
InferFix: End-to-End Program Repair with LLMs over
Retrieval-Augmented Prompts

Matthew Jin
Microsoft

Redmond, WA, USA

Syed Shahriar
UCLA

Los Angeles, CA, USA

Michele Tufano
Microsoft

Redmond, WA, USA

Xin Shi
Microsoft

Redmond, WA, USA

Shuai Lu
Microsoft Research

Beijing, China

Neel Sundaresan
Microsoft

Redmond, WA, USA

Alexey Svyatkovskiy
Microsoft

Redmond, WA, USA

ABSTRACT
Software development life cycle is profoundly influenced by bugs;
their introduction, identification, and eventual resolution account
for a significant portion of software development cost. This has
motivated software engineering researchers and practitioners to
propose different approaches for automating the identification and
repair of software defects.

Large language models have been adapted to the program re-
pair task through few-shot demonstration learning and instruction
prompting, treating this as an infilling task. However, these mod-
els have only focused on learning general bug-fixing patterns for
uncategorized bugs mined from public repositories. In this paper,
we propose InferFix: a transformer-based program repair frame-
work paired with a state-of-the-art static analyzer to fix critical
security and performance bugs. InferFix combines a Retriever –
transformer encoder model pretrained via contrastive learning ob-
jective, which aims at searching for semantically equivalent bugs
and corresponding fixes; and a Generator – a large language model
(12 billion parameter Codex Cushman model) finetuned on super-
vised bug-fix data with prompts augmented via adding bug type
annotations and semantically similar fixes retrieved from an exter-
nal non-parametric memory.

To train and evaluate our approach, we curated InferredBugs,
a novel, metadata-rich dataset of bugs extracted by executing the
Infer static analyzer on the change histories of thousands of Java
and C# repositories. Our evaluation demonstrates that InferFix out-
performs strong LLM baselines, with a top-1 accuracy of 65.6%
for generating fixes in C# and 76.8% in Java. We discuss the de-
ployment of InferFix alongside Infer at Microsoft which offers an
end-to-end solution for detection, classification, and localization
of bugs, as well as fixing and validation of candidate patches, in-
tegrated in the continuous integration pipeline to automate the
software development workflow.

KEYWORDS
Program repair, static analyses, prompt augmentation, finetuning

Conference’17, July 2017, Washington, DC, USA
© 2023

ACM Reference Format:
Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sun-
daresan, and Alexey Svyatkovskiy. 2023. InferFix: End-to-End Program
Repair with LLMs over Retrieval-Augmented Prompts. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The software development lifecycle is profoundly affected by bugs.
Traditional program analyses techniques can detect and localize
bugs through formal reasoning, leaving the task of categorizing
the bugs and coding a patch to a developer. The traditional ap-
proach of manually generating patches through examination of
code changes is a time consuming and error-prone task, which
could be automated.

Many of the recently proposed approaches for bug prediction,
detection, and repair rely on machine learning algorithms – infa-
mously data hungry – depending on large amounts of high quality
data for effective training. Large language models have been suc-
cessfully adapted to the program repair tasks through few-shot
demonstration learning and instruction prompting, treating this
as an infilling task [15]. However, while focusing on solving spe-
cific research problems they failed to provide a reliable end-to-end
program repair solution that could be productized.

Static analysis tools like Infer can be used to identify critical
security and performance issues. This can preempt large parts of
the software development cycle, including the process of creating
detailed unit tests, which can be extremely time-consuming and
difficult for a large, complex project whose code is broken down
into manymodules or across many files. They can also identify bugs
and produce bug reports in a way that is machine-readable and
conducive to usage in conjunction with patch generation models.

In this work we focus on three types of bugs reported by Infer:
Null Pointer Dereference (NPD), Resource Leak (RL), and Thread
Safety Violation (TSV). We focus on these because they pose critical
performance, reliability and security issues, and can also be more
difficult to fix than other issue types which are also more commonly
detected and studied.

Languagemodels commonly adopt two paradigms for task-specific
generalization – via finetuning or few-shot learning. In the former

ar
X

iv
:2

30
3.

07
26

3v
1

 [
cs

.S
E

]
 1

3
M

ar
 2

02
3

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey Svyatkovskiy

paradigm, the canonical model training structure is divided into
two phases – pretraining and finetuning. In pretraining stage, a
model is trained in a self-supervised way to perform denoising or
generic sequence-to-sequence transformations, geared towards im-
proving the performance on a variety of downstream tasks. In the
finetuning stage the model is trained on a specialized supervised
dataset to perform a concrete task, such as question answering, text
summarization, or in our case, program repair. The few-shot learn-
ing paradigm allows model specialization for a downstream task via
prompt augmentation, composition, or ensembling [22]. A variant
of prompt augmentation, commonly called demonstration learning,
introduces a few input-output examples for a given task, for in-
stance “The capital of China is Beijing. The capital of Italy is Rome.
The capital of South Africa is [X]”, allowing to achieve good perfor-
mance on a downstream task without any gradient updates, which
is crucial for very large language models like GPT-3 [3], T5 [31],
and PaLM [7]. Another variant of prompt augmentation commonly
referred to as instruction prompting aims to introduce a natural
language description of a task, for instance: “write a program to
determine whether a graph is bipartite”. It may utilize prompt tem-
plates filling in necessary information from an external source (a
database, a neural model). In our approach we combine the benefits
of both paradigms, by augmenting the prompts and then finetuning
our model on the dataset of augmented prompts and predictions to
get the best performance.

In this paper, we introduce InferFix– a program repair frame-
work which combines a transformer encoder model pretrained
via contrastive learning serving as a retriever over a database of
historic bugs and fixes, and a large language model (12 billion pa-
rameter Codex Cushmanmodel, code-cushman-001) instrumented
with the facility to leverage retrieved information from the exter-
nal database. Given the baseline Codex model has been shown to
occasionally predict insecure or buggy code [29], we prioritized
finetuning it on a bug-free supervised dataset of bugs and fixes
with contexts enriched via relevant program repair patterns from
an external non-parametric memory. The contributions of the pa-
per are as follows: (i) we propose a program repair framework that
leverages static analyses for bug detection, localization, and catego-
rization paired with a large language model finetuned for program
repair task on a dataset of augmented prompts, (ii) we curate In-
ferredBugs: a metadata-rich dataset of bugs and fixes in Java and
C# programming languages extracted with the Infer static analyzer,
(iii) we introduce a dedicated prompt augmentation technique for
program repair task, which leverages dense retrieval from an ex-
ternal database of historic bugs and fixes, bug type annotations,
and syntactic hierarchies across the entire source code file affected
by a bug, (iv) we evaluate our model on the InferredBugs dataset,
achieving an impressive 76% top-1 accuracy of patch generation in
Java, and over 65% in C#, across null pointer dereference, resource
leak, and thread safety violation bug types, and finally (v) we deploy
InferFix as a GitHub action and as part of the Azure DevOps con-
tinuous integration pipeline internally at Microsoft, and document
aspects of deployment.

