. For example, Figure 1 shows the timeline of an incident
caused by a flawed configuration change in the Storage service. The
failed storage affected several SQL databases, and the failure was
further propagated to web application instances. Finally, the outage
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is declared and associated with the multiple incidents occurred
in the storage, SQL, and web application services. Doing this job
manually is not trivial, and in some cases not even feasible. Being
able to efficiently aggregate all and only those incidents which
are relevant to a given outage, would empower the engineers to
promptly investigate the impact scope, as it greatly reduces the
number of incidents that need to be investigated.

Previous studies [8, 11, 17, 34] have devoted a lot of efforts to
dealing with incidents aggregation or linking the relevant incidents
to the outage. However, based on our real-world experience in
Microsoft, we observe that on-call engineers (OCEs) still need to
manually check the detailed information of relevant incidents and
write a summary of outages (a real-world example in Section 3.2),
which is helpful to further handle the outage in terms of notification,
mitigation, diagnosis, and resolution. To the best of our knowledge,
extensive studies on outage understanding are lacking. Therefore,
in this paper, we first empirically investigate the negative effects of
outages in worldwide popular cloud systems in Microsoft and how
engineers currently deal with them. To this end, we exploit data
collected from the usage of 18 real-world cloud systems (many of
which are worldwide popular systems) over the past three years.
We found that most outages have a substantial negative impact on
customers, and the median summarization time is one time unit1.
Therefore, in practice, engineers have to spend significant efforts
to understand outages. Besides, the content of outage summaries
often contains detailed when, where, who, what, and why. This
information is complex and cannot simply adopt as a template
because it must be readable by engineers from various component
teams. Thus, it is necessary to automatically summarize outages
for understanding quickly.

These results motivated us to explore automated ways to im-
prove engineers’ understanding of outages. To this end, we propose
Oasis, which has two components: impact scope assessment and
summary generation. As for impact scope assessment, we adopt
three techniques i.e., rule-based, historical lookup, and deep learn-
ing based to aggregate relevant incidents to the outage. To embed
domain knowledge of cloud systems, engineers implement some
linking rules from incidents to outages. To automatically learn the
correlations among components of cloud systems, we propose a his-
torical lookup algorithm to form a component graph based on the
historical incident linkage and match new incidents in the graph.
To capture the rapid evolution of cloud systems, the deep learning
based linking approach is used. The impact scope of an outage
is composed of the relevant incidents aggregated by these three
techniques. We have deployed the impact assessment component
of Oasis in Microsoft, which is running for over three years and
has achieved significant results in impact scope assessment.

After we obtain relevant incidents of the outage, we adopt the
most popular pre-trained large language models GPT-3.x (both GPT-
3.0 and GPT-3.5), to automatically generate outage summaries. This
task presents twomain challenges: 1) identifying which information
on relevant incidents is helpful to outage summarization; 2) identify-
ing how to effectively generate domain-specific outage summaries
with complex cloud-related information. For the first challenge, our
empirical study provides some guidelines on summarizing outages,

1Due to company policy, we hide the actual time and normalize it as a time unit.

Figure 1: The timeline of handling an outage, where multiple

incidents should be summarized when declare the outage.

which reveals the importance of incident severity and description.
To tackle the second challenge, we fine-tune the pre-trained large
language model, which can generate human-readable sentences
and embed with knowledge from cloud systems.

To investigate the effectiveness of Oasis, we conduct extensive
experiments using real-world outages from Microsoft. The results
show that Oasis is able to effectively and efficiently generate outage
summaries and titles for cloud systems, and significantly outper-
form all the compared approaches [24, 32]. More specifically, Oasis
achieves scores of 0.665 (BLEU-4), 0.742 (ROUGE-L), and 0.734 (ME-
TEOR) with its summarization which outperforms state-of-the-art
approaches by at least 32.3%. Furthermore, to investigate the use-
fulness and readability of our generated summaries, we conduct a
preliminary human evaluation involving 54 outage owners. Based
on the rankings of summaries produced by models and the origi-
nal OCEs, we find that Oasis can achieve human-level summaries
much more quickly (251.2 times faster than the median of manual
summarization). Based on the above results, the Oasis outage as-
sessment component has already been in usage for over three years
at Microsoft, while the more recent summarization component has
been now prototyped and used by some of the incident teams at
Microsoft in a phase preceding the final rolling in production.

To sum up, our work has the following contributions:
• We are the first to identify outage understanding, a practical
scenario for large-scale cloud services. We have conducted an
empirical study of 18 cloud systems to investigate this scenario.

• We propose Oasis, the first automated approach to tackle the
problem of outage understanding based on impact scope assess-
ment and large language models (LLMs). We are the first to
propose LLM-based summary generation of outages.

• Our impact scope assessment of Oasis has been deployed in Mi-
crosoft for over three years and achieved significant impact. We
conduct an extensive study and human evaluation to demonstrate
the efficacy and potential usage of Oasis.