Main Branch

InferFix

CI Pipeline

Build Test Infer

Figure 1: Software development workflow automated with
InferFix. A developer creates a pull request to check in code
changes implemented in a feature branch, if Infer static ana-
lyzer detects a bug, a relevant code context is then prepared
and InferFix generates a patch which is served as a bug-
fixing pull request into feature branch.

2 MOTIVATING EXAMPLE
To provide the intuition about how our approach works and to
describe the concrete details of the bug detection, localization, and
repair scenario we begin with a motivating example.

In a typical continuous software development workflow, soft-
ware engineers make atomic, iterative changes to feature branches
periodically merging to the main production branch, which is then
continuously and automatically deployed to the end users. Consider
a large software project with a modular code base spread across
multiple source code files. It can be extremely inefficient, in terms
of developer time and effort, to detect, localize, and fix errors man-
ually before they are merged to main. In addition, it requires the
creation of an extensive unit test suite to ensure that a feature or
change works across all possible versions of the software, and no
regressions are introduced.

Figure 1 illustrates a typical software development workflow
at Microsoft Developer Division in presence of InferFix. As a pull
request proposing code changes is created, continuous integration
pipeline (CI) triggers unit testing, build, and Infer static analysis
steps. If bugs are detected, the InferFixpatch generation module will
be invoked to propose a fix. The proposed bug fix is then validated
and subsequently served as a bug-fixing pull request to a feature
branch allowing developer to catch bugs before merging the code
to the production branch.

Our approach combines a static analyzer to detect, localize, and
classify bugs with a powerful LLM (finetuned 12 billion parameter
Codex model) to generate fixes.

Figure 2 provides details about InferFix workflow based on a
real-world bug example from the acs-aem-common [1] reposi-
tory, which is a unified collection of code for content manage-
ment that optimizes authoring, and delivery of content and digi-
tal media written in Java. The Infer static analyzer detects a null
pointer dereference error, due to an object in the code returned by
getResourceResolver
(this,adaptable) call, which could be null and is dereferenced at
line 168. The context preprocessing module utilizes the information

InferFix: End-to-End Program Repair with LLMs over Retrieval-Augmented Prompts Conference’17, July 2017, Washington, DC, USA

provided by the analyzer to extract the buggy method, and retains
surrounding context most relevant to fixing the bug – import state-
ments, class signature, body of the getResourceResolver method
which is invoked at buggy line. The retrieval augmentation engine
then searches for semantically similar buggy code snippets in the
historic database, prepending similar bug-fixes to the prompt. Fi-
nally, the augmented prompt is sent to the finetuned Codex model
for inference. The predicted patch is then validated by executing the
Infer static analyzer and unit tests as part of the continuous integra-
tion pipeline to ensure the error is indeed fixed and no regressions
are introduced in the code base.

3 DATASET
We collect a supervised dataset of bugs detected with Infer (Infer
Static Analyzer), which performs semantic analysis via Separation
Logic.

We executed Infer and InferSharp over the change histories
of approximately 6.2k Java and C# open-source repositories (2.9k
Java, 3.3k C#) hosted on GitHub, analyzing more than 1 million
commits. While a few bug datasets are already available, such
as Defects4j [16], QuixBugs [20], ManySStuBs4J [17], UnifiedBug-
Dataset [11] and many others, the dataset we introduce is differ-
entiated by the amount and quality of information provided about
each bug by the static analysis. Specifically, each bug in the dataset
is associated with several pieces of metadata, including:

• Bug Type: each detected or fixed bug is marked with a bug
type extracted with Infer, such as: null dereference, re-
source leak, immutable cast, etc. This information could be
potentially used by automated program repair techniques to
guide the bug-fixing attempts. Alternatively, these instances
can be used as labeled data points for bug classification tech-
niques.

• Bug Location: the dataset provides localization info at dif-
ferent levels of granularity: file, class, method, and line. For
specific types of bugs, also affected variables/methods are
reported.

• Change History: bugs are linked with the change history of
the software project. Specifically, the dataset provides infor-
mation on when a bug was introduced or fixed throughout
the development process. Additionally, each analyzed com-
mit is associated with the introduced/fixed or preexisting
bugs involving the file touched in the commit.

3.1 Background on Infer Static Analyzer
Infer is an open-source static analysis tool originating from program
analysis research on separation logic. It was first developed by the
startupMonoidics Ltd, which was acquired by Facebook in 2013 and
open-sourced in 2015. It computes program specifications to detect
errors related to memory safety, concurrency, security, and more. It
is industrially deployed at companies including Meta, Amazon, and
Microsoft. Although in this work we will focus on null dereferences,
resource leaks, and thread safety violations detected by Infer, it is
able to detect a much wider variety of security and performance
issues. For example, via taint tracking it is able to detect dataflow-
related issues such as SQL injections. We believe our framework

will be capable of mining and generating patches for these bug
types as well, but leave the examination of this to future efforts.

At Meta, Infer runs within the internal continuous integration
(CI) system of repositories consisting of 10s and 100s millions of
lines of code, including those for WhatsApp, Instagram, and Face-
book core. Infer runs on diffs and reports issues to developers by
writing comments within the code review system. A study con-
ducted at Meta [25] saw a false positive rate under 20%, and issues
posted saw a fix rate of 70%. The high issue relevance driven by
this diff-time deployment of this system is critical; the same study
saw a near-zero fix rate when it was deployed to developers as a
list of assigned issues outside of the CI system. This underlines the
value of our proposed system being deployed as a bug-detection-
and-fix-recommendation code review module.

InferSharp [26] is the compiler frontend developed by Microsoft
which translates the Common Intermediate Language (CIL) to the
Smallfoot Intermediate Language interpreted by Infer, thereby en-
abling Infer’s capabilities on all CIL languages (including C# and
F#). For the purposes of this paper, InferSharp refers to the static
analysis of Infer applied to CIL languages. Notably, to our knowl-
edge it is the only interprocedural static analysis for CIL languages
which is free-to-use and MIT-licensed. Considering Infer’s industry
track record, this creates unique opportunities in both research and
industry to build bug-detection-and-fix product capabilities for a
relatively underserved developer segment.

3.2 Collecting Data with Infer
In this section we describe the data extraction process that culmi-
nated in the creation of the InferredBugs dataset. Specifically, we
provide details on how we executed Infer over the change histories
of software projects in order to detect introduced and fixed bugs.

Given as input the current commit curr and the previous com-
mit prev, we begin by computing a git diff to identify the files
involved in the change performed by the developer in the commit
curr. Next, we analyze the status of the files at commit prev. Specif-
ically, we checkout the snapshot of the system at commit prev, and
we build the system using the project-specific build tool. During
the build process, the infer capture command intercepts calls
to the compiler to read source files and translates them into an
intermediate representation which will allow Infer to analyze these
files. Next, we invoke the infer analyze command specifying the
files to be analyzed (i.e., the files diff involved in the commit). This
analysis produces a report reportPrev detailing the bugs identified
within the specified files.

Subsequently, we move to the current commit curr and perform
the same steps described for the commit prev, that is: checking out
the commit, building system while capturing the source files, and
analyzing the diff files in order to detect bugs.

Finally, with the infer reportdiff command, we compute the
differences between the two infer reports reportPrev and reportCurr.
The output bugs contain three categories of issues:

• introduced: issues found in curr but not in prev;
• fixed: issues found in prev but not in curr ;
• preexisting: issues found in both prev and curr.

We perform these steps for each pair of commits (prev, curr) over
the change histories of the analyzed software projects. We optimize

Conference’17, July 2017, Washington, DC, USA Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey Svyatkovskiy

Detection and Classification

Localization

Infer Static Analysis

Pull Request "kind": "ERROR",
"bug_type": "NULL_DEREFERENCE",
"qualifier": "object returned by `getResourceResolver(this,adaptable)`
could be null and is dereferenced at line 168.",
"severity": "HIGH",

"line": 168,
"procedure": "Designer DefineObjectsInjector.getDesigner(Object)",
"procedure_start_line": 167,
"file":
"src/main/java/com/adobe/acs/commons/models/…/DefineObjectsInjector.java"

Large Language Model

Context Extraction (eWASH, type annotation)
NULL_DEREFERENCE | package com.adobe.acs.commons.models.injectors;
import com.adobe.granite.xss.XSSAPI;
import com.day.cq.wcm.api.PageManager;

public class DefineObjectsInjector implements Injector {
private ResourceResolver getResourceResolver(Object adaptable) {}

private Designer getDesigner(Object adaptable) {
<START_BUG>
return getResourceResolver(adaptable).adaptTo(Designer.class);
<END_BUG>

}
}

Query database
of historic

bugs and fixes

// Predicted patch
private Designer getDesigner(Object adaptable) {

ResourceResolver resolver = getResourceResolver(adaptable);
if (resolver != null) {

return resolver.adaptTo(Designer.class);
}
return null;

}

NULL_DEREFERENCE | package com.adobe.acs.commons.models.injectors;
import com.adobe.granite.xss.XSSAPI;;
...

// Structurally similar fix
private CLASS_1 METHOD_1(CLASS_2 VAR_1) {

CLASS_3 VAR_2 = METHOD_2(VAR_1);
if (VAR_2 != null) {

return VAR_2.METHOD_3(CLASS_1.METHOD_4);
}
return null;

}

Figure 2: InferFixworkflow.A buggy commit is detected by the Infer static analyzer, which is utilized to craft a prompt carrying
the bug type annotation, location information, relevant syntax hierarchies (eWASH), and similar fixes retrieved from the
historic database. A LLM – finetuned 12B Codex model – generates a patch.

this process by obviating the need to build the same commit twice
(i.e., once as curr and next as prev) by instead reusing the build and
capture stages in the next iteration.

3.3 Dataset Statistics
After running the extraction pipeline on 2937 repositories, we iden-
tified a total of 8280 bug patches. Of these bugs, 259 of these are
null dereference patches which pass the filtering process, and 462
of these are resource leaks which pass the filtering process. We
note that the filtered dataset contains commits which might have
been detected by traditional methods involving extracting commits
with certain keywords related to the desire bug type. Of the 259
null patches, 59 contain “null” or “npe” in the corresponding com-
mit message, and of the 462 resource leak patches, 15 contain the
“leak” keyword. We see from this that we are able to extract many
additional fixes that would not have appeared using naive commit
message keyword matching.

Table 1: Summary of the InferredBugs dataset in terms of
the number of files and size of the bug-fixing two-way diff.

NPD RL TSV

Java C# Java C# Java C#

Num. bug patches 2686 1116 2382 1789 3582 40
Mean lines per patch 12.2 8.8 10.9 7.2 14.1 17.1
Mean char per patch 457.1 310.2 404.1 275.8 482.7 455.3

As shown in Table 1 the InferredBugs is composed of multi-line
bugs, which represents a challenging case for program repair tools.

// Buggy code [snippet 1] // Fixed code [completion 1]
// Buggy code [snippet 2] // Fixed code [completion 2]
// Buggy code [snippet X]

Figure 3: Demonstration prompt design for program repair
experiments with LLMs.

4 BASELINES
In the following, we explore several program repair baselines which
are constructed around powerful LLMs (code-cushman-001 and
text-davinci-003) for tasks of completing code, filling code in the
middle, or generating a fix following a natural language instruction.
In the following, we evaluate the performance based on the accuracy
of exact string match of a generated patch to the ground truth fix.

4.1 Demonstration Prompting
Demonstration learning is a prompt augmentation technique in
which a few answered prompts are prepended to the context with
the purpose of demonstrating how a language model should ap-
proach a downstream task. For program repair, we introduce a
prefix constructed of two answered prompts as, followed by the
actual buggy code snippet [X], as shown in Figure 3. Our few-shot
demonstration learning experiments are based on the strong 12
billion parameter Codex language model of code.

4.2 Conditional Language Modeling
Our next baseline is the zero-shot conditional language generation
(code completion), which aims to utilize the next token prediction
to repair programs. Specifically, given a bug-free prefix, we run
Codex model inference to complete the buggy code snippet, aiming

InferFix: End-to-End Program Repair with LLMs over Retrieval-Augmented Prompts Conference’17, July 2017, Washington, DC, USA

Fix a [bug type string] in the following code snippet:
[snippet]
In your response, output code snippet only.

Figure 4: Instruction prompt design for program repair ex-
periments with LLMs.

to rewrite a program without bugs. In our experiments, we apply
nucleus sampling decoding algorithm with 𝑡𝑜𝑝_𝑝 = 1 and a tem-
perature𝑇 = 0.7 generating top 10 samples up to the length of 1024
tokens with a total length for prefix and completion of 2048. Our
conditional language modeling experiments are also based on the
code-cushman-001.

4.3 Instruction Prompting
Instruction learning is a prompt augmentation technique that in-
troduces a natural language description of the task. To approach
program repair, we prepare prompts following a template:We utilize
OpenaAI GPT-3 Davinci model, a 175 billion parameter language
model and a close sibling of ChatGPT, to complete the prompts.
Typically, Davinci outputs a natural language summary of the pro-
posed fix followed by a code snippet. For the sake of evaluation,
we instruct text-davinci-003 to only output code snippet in its
response which otherwise normally accompanied by the natural
language descriptions.