2 BACKGROUND

Cloud systems. Cloud systems have become increasingly popular
in recent years, as they offer a range of benefits such as scalability,
accessibility, and cost-efficiency. To ensure the reliability of these
systems, engineers use various monitoring tools and techniques,
e.g., AzureMonitor, to track and analyze the performance and health
of different levels and components of the cloud system [10, 14]. If
the monitors detect anomalies, incidents will be reported.
Incidents. Incidents are unplanned interruptions to cloud service.
Incident Management is the process of logging those interruptions,



Assess and Summarize: Improve Outage Understanding with Large Language Models Conference’17, July 2017, Washington, DC, USA

and resolving those in a timely manner [5, 7, 10, 16, 19, 21, 28].
An incident is reported with many fields, for example, the time
and source of the incident creation, and a text field describing the
problem. The text description can be generated by themonitor based
on pre-defined templates or filled in manually by the engineers.
Moreover, engineers assign a severity level to each incident, ranging
from 0 to 4, where a severity of 0 means highest priority and large
customer impact, and a severity of 4 means lowest priority.
Outages. Outages are severe incidents that require collaboration
across many services or result in customer impact [9, 34]. Different
products and teams may define outages differently depending on
service level agreements (SLAs), customer expectations, or other
criteria. When an outage happens, it tends to affect various aspects
of the cloud system, causing many incidents to be reported. OCEs
need to go through these incidents to fully understand the outage.
IcM system. To facilitate mitigating and resolving outages, Mi-
crosoft has developed an Incident Management system (IcM) for
cloud systems. After a monitor reports an incident, an associated
incident is created on the IcM. Then engineers can discuss the inci-
dent, check the information, and update the status of the incidents
on the IcM page, etc. An incident may escalate and is declared as
an outage if it impacts multiple services or customers as shown in
Figure 1. During these processes, records of incidents and logs of
the actions are persistently stored in the IcM database.

3 OUTAGE UNDERSTANDING: A CASE STUDY

To better understand the impact of outages and the need for auto-
matic support in outage scope and summary production, we conduct
a case study on real-world outages and their summaries. To this
end, we collect outages from 18 systems over three years in the IcM
database of Microsoft, which serves millions of users worldwide.
To ensure that the outages have undergone careful examination
and their summaries are ready, we keep over 6000 outages whose
state is ‘MITIGATED’ or ‘RESOLVED’ during collection. We are
not able to make all the details public due to the company’s policy.

In this study, we address the following research questions:

• RQ1: What is the impact of outages?
• RQ2: What are the information included in outage summaries?
• RQ3: What is the time cost of manually summarizing outages?

3.1 RQ1: Impact of Outages

Impact on customers. When OCEs deal with outages, it is impor-
tant to decide the impact on customers, especially the number of
customers affected. For each outage, OCEs determine whether it
impacts a large number of users and record this determination. We
statistically analyze the outages that OCEs considered as impacting
a large number of users and found that such outages accounted for
as much as 86.4% of all outages. Outages usually have a significant
impact on cloud systems, resulting in a degraded user experience
for a large number of customers. Therefore, it is crucial to quickly
and effectively respond to outages.

Another aspect of the customer impact is whether an outage has
resulted in persistent impacts. Persistent impact means the service
is consistently inaccessible, while intermittent impact means the
service is accessible at certain times but not consistently. The
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Figure 2: CDF of (a) Number of relevant incidents to outages.

(b) Time to Summary (TTS).

number of outages resulting in persistent impacts is 1.81 times
more than the number of outages that have intermittent impacts.
The impact of an outage on a cloud system is frequently severe.
Relevant incidents. Several incidents in cloud systems are contin-
uously reported and escalate to one outage, as they share a common
root cause. The distribution of incidents associated with outages is
illustrated in Figure 2(a), with 25% of outages having more than 10
associated incidents. The average number of relevant incidents to
an outage is 9.36. Based on this data, the outages bring about many
incidents, consuming the efforts and time of the OCEs.

3.2 RQ2: Outage Summary Information

To help understand what information needs to be summarized for
an outage, we demonstrate a real-world outage summary written
by OCEs and its relevant incidents.

Incident 1 Title: Email service errors of batch events.
Description: The Email Service was experiencing connec-
tivity issues to their replica database in the West US Region.
Due to this issue, System-Cloud customers globally were not
receiving any type of System-Cloud notifications.
Severity: 2
Start time: 14:28
Service: SQL

Incident 2 Title: No Success Signal in the last 60 minutes.
Description: Calls to the API-Sub failed with a 5xx HTTP
error. Approximately 𝛼1 customers could not upgrade their
subscriptions on URL-Cloud-Portal.
Severity: 2
Start time: 15:30
Service: Commercial

Incident 3 Title: Email Orchestrator Health in Cluster1
Description: Email notifications sent to customers could be
delayed.
Severity: 3
Start time: 14:33
Service: Business Intelligence
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Incident 4 Title:Api request failed with multiple -1 responses.
Target: URL-Cloud-Email
Description: Calls to the API-Marketplace service failed
which prevented the service from sending emails to the cus-
tomers and affected 𝛼2 customers.
Severity: 3
Start time: 17:06
Service: Marketplace

Incident 5 Title: Email Service calls are failing for Monitor-
Email-Exceptions evaluated on MonitorRule1 unhealthy
Description: Customers could not view Customer renewal
and subscription alerts were delayed. In addition, users were
unable to get authentication codes to verify login and new
account sign-ups.
Severity: 3
Start time: 14:44
Service: Notification

The title, times, and summary of the outage are listed below:

Outage Title: Outage for Email Service - Triage
Impact start time: 14:20
Outage declared time: 14:28
OCEs engage time: 14:29
Outage Summary: The Email Service experienced
connectivity issues to their replica database in the West US
Region. This affected customer email delivery for approx-
imately 𝛼3 internal company services. Due to this issue,
System-Cloud customers were not receiving notifications in-
cluding purchase, renewal, and monitor alert notifications. The
Portal team reported that approximately 𝛼1 customers were
unable to upgrade their subscriptions on URL-Cloud-Portal.

We can see from the above example that each relevant incident
describes various aspects of the outage, and the information about
an outage fall into many different categories. For example, West
US Region is a physical location, and {System-Cloud, Email Service,
API-Marketplace} are software components at different layers that
are affected, and {𝛼1, 𝛼2, 𝛼3} are specific numbers describing the
number of impacted customers or services, and 5xx HTTP error is a
software bug that affects the service functionality. The information
of an outage usually involves 5W (when, where, who, what, why):
When.When does the outage start impact, get declared, and engaged?
Engineers pay attention to several time points and periods of an
outage. For example, the time when the outage starts to make an
impact, when the outage is declared, and when the OCEs start
to engage are important signals for assessing the availability and
reliability of the system. Additionally, when assessing the impact of
an outage, it is also useful to know the time window period when
a certain function is unavailable.
Where. Where does the outage come from? The physical location
of an outage can lie in various levels of the cloud infrastructure.

The physical location can have an impact on the time required to
resolve it and the potential for cascading failures. Additionally, the
physical location of an outage can be a key factor in determining the
impact on customers, as local or nearby customers may be affected
more severely. The physical location of the cloud infrastructure at
Microsoft is structured in a hierarchical manner [18] with regions
and availability zones at the top level, which is directly accessible
to customers. Each region can consist of up to three availability
zones, each containing one or more datacenters. These datacenters
are further divided into clusters. Despite the fact that other cloud
systems may exhibit different location hierarchies, it is as important
to know the location of outages.
Who.Which services are suffering from the outage? Services of cloud
systems can be divided into different layers: (1) application layer:
this layer contains the actual code and functionality of the cloud sys-
tem, where frontend and backend services are located, (2) platform
layer: this layer provides the operating system, middleware, and
runtime environment for the cloud system, which may include vir-
tualization software, container orchestration software, or serverless
computing framework, (3) data layer: this layer handles the storage
and management of data used by the cloud system, which may
include databases, data lakes, and data warehouses, (4) infrastruc-
ture layer: this layer provides the underlying physical and virtual
resources that are used to run the cloud system, which includes host
servers, storage, and networking. Each layer has its fine-grained
components. Assessing which parts of the cloud system are affected
by the outage is helpful to handle the outages.
What.What happens to the cloud system in the outage? Previous re-
search has shown [14] some common symptoms of outages, includ-
ing: (1) code bugs, such as buggy or incompatible code that generates
error results, (2) dependency failures, such as an unhealthy depen-
dent service that impacts the functioning of downstream services,
(3) infrastructure issues, such as high CPU utilization of a server
that prevents the service from functioning normally, (4) deployment
errors, such as an engineer deploying an incorrect certificate. There
are also other less frequent symptoms, such as configuration bugs,
database/network issues, authentication failures, etc.
Why.Why did the outage happen? Previous research has investi-
gated the four most common root causes of outages [23]: (1) insuf-
ficient or erroneous mechanism of fault handling (e.g., error com-
ponent, unresponsive component, and silent corruption), (2) data
format incompatibility between different software components, (3)
timing(e.g., concurrent) bugs, and (4) misconfigured or outdated
constant values. However, the bugs in production cloud systems are
highly diversified. The underlying causes of misbehavior require
thorough manual investigation by OCEs.
Focus of outage summarization. We can see from the example
that the summary of an outage is not simply a list of information.
OCEs when writing outage summaries are more favorable to high-
severity incidents. Moreover, textual description is an important
reference in the outage summarization process. For example, the
dashed sentences are taken directly from the textual descriptions
of two high-severity incidents, i.e., Incident 1 and 2.
Finding: High-severity incidents and their textual descriptions are
important in outage summarization.
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3.3 RQ3: Time to Summary

After an outage starts to make an impact on customers, OCEs need
to quickly respond to the outage. One key step is to summarize
the context of the outage. Therefore, we investigate the time to
manually write outage summaries. Specifically, we retrieved the
impact start time (T1 in Figure 1) of the outage and its summary
completed time (T2). The time needed to summarize outages is
calculated by T2 − T1.

Figure 2(b) shows the CDF of the time needed to summarize
outages. From this figure, there are nearly 23% of outages cannot be
summarized within two time units after the outage starts. The me-
dian time needed to summarize outages is one time unit. Therefore,
outage summarization is time-consuming and labor-intensive.

3.4 Summary

According to our empirical study, the impact summary of an outage
may include domain specific terminology of physical or logical loca-
tions, service name, code change name, etc. Besides, what and why
of outages are even more difficult to summarize simply using tem-
plates. OCEsmust have a thorough grasp of the relevant incidents in
order to effectively summarize an outage, and the text descriptions
of these incidents provide crucial information for this comprehen-
sion. Nowadays, pretrained large language models (e.g., GPT-x)
show their ability in many tasks, such as Q&A and summarization
in ChatGPT. Therefore, we aim to employ large language models
to help outage summarization. In this work, we aim to generate
outage summaries with the following goals:
Usefulness. Usefulness measures whether the outage summary
contains relevant and valuable information.
Readability. Readability measures whether the outage summary
read fluently, especially considering the context information of the
outage and the affected system.
Reducing TTS (time to summary). It is desirable to summarize
outage in a short time because it helps improve the overall outage
handling process, improve communnication, shorten the lifecycle
of outage, and in turn, improve customers’ satisfaction.