5 INFERFIX FRAMEWORK
InferFix program repair framework is composed of three following
key modules: (i) a static analysis tool that detects, localizes, and
classifies bugs, (ii) retrieval module – a large index of historic bugs
and fixes, equipped with a facility to efficiently search and retrieve
“hints” – semantically-similar source code segments – given a query,
and (iii) generator module – a large language model finetuned on a
dataset of prompts enriched with the information provided by the
static analyzer and the retriever to generate fixes.

5.1 Bug Detection & Classification Module
Our bug detection, localization, and classification module is pow-
ered by the Infer, which performs program analysis via Separation
Logic. Although Infer’s Pulse framework has recently been released,
for the purposes of this paper we examine bugs generated by In-
fer’s biabduction framework. Compiler frontends for Infer, such
as InferSharp, translate source code into the control-flow-graph
intermediate representation understood by Infer, known as the
Smallfoot Intermediate Language. Infer performs automated pro-
gram analysis over this graph and produces compositional method
summaries in order to determine whether there are defects present
in the source code.

5.2 Retrieval Module
Our retrieval module closely follows the ReACC formulation [23].
The retriever searches for semantically equivalent vulnerable code
given a buggy code snippet and retrieves corresponding fix candi-
dates based on cosine similarity between the embedding of query
vector 𝑞 and a buggy code snippet 𝑐 .

Dense retrieval maps each code snippet to a 𝑑-dimension dense
vector. The relevance of a code snippet to a given query can then
be determined as a dot product of the query vector and each docu-
ment vector. We closely follow the Dense Passage Retriever (DPR)
model [18]. At the training stage, we adopt in-batch negatives to
calculate the contrastive loss by InfoNCE [33].

Our dense retriever utilizes a bidirectional transformer encoder
E to obtain encoded dense vector representations of the query
(E(𝑞)), and for each buggy code snippet 𝑐 indexed in the retrieval
database (E(𝑐)). The retrieval database is a key-value store with
encoded buggy code snippets E(𝑐) serving as keys, and string
representations of the corresponding fixes 𝑓 serving as values.

We take the representation of the [CLS] token as a summary of
the encoded sequences of tokens, and compute similarity between
the query and each code snippet in the database as a dot-product:
𝑠𝑖𝑚(𝑞, 𝑐) = E(𝑐)𝑇 · E(𝑞).

The bidirectional transformer encoder E is pretrained with the
contrastive learning objective. Contrastive learning [35?] is a self-
supervised learning technique, in which the machine learning
model is aiming to learn from the commonality of the training sam-
ples but also the attributes that make samples different. Given a con-
trastive pretraining dataset 𝐷 = {𝑞𝑖 , 𝑝+𝑖 , 𝑝

−
(𝑖,1) , ..., 𝑝

−
(𝑖,ℎ) }, 𝑖 = 0...𝑁 ,

where each sample consists of a query – an encoding of a buggy
code snippet; a positive sample representing a semantically similar
code snippet of the same bug type; and a set of negative samples
which are irrelevant code snippets of different bug types. The con-
trastive loss is then given by the following formula (negative log
likelihood of the positive sample):

𝐿(𝑞𝑖 , 𝑝+𝑖 , 𝑝
−
(𝑖,1) , ..., 𝑝

−
(𝑖,𝑛)) = − 𝑙𝑜𝑔

𝑒𝑠𝑖𝑚 (𝑞𝑖 ,𝑝+
𝑖)

𝑒𝑠𝑖𝑚 (𝑞𝑖 ,𝑝+
𝑖
) +∑𝑛

𝑖=1 𝑒
𝑠𝑖𝑚 (𝑞𝑖 ,𝑝−

(𝑖,𝑗))
,

(1)
where 𝑠𝑖𝑚 is the cosine similarity between the embedding vectors.

5.3 Generator Module
Our generatormodel is based onCodexCushman (code-cushman-001),
a 12B parameter decoder-only transformer language model [5] de-
veloped by OpenAI, which is a descendant of GPT-3, trained on
source code.

We finetune Codex on a supervised corpus extracted from the In-
ferredBugs dataset, with the goal of teaching the model to generate
a fix for the given buggy code. Specifically, the input to the model
is the buggy code augmented with additional information such as
bug localization and categorization, hierarchical extended context,
and retrieved similar fixes. We discuss the prompt augmentation
process in detail in section 6.

We perform full model finetuning (updating all weights of the
model), on sixty four 32 GB V100 GPU for 5 epochs, retaining best
model checkpoint by the exact match accuracy metric. We utilize
Babel platform – a model repository and an AzureML designer
component family bringing together state-of-the-art transformer
models on Azure ML compute for rapid experimentation. We use
Adam stochastic optimization procedure with the learning rate of
0.01, warmup period of 1000 optimization steps, and global batch
size of 256.

Conference’17, July 2017, Washington, DC, USA Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey Svyatkovskiy

6 PROMPT AUGMENTATION
Prompt augmentation has been shown to be a powerful technique
for extracting high-quality outputs from large languagemodels, and,
in particular, for domain and task adaptation. In the following we
describe our dedicated prompt augmentation approach for program
repair task. The proposed approach is two-fold: (i) we extract and
prioritize syntax hierarchies which are most relevant to the buggy
snippet region, including focal context, and (ii) retrieve hints –
structurally similar bug fixes from commit histories on GitHub. By
doing so we are constructing a loosely structured template which
includes the following:

(1) Retrieved hints
(2) Bug type annotation
(3) Syntactic hierarchies and peer methods
(4) Focal methods
(5) Buggy method with location markers
Figure 5 shows an example of augmented prompt input for a null

pointer dereference bug in Java, which includes the buggy code
region surrounded by locationmarkers, containing the method with
surrounding most relevant syntax hierarchies, but type annotation
string, and “hints” – structurally similar bug fixes retrieved from
the historic database.

In the following subsections, we will describe each prompt aug-
mentation technique and quantify its impact on bug-fixing perfor-
mance by adding features incrementally.

6.1 Basic Prompt
The most basic prompt we can construct for the model is to provide
the buggy method as input while expecting the model to gener-
ate the fix by outputting the fixed version of the given method.
Thus, we perform task-oriented finetuning of our Generator model
(Codex) using the buggy and fixed versions of the methods from
the InferredBugs dataset.

We compare this basic prompting and finetuning against power-
ful LLM baselines described in Sec. 4. Table 2 illustrates the effect of
finetuning as compared to zero-shot and few-shot variants. Demon-
stration learning appears to be the most successful few-shot learn-
ing strategy for adapting the Codex model (code-cushman-001) to
downstream patch generation task, yielding a modest 19–25% accu-
racy of fixing Java bugs. Instruction learning, which also includes
natural language descriptions of the downstream task in the prompt,
only becomes viable as the model size increases – we repeated the
instruction learning experiments with the 175 billion parameter
Davinci model (text-davinci-003), a close sibling of ChatGPT.We
observe a very competitive performance with the Davinci variant,
with 40–53% accuracy of fixing Java bugs via prompt augmentation
alone. Task oriented finetuning, without any prompt crafting, out-
performs all few-shot baselines by a good margin, showing 11–55%
relative improvement of accuracy across all bug types in Java. This
improvement comes at a cost of computing resources necessary
to finetune the Codex model, but provide an advantage of higher
accuracy and cheaper inference as compared to few-shot Davinci.

6.2 Bug Type Annotations
The simplest prompt augmentation step is to prepend a bug type
annotation to a basic prompt consisting of a buggy method only.

Table 2: Evaluation results for InferFix with basic prompt
compared against LLM baselines

Approach NPD RL TSV

Java C# Java C# Java C#

Demonstration (Codex) 20.3 30.1 25.3 29.1 19.0 16.7
Completion (Codex) 6.7 6.1 7.8 5.7 3.9 0.0
Instruction (Davinci) 40.5 22.2 53.8 19.7 41.3 33.3
InferFix (basic prompt) 49.7 58.1 60.0 51.9 64.4 70.0

As shown in Table 3, this improves performance across all bug
categories and languages (Java and C#) yielding 2.7–5.6% relative
improvement in accuracy.

Table 3: Evaluation results for InferFix demonstrating the
impact of introducing the bug-type annotation in the
prompt.

NPD RL TSV

Java C# Java C# Java C#

InferFix (basic prompt) 49.7 58.1 60.0 51.9 64.4 70.0
InferFix (+ bug type) 52.3 60.4 63.1 53.3 67.9 72.5

6.3 Bug Localization
Bug location information is crucial for accurate program repair.
Infer static analyzer can localize bugs by tracking the flow of data
through the program and detecting any violations of predefined
rules or programming patterns. Infer static analyzer outputs a line
number on which an error could occur at runtime, which, however,
does not mean that the fix would require to edit this line only. In
our dataset Table 1, the bugs are often spanning over multiple lines
of code, having disjoint diff regions.

We utilize the bug location information output by Infer in two
ways: (i) we parse the source code file affected by the bug to extract
a method which contains the buggy line, and (ii) we surround the
buggy region with special sentinel <START_BUG> and <END_BUG>
symbols. During training, we refine the bug location by looking at
the two-way diff markers with respect to the fix. During test time,
we only use the information provided by the static analyzer as the fix
is unknown. Table 4 demonstrates the impact of adding bug location

Table 4: Evaluation results for InferFix showing the effect of
adding bug location markers in the prompt.

NPD RL TSV

Java C# Java C# Java C#

InferFix (bug type) 52.3 60.4 63.1 53.3 67.9 72.5
InferFix (+ localization) 53.5 61.4 64.4 53.9 69.6 75.0

markers in the prompt in addition to the bug type annotations. As
seen, this leads to a positive effect across all categories studies,
up to 3.4% relative improvement in accuracy. The effect is more
pronounced for larger methods.

InferFix: End-to-End Program Repair with LLMs over Retrieval-Augmented Prompts Conference’17, July 2017, Washington, DC, USA

Retrieved
similar fix

Bug type
annotation

eWASH
extended context

Focal methods

Buggy method
with location
markers

// Structurally similar fix
private CLASS_1 METHOD_1(CLASS_2 VAR_1) {

CLASS_3 VAR_2 = METHOD_2(VAR_1);
if (VAR_2 != null) {

return VAR_2.METHOD_3(CLASS_1.METHOD_4);
}
return null;

}

NULL_DEREFERENCE

package com.adobe.acs.commons.models.injectors;
import com.adobe.granite.xss.XSSAPI;
import com.day.cq.wcm.api.Page;
import com.day.cq.wcm.api.PageManager;
...
public class DefineObjectsInjector implements Injector {

private static Designer getDesigner(Object adaptable) {}

private ResourceResolver getResourceResolver(Object adaptable) {
if (adaptable instanceof SlingHttpServletRequest) {

return ((SlingHttpServletRequest)adaptable).getResourceResolver();
}

if (adaptable instanceof Resource) {
return ((Resource)adaptable).getResourceResolver();

}
return null;

}

private Designer getDesigner(Object adaptable) {
<START_BUG>
return getResourceResolver(adaptable).adaptTo(Designer.class);
<END_BUG>

}
}

Figure 5: Prompt augmentation for a method in Java programming language affected by a null pointer dereference bug.

6.4 eWASH extended context
A source code file may have nested scopes and references to other
external libraries or other files. To accurately suggest patches a
model must leverage knowledge across different parts of the file.
The length of source code files will often exceed the fixed-length
window of transformer models (2048 tokens in our case), which
could potentially lead to a loss of information relevant for learn-
ing to repair programs. To overcome this limitation, we utilize
eWASH [8] to prioritize syntax hierarchies which are most relevant
to the buggy snippet region. Extracting syntactic hierarchies from
the entire source code files, as opposed to the tokens immediately
preceding the bug location, we are able to retain most relevant
code context, such as class-level fields and method arguments, and
peer methods which are highly relevant to program repair. Starting
with a concrete syntax tree of a source file, we organize and priori-
tize class-level and method-level syntactic elements such as global
import statements and assigned values, class attributes, method
signatures, class docstring, and global expressions in the input.

Quite often, a method affected by a bug will only contain an invo-
cation expression or a call to a method defined elsewhere in the file
– what we refer to as buggy focal method. For instance, in Figure 5
the buggy line of code has a return statement which is composed
of a chain of method invocations with getResourceResolver and
adaptTo focal methods. We conjecture that retaining the focal
method implementation (signature, docstring, and body) in the
prompt is crucial for program repair. We utilize stack trace pro-
vided as part of the Infer bug report to determine relevant focal

method name, and include it in the prompt. Table 5 shows the effect
of adding the eWASH syntax hierarchies and focal context in the
prompt. As seen, patch generation accuracy is further improved by
over 7.2–7.8% for Java and by 4.0–6.7% for C#.

Table 5: Evaluation results for InferFix showing the effect of
adding eWASH extended context in the prompt.

NPD RL TSV

Java C# Java C# Java C#

InferFix (localization) 53.5 61.4 64.4 53.9 69.6 75.0
InferFix (+ eWASH) 57.6 65.1 69.1 56.1 75.0 80.0

6.5 Enriching Context with Hints
To further enrich prompts, we perform a nearest neighbor search
in the retrieval database for semantically similar fixes – so called
hints. The resulting fixes are then prepended to the context with
an instruction string // Structurally similar fix.