4 OUR PROPOSAL: OASIS

4.1 Overview

In this paper, we aim to automatically generate summaries for out-
ages of cloud systems. However, outage summarization faces two
challenges. The first challenge is determining which information
on relevant incidents is helpful to outage summarization. Since
the cloud system is complex and rapidly growing, it is not trivial
to extract domain-specific terminologies of incidents. The second
challenge is how to effectively generate human-readable outage
summaries with complex cloud-related information.

To solve these challenges, we propose Oasis. The overview of
Oasis is shown in Figure 3, which consists of the following two com-
ponents. In the first component, i.e., impact scope assessment, Oasis
identifies relevant incidents via three types of linking to compre-
hensively assess the impact of the outage. In the second component,
i.e., summary generation, Oasis first performs domain-specific text
processing to denoise and prioritize important information from
the obtained relevant incidents, thus addressing the first challenge.

Then Oasis employs a fine-tuned large language model, i.e., GPT-
3.x, to understand the incidents and generate a compact summary
for the outage, thus addressing the second challenge.

4.2 Impact Scope Assessment

Assessing the impact scope of an outage is about comprehensively
understanding different aspects of an outage such as the when,
where, who, what, why, etc. As shown in Section 3, the impact
of these aspects of the outage is collectively described by many
relevant incidents. However, there is no simple and direct way to
identify the set of relevant incidents, since incidents with the same
underlying root cause can have different properties and spread
across services. Meanwhile, if an OCE determines two incidents are
highly relevant to each other, she can formally link the two incidents
together, which is a feature provided by the IcM system. Linking an
incident with relevant incidents reduce the effort of OCEs in many
ways, for example, reducing the number of incidents that require
manual examination, auto-resolving less severe incident if a more
severe linked incident is resolved, etc.

Inspired by the process, Oasis assesses the impact scope of an
outage by linking its relevant incidents. To completely link the
relevant incidents of an outage, Oasis incorporates domain knowl-
edge and historical linking patterns. Specifically, Oasis performs
three types of incident linking: linking by rule, linking by historical
lookup, and linking by prediction model.
Linking by rules. Automated incident linking is a capability in IcM
that correlates and de-duplicates incidents to reduce alert storms
and noise. Engineers can set up specific rules to create links be-
tween incidents upon various triggers, which represent the domain
knowledge of the engineers. For example, an engineer can set up a
rule to have incidents that are triggered by the same KPI anomaly
be linked. These are structural incident links that can be directly
queried from the IcM database. During the operation of cloud sys-
tems and the corresponding IcM system, a large number of historical
incidents and rule-based links are persistently recorded. These data
are a natural source of labeling for learning, which facilitates the
following two types of linking.
Linking by historical lookup. We propose a heuristic lookup
mechanism to utilize the historical links between incidents. The
mechanism consists of an offline phase to memorize the historical
linking pattern, and an online phase to apply the patterns to current
incidents. In each phase, we use the field of component that is
reported along with the incident. Components are fine-grained
parts of cloud systems that are defined by engineers. In the offline
phase, we build a component linking graph by summing up links
between incidents, i.e., if incident A and incident B are linked, then
we link their component in the component graph. In the online
phase, we checkwhether there are active incidents (incidents within
a short time range) on the linked components.
Linking by prediction model. Another way to automatically
discover the relationship between incidents is by employing deep
learning techniques [8, 17]. It has the advantage of being highly
automated and can be applied to a large number of incidents. Also,
it can be applied to scenarios where new incident detection criteria
are created and the engineers have not set up rules and historical
links fail to apply because of the lack of historical data. We train a
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Figure 3: Overview of Oasis.

neural network to predict the link between incidents. The neural
network takes the titles and descriptions of two incidents as input
and outputs the similarities between the titles. If the similarity of
two incidents is larger than a threshold, we determine the two
incidents are linked. The neural network has been trained on pairs
of incidents to learn the relationships between incident linking and
incidents’ titles and descriptions. In the training set, incident pairs
that were actually linked by engineers are labeled positive and pairs
that were not linked are labeled negative.
Put them together. Oasis periodically assesses relevant incidents
to the outage by querying the information of incidents within a
time window to the outage. We take advantage of three linking
approaches: the rule-based linking has the highest confidence and
interoperability; the historical lookup may find hidden dependen-
cies; the prediction model can adapt to the rapid evolution of cloud
systems. These three linking techniques complement each other and
enhance our linking capabilities. To provide a complete overview of
the impacted components, Oasis uses the aggregation of incidents
linked by these three approaches. This serves as the foundation for
creating the outage summary.

4.3 Summary Generation

After gathering relevant incidents of an outage, Oasis generates
a summary of the outage based on the incidents’ information. To
overcome the challenge of noisy information, we fine-tune an LLM,
i.e., GPT-x, to summarize the relevant incidents.
GPT-x. Generative Pre-trained Transformer x (GPT-x) [3] is a large
pretrained language model that can tackle a wide range of natural
language processing (NLP) tasks. One typical usage scenario of
GPT-x is text completion, where the model is given a block of text
as context and generates text as the completion of the context. It has
been explored to recommend the root causes of cloud incidents [2].

The GPT-x model is based on Transformers [33], which takes
advantage of the attention mechanism to assign weights to different
parts of the text. Thus it is suitable to summarize noisy information.
There are different sizes (number of parameters) of GPT-x model.