By default, we extract and prepend 2 nearest neighbors for
each query. We apply quality criteria to avoid obviously incor-
rect matches: (i) retrieved fixes must be of the same bug type as
the query, and (ii) impose a minimum similarity threshold between
retrieved fixes and a query of 60%.

To focus on extracting structurally similar fixes and reduce the de-
pendency on identifier naming we obfuscate code snippets serving

Conference’17, July 2017, Washington, DC, USA Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey Svyatkovskiy

as keys in the database and search queries. Namely, we parse and an-
alyze the code identifier types and mask the names of classes, meth-
ods, and identifierswith placeholder symbols: CLASS_NN, METHOD_NN,
and VAR_NN, where NN is a unique number. An example obfuscated
representation is shown in Figure 6.

private CLASS_1 METHOD_1(CLASS_2 VAR_1) {
CLASS_3 VAR_2 = METHOD_2(VAR_1);
if (VAR_2 != null) {

return VAR_2.METHOD_3(CLASS_1.METHOD_4);
}
return null;

}

private Designer getDesigner(Object adaptable) {
ResourceResolver resolver = getResourceResolver(adaptable);
if (resolver != null) {

return resolver.adaptTo(Designer.class);
}
return null;

}

Figure 6: Code obfuscation example in Java.

Table 6 shows the improvements in bug-fixing capabilities for In-
ferFix with prompt which incorporates retrieved hints. This prompt
augmentation further improves InferFix performances by 1–2% in
absolute top-1 performances.

Table 6: Evaluation results for InferFix showing the effect of
adding bug-fix hints.

NPD RL TSV

Java C# Java C# Java C#

InferFix (eWASH) 57.6 65.1 69.1 56.1 75.0 80.0
InferFix (+ retrieved hints) 59.5 66.7 71.2 57.0 77.4 82.5

6.6 Inference
The Inference step for InferFix involves utilizing nucleus sampling
decoding with a top_p parameter of 1.0 and a temperature of 0.7.
During this step, the tool decodes the top-10 best predictions gener-
ated by the large language model, and ranks them according to their
sequence log probabilities. This ranking helps to ensure that the
most likely and relevant fixes are presented to the user. The use of
nucleus sampling decoding, with its specific top_p and temperature
parameters, helps to balance the trade-off between diversity and
quality in the generated predictions, making it possible to obtain
highly accurate and diverse patch candidates.

7 RESULTS
Table 7 shows the results achieved by InferFix on the InferredBugs
dataset compared against the LLM baselines discussed in section 4.
InferFix is able to fix between 57% and 82% of the three categories
of bugs for Java and C#, just with the top-1 prediction. The perfor-
mance gap between our approach and the best performing baseline
(Finetuned Codex) is between 8.6% and 13% in absolute terms.

It is important to keep in mind that the results shown in Ta-
ble 7 present a conservative estimate of InferFix ’s potential for

generating fixes. The percentages displayed in the table are based
on generated patches that exactly match the original developer’s
token-by-token fix. However, there may be other candidate patches
that correctly fix the bug using a different token sequence.

The impressive top-1 results achieved by InferFix are critical for
its efficient and effective integration into the software development
cycle. With the ability to propose high-quality fixes for critical bugs,
InferFix has the potential to greatly enhance the productivity and
reliability of the software development process.

Table 7: Evaluation results for InferFix on the InferredBugs
dataset compared against LLM baselines

Approach NPD RL TSV

Java C# Java C# Java C#

Demonstration (Codex) 20.3 30.1 25.3 29.1 19.0 16.7
Completion (Codex) 6.7 6.1 7.8 5.7 3.9 0.0
Instruction (Davinci) 40.5 22.2 53.8 19.7 41.3 33.3
Finetuning (Codex) 49.7 58.1 60.0 51.9 64.4 70.0
InferFix 59.5 66.7 71.2 57.0 77.4 82.5

8 DEPLOYMENT
The deployment of InferFix atMicrosoft as part of theAzureDevOps
and GitHub continuous integration pipeline (CI) has significantly
improved the software development workflow for our internal
projects at Developer Division. Such tight integration has enabled
our software development teams to automate the bug detection and
fixing process, reducing the time and effort required to manually
identify and fix bugs, and ensuring that bugs are addressed quickly
and accurately. Figure 1 provides an overview of our CI pipeline
with the integrated InferFix stages. When a pull request propos-
ing code changes is created, the CI pipeline automatically triggers
three steps: (i) build, (ii) testing, and (iii) Infer (or InferSharp) static
analysis. If bugs are detected, the InferFix patch generation module
is invoked to propose a fix. InferFix leverages the detailed informa-
tion about the bug provided by Infer, such as context, location, and
classification of the bug type.

The InferFix module proposes a (configurable) set of candidate
patches. Each candidate patch is packaged as a separate Pull Re-
quest, which is individually validated. The validation process is
seamless and reuses the three CI pipeline steps mentioned above.
Specifically, the PR containing the candidate patch is validated
through: (i) build – checking that the candidate patch is syntacti-
cally and semantically correct w.r.t. the source project; (ii) testing –
ensuring that the candidate patch does not introduce regressions
(failing tests); (iii) Infer static analysis – validating that the candi-
date patch actually fixes the previously detected bug. The validated
fix is then provided to the developer within the feature branch
of the developer’s Pull Request. The complexity of these stages
are abstracted away from the developer, who will simply receive
a PR comment within the system they are using (e.g., GitHub or
Azure DevOps). We implemented a GitHub action which receives
a validated patch from InferFix and surfaces it to the developer
in form of a GitHub comment in the PR. The comment provides
detailed information about the bug (i.e., extracted by Infer), and the

InferFix: End-to-End Program Repair with LLMs over Retrieval-Augmented Prompts Conference’17, July 2017, Washington, DC, USA

resolution (i.e., served by InferFix). The developer has the option to
accept or decline the recommended fix.

The deployment of InferFix in the CI pipeline for our internal
projects has provided significant benefits. Our software develop-
ment teams can now focus on more important tasks, confident in
the knowledge that bugs are being detected and fixed in a timely
and efficient manner. We are currently in the process of expanding
the number of projects that integrate InferFixinto their CI pipeline,
and the benefits of this integration have been demonstrated through
the seamless validation process and abstracted complexity for the
developer.

9 RELATEDWORK
Our approach is related to a broad set of literature on patch genera-
tion and prompting and task-oriented finetuning. We refer a reader
to [27] for a more comprehensive overview on the prior research
in the area of program repair, and [21] for a systematic survey of
prompting methods in NLP.

Patches in the Wild [32], utilize supervised machine translation
to learn bug-fixing patterns for various common code defects. They
mine bug-fixes from the change histories of projects hosted on
GitHub and define the learning task on a method level, disregard-
ing the surrounding code context. SequenceR [6] improves upon the
Patches in the Wild by leveraging the extended context available
through the source code file containing the buggy code, showing
first attempt at prompt crafting. SequenceR learning objective is
based around supervised machine translation with encoder-decoder
recurrent neural network. Copy That! [28] builds upon an obser-
vation that patches typically only affect isolated spans of tokens,
leaving most tokens unchanged. By introducing a span copying
decoder they improve results upon the previous state-of-the-art.
While also utilizing neural machine translation, DeepDebug [10]
leverage extensive self-supervised pretraining to improve upon the
prior art. BugLab [2] takes a step towards self-supervised bug de-
tection and repair, co-training two neural models: a detector model
that learns to detect and repair bugs in code, and a selector model
that learns to create buggy code for the detector to use as training
data. CODIT [4] uses a tree-based model to encode source code
changes, learning bug-fixing activities. Recoder [36] generates edits
in a syntax-guided manner and with a provider/decider architecture
and placeholder generation. Lutellier et al. [24] employed ensemble
learning with CNNs and NMT to generate patches with CoCoNuT.
DLFix [19] is a two-tier model with the first layer focusing on
learning the context of bug fixes and the second layer trying to
generate the bug-fixing patch. Recently CURE [14] has reported
state-of-the-art results on Defects4J and QuixBugs datasets, improv-
ing over NMT-based APR techniques with the use of a pre-trained
programming language model, code-aware search, and sub-word
tokenization.

Theseworks are trained on generic, unclassified bugsmined from
change histories of open source repositories, and do not utilize the
bug type information during learning. Differently, our proposed
approach take advantage of the close relationship with the Infer
static analyzer tool and leverages the bug type information during
the learning process to generate specific fixes tailored for that
category of bugs. Additionally, none of these aforementioned papers

attempted to capitalize on large language models, as well as the
effectiveness of prompt augmentation methods in connections to
LLMs, combined with task-oriented finetuning.

Our work is also aligned with a category of research that exam-
ines pretraining strategies and prompt augmentation. [12] permute
ordering of the spans in the original prompt to train the model
to infill. Specifically, by randomly replacing spans of code with a
sentinel token and moving them to the end of the sequence they
yield a unified approach for both program synthesis (via left-to-
right generation) and editing (via infilling). [30] introduce a seminal
LAMA dataset providing manually curated cloze templates to probe
knowledge in language models. [9] investigate a template-based
method for exploiting the few-shot learning potential of generative
pre-trained language models to sequence labeling. Specifically, they
define templates such as “<candidate_span> is a <entity_type>
entity”, where <entity_type> can be “person” and “location”, etc,
and train a model using a filled template. [34] introduce a concept
of chain of thought prompting, in which a task is broken down
into a series of intermediate reasoning steps which significantly
improves the ability of large language models to perform complex
reasoning

Our proposed approach, InferFix, performs prompt augmenta-
tion by incorporating similar fixes identified in a historical database
of bugs, along with other information. The concept of leveraging
similar fixes has also been explored in other approaches, such as
SimFix [13], which extracts frequent abstract modifications from ex-
isting patches to form an abstract space for program repair. It then
analyzes similar code snippets in the same program to extract con-
crete modifications, which forms a concrete space. The intersection
of these two spaces is used to perform fine-grained code adapta-
tion for patch generation. Differently from the AST-differencing
approach proposed in SimFix, we rely on a dense retrieval model
which allows for more flexibility in identifying similar code snip-
pets with arbitrary length, not constrained by specific AST-subtrees.
Furthermore, our approach enhances the prompt by providing ad-
ditional information and cues to the LLM model to facilitate the
repair process.

10 CONCLUSION
We introduced InferFix: an end-to-end program repair framework
based on Codex and a state-of-the-art static analyzer designed to
fix critical security and performance bugs in Java and C#. InferFix
is based on a retrieval-based prompt augmentation technique and
task-oriented finetuning that leverages bug-type annotations and
extended source code context. We have also curated a InferredBugs,
a novel, metadata-rich dataset of bugs extracted by executing the
Infer and InferSharp static analyzers on the change histories of
thousands of Java and C# repositories. Our experiments demon-
strated that InferFix outperforms strong LLM baselines, reaching
a top-1 accuracy of 65.6% for generating fixes in C# and 76.8% in
Java on the InferredBugs dataset.

We deployed InferFix internally at Microsoft as a GitHub action
and as an Azure DevOps plugin operating as part of the continuous
integration pipeline. This tool has significantly improved the soft-
ware development workflow for our internal projects at Developer
Division.

Conference’17, July 2017, Washington, DC, USA Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey Svyatkovskiy

REFERENCES
[1] Adobe-Consulting-Services. 2023. acs-aem-common. https://github.com/Adobe-

Consulting-Services/acs-aem-commons.
[2] Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. 2021. Self-

Supervised Bug Detection and Repair. In Advances in Neural Information Process-
ing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (Eds.), Vol. 34. CurranAssociates, Inc., 27865–27876. https://proceedings.
neurips.cc/paper/2021/file/ea96efc03b9a050d895110db8c4af057-Paper.pdf

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, ArvindNeelakantan, Pranav Shyam, Girish Sastry, AmandaAskell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877–1901. https://proceedings.
neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[4] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray.
2020. Codit: Code editing with tree-based neural models. IEEE Transactions on
Software Engineering (2020).

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish
Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. https://doi.org/10.48550/ARXIV.2107.03374

[6] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
Poshyvanyk, and Monperrus Martin. 2021. SequenceR: Sequence-to-Sequence
Learning for End-to-End Program Repair. IEEE Transactions on Software Engi-
neering 47 (2021), 1943–1959.

[7] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, HenrykMichalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek
Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. PaLM: Scaling Language Modeling
with Pathways. https://doi.org/10.48550/ARXIV.2204.02311

[8] Colin Clement, Shuai Lu, Xiaoyu Liu, Michele Tufano, Dawn Drain, Nan Duan,
Neel Sundaresan, and Alexey Svyatkovskiy. 2021. Long-Range Modeling of
Source Code Files with eWASH: Extended Window Access by Syntax Hierarchy.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, Online and Punta Cana,
Dominican Republic, 4713–4722. https://doi.org/10.18653/v1/2021.emnlp-main.
387

[9] Leyang Cui, Yu Wu, Jian Liu, Sen Yang, and Yue Zhang. 2021. Template-Based
Named Entity Recognition Using BART. In Findings of the Association for Compu-
tational Linguistics: ACL-IJCNLP 2021. Association for Computational Linguistics,
Online, 1835–1845. https://doi.org/10.18653/v1/2021.findings-acl.161

[10] Dawn Drain, Chen Wu, Alexey Svyatkovskiy, and Neel Sundaresan. 2021. Gen-
erating Bug-Fixes Using Pretrained Transformers. In Proceedings of the 5th ACM
SIGPLAN International Symposium on Machine Programming (Virtual, Canada)
(MAPS 2021). Association for Computing Machinery, New York, NY, USA, 1–8.
https://doi.org/10.1145/3460945.3464951

[11] Rudolf Ferenc, Zoltán Tóth, Gergely Ladányi, István Siket, and Tibor Gyimóthy.
2018. A public unified bug dataset for java. In Proceedings of the 14th international
conference on predictive models and data analytics in software engineering. 12–21.