In our work, we implement Oasis with two parameter sizes: GPT-
3-Curie and GPT-3.5-DaVinci (see Section 5.4 for more details).
Domain-specific text processing. In this step, we process the
structural incident information into a paragraph of text so that
the GPT-3 model can take it as input, i.e., context. Inspired by
the findings from Section 3, we propose to process incidents in a
way that the high-severity incidents and textual descriptions are
emphasized. First, we sort the relevant incidents by their severity so
that the incidents with higher severity precede the ones with lower
severity. Then we transform the incidents into a piece of text in the
following way: for the incident with sorted order 𝑖 , the text is [ The
title of 𝑖𝑡ℎ incident is . . . . The description of 𝑖𝑡ℎ incident is . . . . The
service of 𝑖𝑡ℎ incidents is . . . . . . . ] Finally, we append an instruction to
the end of the text to hint the GPT-3 model to generate a summary:
[The outage summary is:].
Fine-tuning. The GPT-3 model was trained on a general corpus
that allows the model the learn various knowledge like linguistics,
common knowledge, factual knowledge, basic logical inference
ability, etc. To achieve better summary generation, we use our
IcM-specific data to fine-tune the GPT-3 model so that it learns
the domain knowledge of the applied cloud system and incidents.
Moreover, the training samples presented to the model teach it
to emphasize the aspects that are of interest to OCEs, thereby
improving its ability to summarize information from noisy sources.
The data we use to fine-tune the model is in the same form of
summary generation, i.e., for each outage, we provide the relevant
incidents as context and the outage summary written by engineers
as the desired completion.

4.4 System Implementation

We have deployed Oasis as an aid to the IcM system of Microsoft.
We will introduce the integration of Oasis with the IcM workflow
and the underlying implementation details.

The implementation of Oasis in production consists of four
parts, as shown in Figure 4. The Oasis backend periodically queries
the local database to get active incidents within the time window, as
well as rule-based and historical-lookup links of all current outages
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Figure 4: Oasis in production. The upper part is the IcM

system. The lower part is the architecture of Oasis.

①. On receiving the API call initiated by the IcM Backend querying
a specific outage, the Oasis backend applies the prediction model
to determine what other active incidents should be linked to the
outage ②. After that, it performs domain-specific text processing
for the outage’s relevant incidents and feeds the processed text to
the fine-tuned GPT-3.x model ③. Finally, the backend returns the
summary generated by GPT-3.x to the IcM Backend.

The local database of Oasis is ingested from the IcM database in
a streaming manner. Compared to batch ingestion, streaming inges-
tion is more smooth in resource utilization. The prediction model
has already been trained in ML-dedicated servers and exported as a
binary file to minimize the operation effort of Oasis in production.

5 OASIS EVALUATION: EMPIRICAL STUDY

DESIGN

To assess the effectiveness of OASIS, we investigate the following:
• RQ4: Is Oasis effective at summarizing outages?
Generating the summary of outages is the main task of Oasis.
We are interested in the ability of Oasis to generate a reasonable
outage summary with automatic impact scope assessment.

• RQ5: Is Oasis effective at proposing outage titles?
The title of an outage is a short piece of text stating the problem
that is happening. Proposing outage titles also demonstrates the
ability of Oasis to understand and summarize the outage.

• RQ6: Does Oasis get better at summarizing outages if the outage
title is given?
We explore whether Oasis can produce more effective summaries
of outages if it has access to the title written by OCEs, which is
typically written before the summary in practical settings.

• RQ7: What is the time efficiency of Oasis?
Since Oasis needs to work in the production environment, it is
important for Oasis to summarize outages efficiently.

5.1 Study data

In the study, we applied Oasis to the same 18 cloud systems and the
same time range (3 years) in Section 3.1 to evaluate the effectiveness
of Oasis. In particular, we split the data in chronological order using
a 7:1:2 ratio for the training (fine-tuning), validation, and test sets,
respectively. Each data point, representing an outage, is presented
as a context-completion pair. The context consists of the processed
text from relevant incidents linked by impact scope assessment.
The completion, on the other hand, is provided as the summary of
the outage written by OCEs.

5.2 Compared approaches

To better answer the RQ 4 to 7, we compare the performance of
Oasis with some baseline approaches. We formulate the task as
a text generation problem, therefore we compare with 3 methods
that have been proven capable of generating summarization. In
answering each research question, we provide the same context
(information of relevant incidents) to the baselines and to the GPT-3
model of Oasis.

• Joint incident summary (Rule-based): A straightforward rule-
based method that concatenates all the information of incidents.
This method imitates the behavior that OCEs read through rele-
vant incidents when handling outages.

• Information retrieval (IR): NNGen [24] leverages bag-of-words
embedding and nearest neighbor to retrieve summaries from
similar history outages.

• GPT-2: Generative Pre-training Transformer 2 (GPT-2) is a lan-
guage model that is trained to generate coherent text. We use
GPT-2 with 117M parameters.

5.3 Metrics

Following the existing work [1, 2, 15], we use the BLEU-4, ROUGE-
L, and METEOR to evaluate Oasis and its baselines in terms of
readability. The BLEU-4 compares thematching of n-grams between
generated text and the ground truth. The ROUGE-L is widely used
in Machine Translation evaluation, which measures the overlap
of the longest sequence between hypothesis and reference. The
METEOR calculates the harmonic mean of unigram precision and
recall with consideration of stemming and synonym matching.

Specifically, we get five candidate generated texts from each
model, except for the joint incident summary which can only give
one piece of generation. To better evaluate the quality of generation
models, we calculate the Top1 metrics using the first generated text,
and the Top5 metrics using the best of five generated text.