[12] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. InCoder:
A Generative Model for Code Infilling and Synthesis. https://doi.org/10.48550/
ARXIV.2204.05999

[13] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping program repair space with existing patches and similar code. In
Proceedings of the 27th ACM SIGSOFT international symposium on software testing
and analysis. 298–309.

[14] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. Cure: Code-aware neural machine
translation for automatic program repair. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 1161–1173.

[15] Harshit Joshi, José Cambronero, Sumit Gulwani, Vu Le, Ivan Radicek, and Gust
Verbruggen. 2022. Repair Is Nearly Generation: Multilingual Program Repair
with LLMs. https://doi.org/10.48550/ARXIV.2208.11640

[16] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 international symposium on software testing and analysis. 437–440.

[17] Rafael-Michael Karampatsis and Charles Sutton. 2020. How often do single-
statement bugs occur? the manysstubs4j dataset. In Proceedings of the 17th Inter-
national Conference on Mining Software Repositories. 573–577.

[18] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, Online, 6769–6781. https://doi.org/10.18653/v1/2020.emnlp-main.550

[19] Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. Dlfix: Context-based code
transformation learning for automated program repair. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering. 602–614.

[20] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: A multi-lingual program repair benchmark set based on the Quixey
Challenge. In Proceedings Companion of the 2017 ACM SIGPLAN international
conference on systems, programming, languages, and applications: software for
humanity. 55–56.

[21] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2022. Pre-Train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. ACM Comput. Surv. (sep
2022). https://doi.org/10.1145/3560815 Just Accepted.

[22] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-Train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. ACM Comput. Surv. 55, 9,
Article 195 (jan 2023), 35 pages. https://doi.org/10.1145/3560815

[23] Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svy-
atkovskiy. 2022. ReACC: A Retrieval-Augmented Code Completion Framework.
In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
Dublin, Ireland, 6227–6240. https://doi.org/10.18653/v1/2022.acl-long.431

[24] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. Coconut: combining context-aware neural translation models
using ensemble for program repair. In Proceedings of the 29th ACM SIGSOFT
international symposium on software testing and analysis. 101–114.

[25] Meta. 2023. Scaling Static Analyses at Facebook. https://cacm.acm.org/magazines/
2019/8/238344-scaling-static-analyses-at-facebook/fulltext.

[26] Microsoft. 2023. InferSharp. https://github.com/microsoft/infersharp.
[27] Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. ACM

Comput. Surv. 51, 1, Article 17 (jan 2018), 24 pages. https://doi.org/10.1145/
3105906

[28] Sheena Panthaplackel, Miltiadis Allamanis, and Marc Brockschmidt. 2021. Copy
that! Editing Sequences by Copying Spans. In AAAI.

[29] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2021. Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions. https://doi.org/10.48550/ARXIV.2108.09293

[30] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin,
Yuxiang Wu, and Alexander Miller. 2019. Language Models as Knowledge Bases?.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP). Association for Computational Linguistics, Hong Kong,
China, 2463–2473. https://doi.org/10.18653/v1/D19-1250

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21, 140 (2020), 1–67. http://jmlr.org/papers/v21/20-074.html

[32] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2019. An Empirical Study on Learning Bug-Fixing
Patches in the Wild via Neural Machine Translation. ACM Trans. Softw. Eng.
Methodol. 28, 4, Article 19 (sep 2019), 29 pages. https://doi.org/10.1145/3340544

[33] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation Learning
with Contrastive Predictive Coding. ArXiv abs/1807.03748 (2018).

[34] JasonWei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,
Ed Chi, Quoc Le, and Denny Zhou. 2022. Chain of Thought Prompting Elicits
Reasoning in Large Language Models. https://doi.org/10.48550/ARXIV.2201.
11903

https://github.com/Adobe-Consulting-Services/acs-aem-commons
https://github.com/Adobe-Consulting-Services/acs-aem-commons
https://proceedings.neurips.cc/paper/2021/file/ea96efc03b9a050d895110db8c4af057-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/ea96efc03b9a050d895110db8c4af057-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.18653/v1/2021.emnlp-main.387
https://doi.org/10.18653/v1/2021.emnlp-main.387
https://doi.org/10.18653/v1/2021.findings-acl.161
https://doi.org/10.1145/3460945.3464951
https://doi.org/10.48550/ARXIV.2204.05999
https://doi.org/10.48550/ARXIV.2204.05999
https://doi.org/10.48550/ARXIV.2208.11640
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.18653/v1/2022.acl-long.431
https://cacm.acm.org/magazines/2019/8/238344-scaling-static-analyses-at-facebook/fulltext
https://cacm.acm.org/magazines/2019/8/238344-scaling-static-analyses-at-facebook/fulltext
https://github.com/microsoft/infersharp
https://doi.org/10.1145/3105906
https://doi.org/10.1145/3105906
https://doi.org/10.48550/ARXIV.2108.09293
https://doi.org/10.18653/v1/D19-1250
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1145/3340544
https://doi.org/10.48550/ARXIV.2201.11903
https://doi.org/10.48550/ARXIV.2201.11903

InferFix: End-to-End Program Repair with LLMs over Retrieval-Augmented Prompts Conference’17, July 2017, Washington, DC, USA

[35] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. 2018. Unsupervised
Feature Learning via Non-parametric Instance Discrimination. 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2018), 3733–3742.

[36] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A syntax-guided edit decoder for neural program repair.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 341–353.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Dataset
	3.1 Background on Infer Static Analyzer
	3.2 Collecting Data with Infer
	3.3 Dataset Statistics

	4 Baselines
	4.1 Demonstration Prompting
	4.2 Conditional Language Modeling
	4.3 Instruction Prompting

	5 InferFix Framework
	5.1 Bug Detection & Classification Module
	5.2 Retrieval Module
	5.3 Generator Module

	6 Prompt Augmentation
	6.1 Basic Prompt
	6.2 Bug Type Annotations
	6.3 Bug Localization
	6.4 eWASH extended context
	6.5 Enriching Context with Hints
	6.6 Inference

	7 Results
	8 Deployment
	9 Related Work
	10 Conclusion
	References