We also measure the running time of each approach. Specifically,
we record the overall time needed to train/fine-tune the model, and
the average time spent on generating a summary for an outage.

To further evaluate usefulness and readability, we conduct a
human evaluation in Section 7.

5.4 Experiment environment

Generationmodel. We implement Oasis with two GPT-3 variants,
i.e., Curie and DaVinci:
Curie (GPT-3) is a fast GPT-3 model with 6.7 billion parameters,
which was pre-trained on a natural language corpus.
DaVinci (GPT-3.5) is a large GPT-3 model with 175 billion parame-
ters, which was pre-trained on both text and code.
We fine-tune these generation models using the training and vali-
dation set from Section 5.1.
Experiment environment. We implement all training with one
NVIDIA GeForce A100 GPU, PyTorch 1.11, and CUDA toolkit 11.3.1.
Implementation of baselines. Baselines are implemented using
Python 3.8 and scikit-learn 1.0.2. The number of GPT-2’s training
epochs is 20. The temperature of GPT-2 is 0.7, which is recom-
mended by a previous study [2].
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Table 1: Effectiveness of models at summarizing outages

Model BLEU-4 ROUGE-L METEOR
Top1 Top5 Top1 Top5 Top1 Top5

IR 0.042 0.051 0.144 0.180 0.115 0.146
Rule-based 0.277 NA 0.508 NA 0.629 NA
GPT-2 0.455 0.51 0.561 0.592 0.536 0.574
Curie 0.654 0.701 0.73 0.777 0.721 0.767
DaVinci 0.664 0.706 0.742 0.782 0.734 0.776

6 OASIS EVALUATION: EMPIRICAL STUDY

RESULTS

6.1 RQ4: Performance of Summary Generation

Table 1 lists the effectiveness of baselines and Oasis in summarizing
outages. Oasis with DaVinci, the largest GPT-3 model, achieves the
best metrics with both Top1 and Top5 summary generation. The
advantage of DaVinci over Curie comes from the larger parame-
ter size and the extra code corpus used in pretraining since some
incidents contain API names or investigating code. However, the
performance gain of DaVinci over Curie, the fastest GPT-3 model,
is modest in both Top1 and Top5 generations.

We observe IR method is especially not suitable for outage sum-
mary generation. The major reason that the scores of IR are poor is
that the rapid evolution of cloud systems has resulted in significant
changes in the architecture of the systems over time, so similar
outages are not likely to appear repeatedly, therefore historically
useful summaries fail to depict the new outages. Although Rule-
based summaries have a higher METEOR score than GPT-2, their
BLEU-4 score is far lower than that of GPT-2. This is because the
METEOR score takes into account the precision and recall of the
unigram rather than subsequences, resulting in a more lenient eval-
uation of summaries. Rule-based summaries are often too long as
the original incidents, which is not helpful for engineers to under-
stand the context of outages.

6.2 RQ5: Performance of Title Generation

The title of an outage is a compact description of the outage. The
example of an outage title and summary is shown in Section 3.2.
The performance of baselines and Oasis at summarizing outages in
the form of titles are listed in Table 2. By comparing Table 2 with
Table 1, we achieve a higher generation score (0.826-0.857 BLEU-4)
at generating titles for outages than generating the whole sum-
mary (0.654-0.664 BLEU-4). Similarly, GPT2, which is also a large
Transformer based language model, scores higher in summarizing
outages in the form of a title than the whole summary. The ROUGE-
L and METEOR score exhibit the same trend for Oasis and GPT-2.
The reason for this performance improvement lies in the nature of
outage title and summary. The title of outage has a stronger pattern
than that of outage summary. Firstly, a large portion of outage titles
starts with “Outage for”. This pattern is easy for LLM to learn, so
the titles generated by LLM tend to have more overlapping words,
and consequently, higher scores. Secondly, the words used in titles
are usually either in a dictionary (e.g., the “Triage” in the example

Table 2: Effectiveness of models at proposing outage titles

Model BLEU-4 ROUGE-L METEOR
Top1 Top5 Top1 Top5 Top1 Top5

IR 0.170 0.211 0.398 0.427 0.342 0.369
Rule-based 0.069 NA 0.211 NA 0.316 NA
GPT-2 0.624 0.673 0.672 0.694 0.639 0.688
Curie 0.826 0.88 0.88 0.9 0.84 0.894
DaVinci 0.857 0.893 0.883 0.913 0.869 0.907

title), or have been mentioned in incidents (e.g., the “Email Service”
in the example title).

Another observation is that title generation is the only task
where IR outperforms the Rule-based method. Since the Rule-based
method performs simple concatenation, the generated title is long
and contains unnecessary words, thus resulting in lower scores,
while IR method retrieves titles from historical outages which con-
forms better with the pattern of outage titles in general. Oasis
achieves significantly high scores, with considerable improvement
over baselines (at least 30.0% of BLEU-4, 30.9% of ROUGE-L, 31.4%
of METEOR), indicating that applying Oasis to production outages
title generation is very promising.

6.3 RQ6: Performance of Summary Generation

Given Title

We evaluate the performance of the outage summary generation
when the title of the outage is given. Remember that we provide
the information of relevant incidents to these methods as context.
In this experiment, we include the title written by OCEs as part of
the context. More specifically, we set the information of incidents,
followed by the title of the outage.

The results of this experiment are listed in Table 3. Surprisingly,
the performance of Oasis, GPT-2, and Rule-based degrade slightly,
except IR. The relative order of methods in Table 3 keeps the same
as Table 1, for their tasks are very similar. The performance degra-
dation is because the title of the outage is not a grammatically-
complete sentence.

6.4 RQ7: Efficiency Comparison

Table 4 lists the fine-tuning (if any) and summary generation times
for each model. The fine-tuning time reflects the total time spent
on all outages from the training set, while the summary generation
time is the average time taken to generate a summary for one
outage. Despite the differences in parameter size, all models have a
very small generation time. The fine-tuning time for LLMs (GPT-2,
Curie, DaVinci) increases as the parameter size increases, although
not linearly. Please note that Oasis only needs to be fine-tuned once
on historical outages and incidents and can then be used for outage
summary generation. In other words, the time to generate an outage
summary of Oasis is only 13.3 or 39.6 (×10−5) time units, which is
at least 251.2 times faster than the median of manual summarization.
In conclusion, the fine-tuning time for Oasis is reasonable, and its
short generation time of summary demonstrates its practicality in
cloud systems.
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Table 3: Effectiveness of models at generating outage sum-

maries given outage titles

Model BLEU-4 ROUGE-L METEOR
Top1 Top5 Top1 Top5 Top1 Top5

IR 0.037 0.055 0.156 0.189 0.109 0.142
Rule-based 0.247 NA 0.505 NA 0.614 NA
GPT-2 0.428 0.504 0.548 0.59 0.515 0.569
Curie 0.65 0.697 0.729 0.776 0.719 0.764
DaVinci 0.652 0.699 0.734 0.779 0.724 0.77

Table 4: Average time cost of models

Time Rule IR GPT-2 Curie DaVinci
Fine-tuning
(10−1×time unit) NA NA 3.0 3.4 8.7

Generation
(10−5× time unit) 2.8 13.9 11.1 13.3 39.6

7 OASIS PRELIMINARY HUMAN EVALUATION

7.1 Methodology

Summarizing an outage is a challenging task that requires a deep
understanding of both the service and the specific outage, as well
as a comprehensive knowledge of the relevant context and domain.
To ensure the accuracy of the generated summaries, we ask the
owners of these outages to evaluate the generated summaries from
RQ4. The process is done through Email and eventually, a total of 54
outage owners respond to our email and provide their evaluations.

For each outage, we present the generated summaries from all
the methods, with the output of Oasis with Curie and DaVinci
treated as independent summaries. This results in five summaries
for each outage. We present the outage and the summaries in the
following order: (1) first we give the IcM link to the outage so that
the outage owner can better recall the details of the outage, (2) next
we present the original outage summary written by OCEs and tell
the outage owners this is the human-written summarization, (3)
then we present the five outage summaries generated by models
(Oasis-Curie, Oasis-DaVinci, GPT-2, Rule-based, IR), and we shuffle
the order of these summaries to minimize the effect of default
ordering. To ensure the objectivity of the evaluation and avoid the
subjectivity and bias of scoring for each summary, we ask the outage
owners to rank the summaries from 1 to 5, where 1 for the most
useful and readable and 5 for the least useful and readable. Useful
means that the summary contains useful and relevant information
on the outage. Readable means the ease with which the summary
can be understood, which may be characterized by clear and simple
language, logical organization, grammatical correctness, etc.Besides
ranking, we also ask outage owners to share their opinions and
comments on model-generated summaries.

7.2 Results

Figure 5 shows the ranking of outage owners. In general, the re-
sults of human evaluation are in accordance with automatic metrics
presented in Table 1. The outage owners report positive feedback

1 2 3 4 5
# Rank

DaVinci

Curie

GPT-2

Rule-based

IR

Figure 5: The ranking given by outage owners. Rank #1means

the most preferred summary.

regarding the readability and usefulness of Oasis. Notably, 32 out
of 54 OCEs rank the summaries produced by Oasis-DaVinci as
their top preference. To investigate whether the rankings of outage
owners are consistent with each other, we conduct Friedman Test
[12] at the significant level of 0.05. The null hypothesis is that there
is no significant difference between the rankings of outage own-
ers. The calculated p-value on our rank by outage owner is larger
than the level of significance, which means that the outage owners
basically conform to each other in evaluating the summaries.

More encouragingly, the majority of outage owners have a favor-
able attitude toward the practice of generating outage summaries
using Oasis: “I absolutely believe in the ability of AI to assist
with incident management and outage summaries. ”

8 DISCUSSION

Case Study. As described in Section 4.4, Oasis serves as a support-
ive tool in the production IcM, i.e., OCEs have the option to use
or not use Oasis to generate a reference summary when handling
outages. Since it is difficult to determine the extent to which Oa-
sis contributes to the generated summary for outages where it is
utilized, we randomly selected an outage from recent outages that
were handled without the use of Oasis.

In this outage, a misconfiguration of the load balancer led to an
overwhelming number of requests being directed to a single service
endpoint. As a result, this endpoint was unable to function properly,
causing the unified account API to fail. This failure cascaded to the
downstream account APIs of the Cloud, Productivity, and Partner
systems. As a result, the signup, ordering, and billing services of the
Cloud and Productivity systems were affected. Below is the actual
outage summary, written by an experienced OCE:

Outage Summary byOCE: TheAPI𝑎𝑐𝑐𝑜𝑢𝑛𝑡 failedwithHTTP
5xx errors (over 𝛼1 fall failures) because of bad gateway er-
rors to the endpoint1. Due to this issue, commercial customers
could not sign-up for System-Cloud or System-Productivity via
endpoint2 or endpoint3, and perform management related ac-
tions on endpoint4. Additionally, customers could not complete
purchases within these ecosystems. Partner is also impacted.
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Outage Summary by Oasis: The API𝑎𝑐𝑐𝑜𝑢𝑛𝑡 failed with
HTTP 5xx errors (over 𝛼1 fall failures) because of bad gate-
way errors to the endpoint1. Due to this issue, commercial
customers could not sign-up for System-Cloud or System-
Productivity via endpoint2 or endpoint3, and perform manage-
ment related actions on endpoint4. Additionally, users were
not able to access their billing accounts and invoices on System-
Cloud portal. Approximately 𝛼2 unique users were impacted.

To study the ability of Oasis in summarizing online outages,
we triggered Oasis manually, limiting it to only knowing the in-
formation at the time of the outage. Oasis managed to find six
relevant incidents, and the generated summary is presented above.
(We indicate sentences that diverge from the OCE outage summary
by underlining them with wavy lines) In the above summaries, end-
points 1-4 are URLs that serve the API calls. We notice that Oasis
failed to identify System-Partner as impacted because the impact
of System-Partner can only be determined by knowing the prefix
of endpoint4 refers to System-Partner. This knowledge is difficult
to learn even after the LLM has been fine-tuned using incident and
outage corpus. Despite this, we can see from the above example that
Oasis is capable of generating reference summaries for outages.
In this study, we adopt fine-tuning of the GPT-x models to gener-
ate outage summaries, which perform much better than prompt
tuning. Because the outage summary is very domain-specific and
fine-tuned models may capture the domain knowledge.
Threats to Validity. Threats to internal validity mainly lie in our
implementation of Oasis and compared approaches. To reduce this
threat, we implemented these approaches based on well-established
frameworks, which have been described in Section 5.4. Addition-
ally, two authors carefully examined the code and configurations.
Threats to external validity mainly lie in the subjects used in our
study. Our study and evaluation are conducted on 18 major cloud
systems of Microsoft. Since the incidents and outages we used are
only from Microsoft, modifications may be necessary when apply-
ing to other incident management systems. However, the cloud
systems we used in our experiments include a variety of types, such
as infrastructure, productivity, communication, game, search en-
gine, etc.Moreover, these cloud systems serve millions of customers,
thus having a certain degree of representativeness. In the future,
we plan to extend our evaluations to include more cloud systems.
Threats to the construct validity mainly lie in the evaluation metrics
we adopted. Automated evaluation metrics (BLEU-4, ROUGE-L, and
METEOR) may not fully reflect the readability and usefulness of the
outage summary. To address this limitation, we will consider using
additional metrics in the future to better measure these factors.
Moreover, we reached out to the owners of outages to conduct a
human evaluation, and the evaluation results are basically aligned
with automated metrics.

9 RELATEDWORK

Incident storm / outage handling. Handling outages (incident
storms) in cloud systems has been widely studied in previous work
[8, 11, 17, 27, 34]. A series of works perform incident linking to

provide engineers with more relevant information. LiDAR [8] calcu-
lates both textual similarity and component similarity to determine
whether two incidents should be linked. LinkCM [17] argues that
linking customer incidents (reported by customers) with system
incidents (reported by monitors) can lead to more efficient inci-
dent triage. The above works utilize neural networks to learn from
historical linking patterns. GRLIA [11] employs graph embedding,
with additional concerns about node closeness with KPI trend sim-
ilarities. Another series of works focuses on alert reduction or
prioritization [6, 40]. OAS [6] combines semantic and behavioral
features of alerts to decide the groups of alerts and then correlate
alerts within a time window. Zhao et al. [40] first calculate the
textual and topological similarity of alerts to reduce the number of
alerts. They then use DBSCAN to group similar alerts and selected
the centroid alert of each cluster as the representative incident to
show to engineers. Our impact scope assessment is similar to these
approaches, and we also include domain-specific knowledge via
rule-based incident linking.
Large Language Models (LLM) for Software Engineering. In
recent years, the rise of LLM has brought new opportunities to
the field of software engineering [2, 13, 29, 30, 37]. Mastropaolo et
al. [30] studied the ability of fine-tuned T5 in the following tasks: au-
tomatic bug fixing, generation of assert statements in test methods,
code summarization, and injection of code mutants. LANCE [29]
uses fine-tuned T5 to automatically generate logging statements
for Java methods. VulRepair [13] also fine-tune T5 on vulnerabil-
ity repairs datasets to automatically propose vulnerability fixes.
The above works fine-tune LLM on task-specific datasets. Zhang
et al. [37] propose to use prompting for LLM to improve code ver-
sion control. They further integrate k-shot learning to resolve code
merge conflicts. GPT-3.x models are used to recommend root causes
and mitigation steps to facilitate cloud incident management [2].
Different from previous studies, Oasis is the first work to leverage
the capabilities of LLM in to summarize outages for cloud systems.

10 CONCLUSION

In this paper, we identify the problem of outage understanding
in real-world cloud systems. Through our empirical study on 18
industrial cloud systems, we show that understanding outage is
time-consuming and involves complex contexts. To improve the
process of outage understanding, we present Oasis, the first frame-
work to automatically assess impacts and summarize outages. Oasis
incorporates an assessment of outage impact scope and a fine-tuned
large language model, i.e., GPT-3.x. Our experiments on 18 cloud
systems within Microsoft demonstrate that Oasis outperforms base-
line approaches. We also received feedback from outage owners,
which further validates the effectiveness of Oasis.
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